Suchergebnisse - "Incidence structures embeddable into projective geometries"
-
1
Autoren: Gyarmathi, L.
Quelle: Publicationes Mathematicae Debrecen. 27:93-106
Schlagwörter: Incidence structures embeddable into projective geometries, Geometry of classical groups, Linear algebraic groups over the reals, the complexes, the quaternions, projective geometry over quaternions, 0101 mathematics, 01 natural sciences
Dateibeschreibung: application/xml
Zugangs-URL: https://zbmath.org/3718083
https://zbmath.org/3462706 -
2
Autoren:
Quelle: Designs and Finite Geometries ISBN: 9781461286042
Schlagwörter: Incidence structures embeddable into projective geometries, Translation planes and spreads in linear incidence geometry, 4. Education, translation plane, derivation, spread, 0101 mathematics, 01 natural sciences
Dateibeschreibung: application/xml
Zugangs-URL: https://zbmath.org/994655
https://doi.org/10.1007/bf00130569
https://dblp.uni-trier.de/db/journals/dcc/dcc8.html#BakerE96
https://rd.springer.com/chapter/10.1007/978-1-4613-1395-3_5
https://link.springer.com/content/pdf/10.1023/A:1018024723184.pdf
https://link.springer.com/chapter/10.1007/978-1-4613-1395-3_5 -
3
Autoren:
Quelle: Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg. 75:21-50
Schlagwörter: spine space, Incidence structures embeddable into projective geometries, Algebraization in linear incidence geometry, collineation, Homomorphism, automorphism and dualities in linear incidence geometry, Grassmann space, base subset, 0102 computer and information sciences, adjacency, 0101 mathematics, 01 natural sciences
Dateibeschreibung: application/xml
-
4
Autoren: Gavin J. Seal
Quelle: advg. 5:353-361
Schlagwörter: Polar geometry, symplectic spaces, orthogonal spaces, Incidence structures embeddable into projective geometries, 0102 computer and information sciences, 0101 mathematics, 01 natural sciences
Dateibeschreibung: application/xml
-
5
Autoren: Nikias De Feyter
Quelle: advg. 5:279-292
Schlagwörter: affine embeddings, Incidence structures embeddable into projective geometries, 0202 electrical engineering, electronic engineering, information engineering, Combinatorial aspects of finite geometries, zero-alpha geometries, 0102 computer and information sciences, 02 engineering and technology, 01 natural sciences, Finite partial geometries (general), nets, partial spreads, semipartial geometries
Dateibeschreibung: application/xml
-
6
Autoren: E. E. Shult
Quelle: Discrete Mathematics. 294:175-201
Schlagwörter: Ovoids, Diagonal axiom, Combinatorial structures in finite projective spaces, 0102 computer and information sciences, diagonal axiom, ovoids, 01 natural sciences, Theoretical Computer Science, Polar geometry, symplectic spaces, orthogonal spaces, Buildings and the geometry of diagrams, Incidence structures embeddable into projective geometries, finite geometry, polar spaces, Discrete Mathematics and Combinatorics, Finite geometry, Generalized quadrangles and generalized polygons in finite geometry, 0101 mathematics
Dateibeschreibung: application/xml
-
7
Autoren:
Quelle: Aequationes mathematicae. 69:146-163
Schlagwörter: Mathematics - Algebraic Geometry, 51C05, 51A10, 51A45, 17C50, Incidence structures embeddable into projective geometries, Homomorphism, automorphism and dualities in linear incidence geometry, Rings and Algebras (math.RA), Ring geometry (Hjelmslev, Barbilian, etc.), Jordan structures associated with other structures, FOS: Mathematics, Mathematics - Rings and Algebras, 0101 mathematics, projective line over a ring, Algebraic Geometry (math.AG), 01 natural sciences
Dateibeschreibung: application/xml
Zugangs-URL: http://arxiv.org/pdf/1304.0226
http://arxiv.org/abs/1304.0226
https://documat.unirioja.es/servlet/articulo?codigo=2204366
https://rd.springer.com/article/10.1007/s00010-004-2745-7
https://link.springer.com/article/10.1007/s00010-004-2745-7
https://dialnet.unirioja.es/servlet/articulo?codigo=2204366
https://link.springer.com/10.1007/s00010-004-2745-7 -
8
Autoren:
Quelle: Canadian Journal of Mathematics. 56:1068-1093
Schlagwörter: Incidence structures embeddable into projective geometries, mixed hexagons, Moufang generalized hexagons, 0102 computer and information sciences, Generalized quadrangles and generalized polygons in finite geometry, classical hexagons, 0101 mathematics, 16. Peace & justice, embeddings, 01 natural sciences
