Search Results - "I. T. Smykov"
-
1
Authors: et al.
Source: BIO Web of Conferences; 4/23/2025, Vol. 173, p1-6, 6p
-
2
Authors: et al.
Source: Russian Chemical Bulletin; Apr2024, Vol. 73 Issue 4, p828-833, 6p
Subject Terms: RUTHENIUM, METAL ions, HYDROXYAPATITE, X-ray diffraction, ELECTRON microscopy, RADIOISOTOPES
-
3
Authors:
Source: Colloid Journal; Apr2024, Vol. 86 Issue 2, p267-277, 11p
Subject Terms: GELATION, BLOOD coagulation, MILK proteins, TRANSMISSION electron microscopy, MILK, MOLECULAR weights
-
4
Authors: et al.
Contributors: et al.
Source: Food systems; Vol 6, No 4 (2023); 547-553 ; Пищевые системы; Vol 6, No 4 (2023); 547-553 ; 2618-7272 ; 2618-9771 ; 10.21323/2618-9771-2023-6-4
Subject Terms: производство сыра, casein micelle, gelation mechanism, electron microscopy, microstructure, cheese production, мицелла казеина, механизм гелеобразования, электронная микроскопия, микроструктура
File Description: application/pdf
Relation: https://www.fsjour.com/jour/article/view/347/271; Lucey, J. A. (2011). Rennet-induced coagulation of milk. Chapter in a book: Encyclopedia of Dairy Sciences. Oxford: Academic Press. 2011.; Fox, P. F., Guinee, T. P., Cogan, T. M., McSweeney, P. L. H. (2017). Fundamentals of Cheese Science. Springer, New York. 2017.; Amaro-Hernández, J. C., Olivas, G. I., Acosta-Muñiz, C. H., Gutiérrez-Méndez, N., Rios-Velasco, C., Sepulveda, D. R. (2022). Chemical interactions among caseins during rennet coagulation of milk, Journal of Dairy Science, 105(2), 981–989. https://doi.org/10.3168/jds.2021-21071; Ptitsyn, O. B. (1995). Molten globule and protein folding. Chapter in a book: Advances in Protein Chemistry. 1995. https://doi.org/10.1016/S0065-3233(08)60546-X; Farrell Jr., H. M., Qi, P. X., Brown, E. M., Cooke, P. H., Tunick, M. H., Wickham, E. D. et al. (2002). Molten globule structures in milk proteins: Implications for potential new structure-function relationships. Journal of Dairy Science, 85(3), 459–471. https://doi.org/10.3168/jds.S0022-0302(02)74096-4; Fox, P. F., Guinee, T. P. (2013). Cheese science and technology. Chapter in a book: Milk and Dairy Products in Human Nutrition. Oxford, Wiley Blackwell.2013.; Smykov, I. T. (2015). Kinetics of Milk Gelation. Part I. Coagulation Mechanism. Chapter in a book: Rheology: Principles, applications and environmental impacts. New York: Nova Science Publ. 2015.; Surkov, B. A., Klimovskii, I. I., Krayushkin, V. A. (1982). Turbidimetric study of kinetics and mechanism of milk clotting by rennet. Milchwissenschaft, 37, 393–395.; Mosler, A. B., Shaqfeh, E. S. G. (1997). The conformation change of model polymers in stochastic flow fields: Flow through fixed beds. Physics of Fluids, 9, 1222–1234. https://doi.org/10.1063/1.869262; Markoska, T., Vasiljevic, T., Huppertz, T. (2020). Unravelling conformational aspects of milk protein structure-contributions from nuclear magnetic resonance studies. Foods, 9(8), Article 1128. https://doi.org/10.3390/foods9081128; Horne, D. S., Lucey, J. A. (2017). Rennet-Induced Coagulation of Milk. Chapter in a book: Cheese: Chemistry, Physics and Microbiology, Oxford: Academic Press. 2017. https://doi.org/10.1016/B978-0-12-417012-4.00005-3; Fox, P. F., Guinee, T. P., Cogan, T. M., McSweeney, P. L. H. (2016). Enzymatic Coagulation of Milk. pp.185–229. Chapter in a book: Fundamentals of Cheese Science, Springer Nature, New York. 2013. https://doi:10.1007/978-1-4899-7681-9_7; Tuszynski, W. B. (1971). A kinetic model of the clotting of casein by rennet.Journal of Dairy Research, 38(2), 115–125. https://doi.org/10.1017/S0022029900019233; Witten Jr., T. A., Meakin, P. (1983). Diffusion-limited aggregation at multiple growth sites. Physical Review B, 28(10), 5632–5642. https://doi.org/10.1103/PhysRevB.28.5632; De Kruif, C. G., Holt, C. (2003). Casein micelle structure, functions and interactions. Chapter in a book: Advanced Dairy Chemistry — 1 Proteins. Springer, Boston, MA. 2003.; Salvador, D., Acosta, Y., Zamora, A., Castillo, M. (2022). Rennet-induced casein micelle aggregation models: A review. Foods. 