Suchergebnisse - "Improved back propagation algorithm"
-
1
Autoren: et al.
Weitere Verfasser: et al.
Quelle: Neural Networks. 116:279-287
Schlagwörter: Artificial neural network, Classification performance, Image classification, Performance, Neighborhood activation error, Data analysis, Mathematical parameters, 02 engineering and technology, Procedures, Pattern Recognition, Automated, Convolution techniques, 03 medical and health sciences, Deep Learning, 0302 clinical medicine, Statistical tests, Artificial Intelligence, Pattern recognition, Convolutional model, Machine learning, Its efficiencies, 0202 electrical engineering, electronic engineering, information engineering, Humans, Error back propagation algorithm, Adaptation, Improved back propagation algorithm, Priority journal, Backpropagation algorithms, Learning systems, Intermethod comparison, Measurement accuracy, Neurosciences, Deep learning, Neural Networks (Computer), Chemical activation, Classification, Back propagation, Automated pattern recognition, Convolution, Algorithm, Analytical error, Computer Science, Experiment sets, Convolutional neural networks, Neural Networks, Computer, Trends, Controlled study, Neural networks, Human
Dateibeschreibung: application/pdf
Zugangs-URL: https://pubmed.ncbi.nlm.nih.gov/31125914
https://dblp.uni-trier.de/db/journals/nn/nn116.html#SarigulOA19
https://europepmc.org/article/MED/31125914
https://doi.org/10.1016/j.neunet.2019.04.025
https://www.sciencedirect.com/science/article/abs/pii/S0893608019301315
https://www.ncbi.nlm.nih.gov/pubmed/31125914
https://pubmed.ncbi.nlm.nih.gov/31125914/
https://hdl.handle.net/20.500.12508/543
Full Text Finder
Nájsť tento článok vo Web of Science