Dateibeschreibung: application/xml
Zugangs-URL: https://www.cambridge.org/core/journals/canadian-journal-of-mathematics/article/regular-embeddings-of-generalized-hexagons/8FF34ED2C9514D4E25E1CA7C3CB27884
https://biblio.ugent.be/publication/303870
https://cage.ugent.be/~hvm/artikels/135.pdf
https://cms.math.ca/cjm/abstract/pdf/149682.pdf -
9
Autoren:
Quelle: Combinatorica. 24:681-698
Schlagwörter: Incidence structures embeddable into projective geometries, Cayley hexagons, 0102 computer and information sciences, Generalized quadrangles and generalized polygons in finite geometry, 0101 mathematics, 01 natural sciences
Dateibeschreibung: application/xml
Zugangs-URL: https://zbmath.org/2186410
https://doi.org/10.1007/s00493-004-0041-8
https://dblp.uni-trier.de/db/journals/combinatorica/combinatorica24.html#ThasM04
https://link.springer.com/article/10.1007/s00493-004-0041-8
https://link.springer.com/content/pdf/10.1007/s00493-004-0041-8.pdf
https://core.ac.uk/display/55882992 -
10
Autoren:
Quelle: Journal of Algebra. 277:474-519
Schlagwörter: Algebra and Number Theory, Projective elementary group, Mathematics - Rings and Algebras, Jordan pair, Symmetric space, 01 natural sciences, 3-graded Lie algebra, Associated manifolds of Jordan algebras, Incidence structures embeddable into projective geometries, Rings and Algebras (math.RA), Jordan structures associated with other structures, FOS: Mathematics, Projective completion, Associated geometries of Jordan algebras, 0101 mathematics, 17C30, 17C37, Generalized projective geometry
Dateibeschreibung: application/xml
Zugangs-URL: http://arxiv.org/abs/math/0306272
https://zbmath.org/2105235
https://doi.org/10.1016/j.jalgebra.2003.10.034
https://hal.inria.fr/hal-00141429/
https://ui.adsabs.harvard.edu/abs/2003math......6272B/abstract
https://www.sciencedirect.com/science/article/abs/pii/S0021869304000900
https://tubiblio.ulb.tu-darmstadt.de/20724/
https://www.sciencedirect.com/science/article/pii/S0021869304000900
https://hal.archives-ouvertes.fr/hal-00141429 -
11
Autoren: Mark Pankov
Quelle: Results in Mathematics. 45:319-327
Schlagwörter: Incidence structures embeddable into projective geometries, Homomorphism, automorphism and dualities in linear incidence geometry, Grassmann space, projective space, Synthetic treatment of fundamental manifolds in projective geometries (Grassmannians, Veronesians and their generalizations), strong embedding, 0102 computer and information sciences, adjacency, 0101 mathematics, Grassmannians, Schubert varieties, flag manifolds, 01 natural sciences
Dateibeschreibung: application/xml
-
12
Autoren:
Quelle: Journal of Geometry. 79:46-55
Schlagwörter: inversive planes, Galois spaces, Incidence structures embeddable into projective geometries, 0211 other engineering and technologies, Combinatorial structures in finite projective spaces, Combinatorial aspects of finite geometries, 02 engineering and technology, 0101 mathematics, ovoids, 01 natural sciences
Dateibeschreibung: application/xml
-
13
Autoren:
Quelle: Journal of Geometry. 79:177-189
Schlagwörter: spine space, parallelism, Incidence structures embeddable into projective geometries, Linear incidence geometric structures with parallelism, affine spine space, 0102 computer and information sciences, 0101 mathematics, 01 natural sciences, linear complement
Dateibeschreibung: application/xml
-
14
Autoren: Satoshi Yoshiara
Quelle: Journal of Algebraic Combinatorics. 19:5-23
Schlagwörter: dual arc, Veronesean, Incidence structures embeddable into projective geometries, Combinatorial structures in finite projective spaces, Combinatorial aspects of finite geometries, dual hyperoval, 0102 computer and information sciences, 0101 mathematics, 01 natural sciences
Dateibeschreibung: application/xml
Zugangs-URL: https://link.springer.com/content/pdf/10.1023%2FB%3AJACO.0000022564.51008.63.pdf
https://zbmath.org/2081995
https://doi.org/10.1023/b:jaco.0000022564.51008.63
https://link.springer.com/content/pdf/10.1023/B:JACO.0000022564.51008.63.pdf
https://link.springer.com/10.1023/B:JACO.0000022564.51008.63
https://rd.springer.com/article/10.1023/B%3AJACO.0000022564.51008.63
https://link.springer.com/article/10.1023%2FB%3AJACO.0000022564.51008.63 -