11(9), Article 1243. https://doi.10.3390/foods11091243; Kalab, M. (1979). Microstructure of dairy foods. 1. Milk products based on protein. Journal of Dairy Science, 62(8), 1352–1364.; Ong, L., Li, X., Ong, A., Gras, S. L. (2022). New insights into cheese microstructure. Annual Review of Food Science and Technology, 13, 89–115. https://doi.org/10.1146/annurev-food-032519-051812; Serna-Hernandez, S. O., Escobedo-Avellaneda, Z., García-García, R., Rostro-Alanis, M. D. de J., Welti-Chanes, J. (2022). Microscopical evaluation of the effects of high-pressure processing on milk casein micelles. Molecules, 27, Article 7179. https://doi.org/10.3390/molecules27217179; Panthi, R. R., Kelly, A. L., Sheehan, J. J., Bulbul, K., Vollmer, A.H., McMahon, D. J. (2019). Influence of protein concentration and coagulation temperature on rennet-induced gelation characteristics and curd microstructure. Journal of Dairy Science, 102(1), 177–189. https://doi.org/10.3168/jds.2018-15039; Li, R., Ebbesen, M. F., Glover, Z. J., Jæger, T. C., Rovers, T. A. M., Svensson, B. et al. (2023). Discriminating between different proteins in the microstructure of acidified milk gels by super-resolution microscopy. Food Hydrocolloids, 138, Article 108468. https://doi.org/10.1016/j.foodhyd.2023.108468; Zhang, Y., Liu, D., Liu, X., Hang, F., Zhou, P., Zhao, J. et al. (2018). Effect of temperature on casein micelle composition and gelation of bovine milk. International Dairy Journal, 78, 20–27. https://doi.org/10.1016/j.idairyj.2017.10.008; Foroutanparsa, S., Brüls, M., Tas, R. P., Maljaars, C. E. P., Voets, I. K. (2021). Super resolution microscopy imaging of pH induced changes in the microstructure of casein micelles. Food Structure, 30, Article 100231. https://doi.org/10.1016/j.foostr.2021.100231; Glover, Z. J., Ersch, C., Andersen, U., Holmes, M. J., Povey, M. J., Brewer, J. R. et al. (2019). Super-resolution microscopy and empirically validated autocorrelation image analysis discriminates microstructures of dairy derived gels. Food Hydrocolloids, 90, 62–71. https://doi.org/10.1016/j.foodhyd.2018.12.004; Karlsson, A. O., Ipsen, R., Ardo, Y. (2007). Observations of casein micelles in skim milk concentrate by transmission electron microscopy. LWT — Food Science and Technology, 40(6), 1102–1107. https://doi.org/10.1016/j.lwt.2006.05.012; Matsko, N., Letofsky-Papst, I., Albu, M., Mittal, V. (2013). An analytical technique to extract surface information of negatively stained or heavy-metal shadowed organic materials within the TEM. Microscopy and Microanalysis, 19(3), 642–651. https://doi.org/10.1017/S1431927613000366; Kavanagh, G. M., Clark, A. H., Ross-Murphy, S. B. (2000). Heat-induced gelation of globular proteins: 4. Gelation kinetics of low pH β-Lactoglobulin gels. Langmuir, 16, 24, 9584–9594. https://doi.org/10.1021/la0004698; Hayat, M. A. (2000). Principles and techniques of electron microscopy: Biological applications. Cambridge University Press. 2000.; Dalgleish, D. G., Spagnuolo, P., Goff, H. D. (2004). A possible structure of the casein micelle based on high-resolution field-emission scanning electron microscopy. International Dairy Journal, 14(12), 1025–1031. https://doi.org/10.1016/j.idairyj.2004.04.008; Casanova, H., Chen, J., Dickinson, E., Murray, B. S., Nelson, P. V., Whittle, M. (2000). Dynamic colloidal interactions between protein stabilized particles — experiment and simulation. Physical Chemistry Chemical Physics, 2(17), 3861–3869. https://doi.org/10.1039/b004023l; de Kruif, C. G. (1998). Supra-aggregates of casein micelles as a prelude to coagulation. Journal of Dairy Science, 81(11), 3019–3028. https://doi.org/10.3168/jds.S0022-0302(98)75866-7; Shamsi, K. (2008). Effects of Pulsed Electric Field Processing on Microbial, Enzymatic and Physical Attributes of Milk and the Rennet-Induced Milk Gel. RMIT University, Melbourne. 2008.; https://www.fsjour.com/jour/article/view/347
-
5
Authors: et al.