15
Autoren: Stefan Immervoll
Quelle: Archiv der Mathematik. 81:704-709
Schlagwörter: Incidence structures embeddable into projective geometries, unital, polarity, 0101 mathematics, Geometries with differentiable structure, smooth projective plane, 01 natural sciences
Dateibeschreibung: application/xml
-
16
Autoren:
Quelle: Journal of Combinatorial Theory, Series A. 104:351-364
Schlagwörter: Weak embeddings, 0102 computer and information sciences, 01 natural sciences, Theoretical Computer Science, Projective spaces, Polar geometry, symplectic spaces, orthogonal spaces, Incidence structures embeddable into projective geometries, Computational Theory and Mathematics, Polar spaces, projective spaces, dual polar space, Discrete Mathematics and Combinatorics, ovoid, 0101 mathematics
Dateibeschreibung: application/xml
Zugangs-URL: https://www.sciencedirect.com/science/article/pii/S0097316503001547
https://dblp.uni-trier.de/db/journals/jct/jcta104.html#CoopersteinP03
https://www.sciencedirect.com/science/article/abs/pii/S0097316503001547
https://core.ac.uk/display/82569327
https://www.openaccessrepository.it/record/203884 -
17
Autoren: Thomas Zaslavsky
Quelle: Journal of Combinatorial Theory, Series B. 89:231-297
Schlagwörter: Balance, representation, Ceva, Exact enumeration problems, generating functions, Permutation representation, General logic, 0102 computer and information sciences, Poincaré polynomial, 01 natural sciences, Signed and weighted graphs, Theoretical Computer Science, Matroid representation, Biased graph, Whitney 2-isomorphism, Logic of equations, Discrete Mathematics and Combinatorics, Gain graph, Whitney-number polynomial, 0101 mathematics, Matroid characteristic polynomial, Matroid, Arrangement of hyperplanes, Graphs and linear algebra (matrices, eigenvalues, etc.), Geometric semilattice, Combinatorial aspects of matroids and geometric lattices, Thick biased graph, Arrangements of points, flats, hyperplanes (aspects of discrete geometry), Pythagorean representation, Permutation gain graph, Graphic lift matroid, Chromatic polynomial, Incidence structures embeddable into projective geometries, Hyperplane separation, Bias matroid, Computational Theory and Mathematics, Orthographic representation, characteristic polynomial, Menelaus
Dateibeschreibung: application/xml
-
18
Autoren:
Quelle: Demonstratio Mathematica. 36:957-970
Schlagwörter: spine space, automorphism, Incidence structures embeddable into projective geometries, Homomorphism, automorphism and dualities in linear incidence geometry, Linear incidence geometric structures with parallelism, slit space, 0102 computer and information sciences, 0101 mathematics, dilatation, 01 natural sciences, affine space
Dateibeschreibung: application/xml
-
19
Autoren: NAPOLITANO, Vito
Quelle: Discrete Mathematics. 270:207-224
Schlagwörter: restricted linear spaces, Combinatorial structures in finite projective spaces, finite linear spaces, 0102 computer and information sciences, 01 natural sciences, linear spaces, Linear spaces, Theoretical Computer Science, Projective planes, Incidence structures embeddable into projective geometries, projective planes, Restricted linear spaces, Discrete Mathematics and Combinatorics, 0101 mathematics, few lines
Dateibeschreibung: application/xml
Zugangs-URL: https://zbmath.org/1974993
https://doi.org/10.1016/s0012-365x(02)00873-7
https://dblp.uni-trier.de/db/journals/dm/dm270.html#Napolitano03
https://www.sciencedirect.com/science/article/pii/S0012365X02008737
https://www.sciencedirect.com/science/article/abs/pii/S0012365X02008737
https://hdl.handle.net/11591/225403 -
20
Autoren:
Quelle: Monatshefte f�r Mathematik. 139:275-284
Schlagwörter: Incidence structures embeddable into projective geometries, topological translation plane, shell, Topological linear incidence structures, hyperunital, ovoid, 0101 mathematics, 01 natural sciences
Dateibeschreibung: application/xml
Zugangs-URL: https://zbmath.org/1984994
https://doi.org/10.1007/s00605-002-0515-y
https://link.springer.com/10.1007/s00605-002-0515-y
https://link.springer.com/article/10.1007/s00605-002-0515-y
https://dialnet.unirioja.es/servlet/articulo?codigo=699053
https://documat.unirioja.es/servlet/articulo?codigo=699053
Nájsť tento článok vo Web of Science
Full Text Finder