Contributors: et al.
Source: Food systems; Vol 6, No 1 (2023); 103-116 ; Пищевые системы; Vol 6, No 1 (2023); 103-116 ; 2618-7272 ; 2618-9771 ; 10.21323/2618-9771-2023-6-1
Subject Terms: выход сыра, enzymatic coagulation, semihard cheese, cheese whey, cheese yield, ферментативное свертывание, полутвердые сыры, подсырная сыворотка
File Description: application/pdf
Relation: https://www.fsjour.com/jour/article/view/234/222; Fox, P. F., Cogan, T. M., Guinee, T. P. (2017). Rennet-Induced Coagulation of Milk. Chapter in a book: Cheese: Chemistry, Physics and Microbiology. Elsevier: Academic Press, 2017. https://doi.org/10.1016/B978–0–12–417012–4.00005–3; Fox, P. F., Guinee, T. P., Cogan, T. M., McSweeney, P. L. H. (2017). Cheese: Enzymatic Coagulation of Milk. Chapter in a book: Fundamentals of Cheese Science, 2nd Ed. New York: Springer. 2017. https://doi.org/10.1007/978–1–4899–7681–9_7; Chitpinityol, S., Crabbe, M. D. C., (1998). Review. Chymosin and aspartic proteinases. Food Chemistry, 61(4), 395–418.; Harboe, M., Broe, M. L. Qvist, K. B. (2010). The Production, action and application of rennet and coagulants. Chapter in a book: Technology of cheesemaking. 2nd Ed. Chichester: Blackwell Publishing Ltd., 2010. https://doi.org/10.1002/9781444323740.ch3; Jaros, D., Rohm, H. (2017). Rennets: Applied Aspects. Chapter in a book: Cheese: Chemistry, Physics and Microbiology. Elsevier: Academic Press. 2017. https://doi.org/10.1016/B978–0–12–417012–4.00003-X; Emmons, D. B., Reiser, B., Giroux, R. N., Stanley, D. W. (1976). Cheddar cheese made with bovine pepsin. I. Yield and quality of cheese. Canadian Institute of Food Science and Technology Journal, 9(4), 189–200. https://doi.org/10.1016/S0315–5463(76)73674–5; Meinardi, C. A., Alonso, A. A, Hynes, E. R., Zalazar, C. A. (2002). Influence of milk-clotting enzymes on acidification rate of natural whey starter culture. International Journal of Dairy Technology, 55(3), 139–144. https://doi.org/10.1046/j.1471–0307.2002.00052.x; Jacob, M., Jaros, D., Rohm, H. (2010). The effect of coagulant type on yield and sensory properties of semihard cheese from laboratory-, pilot- and commercial-scale productions. International Journal of Dairy Technology, 63(3), 370–380. https://doi.org/10.1111/j.1471–0307.2010.00598.x; Yasar, K., Guzeler, N. (2011). Effects of coagulant type on the physicochemical and organoleptic properties of Kashar cheese. International Journal of Dairy Technology, 64(3), 372–379. https://doi.org/10.1111/j.1471–0307.2011.00679.x; Dekker, P. (2019). Dairy Enzymes. Chapter in a book: Industrial Enzyme Applications. 1st Ed. Weinheim: Wiley-VCH Verlag GmbH & Co., 2019. https://doi.org/10.1002/9783527813780.ch2_3; Ha-La biotec. Chy-max® Supreme-cheese production at a new level. Retrieved from https://halabiotec.com.br/wp-content/uploads/2019/06/Ha-La_Biotec_147.pdf Accessed April 12, 2022. (In Portuguese); Fox, P. F., Cogan, T. M., Guinee, T. P. (2017). Factors that Affect the Quality of Cheese. Chapter in a book: Cheese: Chemistry, Physics and Microbiology. Elsevier: Academic Press, 2017. https://doi.org/10.1016/S1874–558X(04)80084–8; Mozzarella is the biggest category in the commercial cheese market. Retrieved from https://mejeritekniskselskab.dk/sites/default/files/dms/Seminarprogrammer/ulf_mortensen_new_syrning_og_koagulering_i_mozzarella_apr2018_final_version.pdf Accessed April 12, 2022.; Chr Hansen. Working together to produce more cheese from milk. Retrieved from https://sdtstatic.s3.amazonaws.com/media/uploads/2019/05/13/1CHR%20HANSEN190508%20SDT%20Presentation%20CHR%20Hansen.pdf Accessed March 01, 2023; Wilkinson, M. G., Kilcawley, K. N. (2005). Mechanisms of incorporation and release of enzymes into cheese during ripening. International Dairy Journal, 15(6–9), 817–830. https://doi.org/10.1016/j.idairyj.2004.08.021; Moynihan, A. C., Govindasamy-Lucey, S., Jaeggi, J. J., Johnson, M. E., Lucey, J. A., McSweeney, P. L. H. (2014). Effect of camel chymosin on the texture, functionality, and sensory properties of low-moisture, part-skim Mozzarella cheese. Journal of Dairy Science, 97(1), 85–96. https://dx.doi.org/10.3168/jds.2013–7081; Soodam, K., Ong, L., Powell, I. B., Kentish, S. E., Gras, S. L. (2015). Effect of rennet on the composition, proteolysis and microstructure of reducedfat Cheddar cheese during ripening. Dairy Science and Technology, 95, 665–686. https://doi.org/10.1007/s13594–015–0250–5; Alinovi, M., Cordioli, M., Francolino, S., Locci, F., Ghiglietti, R., Monti, L. et al. (2018). Effect of fermentation-produced camel chymosin on quality of crescenza cheese. International Dairy Journal, 84, 72–78. https://doi.org/10.1016/j.idairyj.2018.04.001; Myagkonosov, D. S., Abramov, D. V., Delitskaya, I. N., Bukcharina, G. B. (2022). Effect of the recombinant chymosins of different origins on the quality and shelf life of soft cheeses. Food Systems, 5(3), 239–248. https://doi.org/10.21323/2618–9771–2022–5–3–239–248; McCarthy, C. M., Wilkinson, M. G., Guinee, T. P. (2017). Effect of coagulant type and level on the properties of half-salt, half-fat Cheddar cheese made with or without adjunct starter: improving texture and functionality. International Dairy Journal, 75, 30–40. https://doi.org/10.1016/j.idairyj.2017.07.006; Bansal, N., Drake, M. A., Piraino, P., Broe, M. L., Harboe, M., Fox, P. F. et al. (2009). Suitability of recombinant camel (Camelus dromedarius) chymosin as a coagulant for Cheddar cheese. International Dairy Journal, 19(9), 510–517. https://doi.org/10.1016/j.idairyj.2009.03.010; Sousa, M. J., Malcata, F.X. (1996). Effects of processing conditions on the caseinolytic activity of crude extracts of Cynara cardunculus L. Food Science and Technology International, 2(4), 255–263. https://doi.org/10.1177/108201329600200408; Arbita, A., Kristijarti A., Ardelia I. (2015). The effects of the types of milk (cow, goat, soya) and enzymes (rennet, papain, bromelain) toward Cheddar cheese production. Makara Journal of Technology, 19(1), Article 7. https://doi.org/10.7454/mst.v19i1.3028; Ben Amira, A., Besbes, S., Attia, H., Blecker, C. (2017). Milk-clotting properties of plant rennets and their enzymatic, rheological, and sensory role in cheese making: A review. International Journal of Food Properties, 20(sup1), S76–S93. https://doi.org/10.1080/10942912.2017.1289959; Osuna-Ruíz, I., Tiznado-Garzón, R., Salazar-Leyva, J.A., García-Magaña, M. de L., Benítez-García, I., Moreno-Hernández, J.M. et al. (2023). Milk-clotting and proteolytic properties of a partially purified pepsin from Yellowfin Tuna (Thunnus albacares) and its potential for cheesemaking. Food and Bioprocess Technology, 2023. https://doi.org/10.1007/s11947–023–03030–3; Eskander, M. (2017). Utilization chicken gizzard lining immobilized pepsin for soft white cheese manufacture. Syrian Journal of Agricultural Research, 4(4), 49–58. (In Arabic); Creamer, L. K., Iyer, M., Lelievre, J. (1987). Effect of various levels of rennet addition on characteristics of Cheddar cheese made from ultrafiltered milk. New Zealand Journal of Dairy Science and Technology, 22(3), 205–214.; McSweeney, P. L. H. (2007). Cheese problems solved. (2007). Woodhead Publishing, 2007; Visser, S., Slangen, C. J., Robben, A. J. P. M. (1992). Determination of molecular mass distributions of whey protein hydrolysates by high-pergomance size-exclusion chromatography. Journal of Chromatography A, 599(1–2), 205–209. https://doi.org/10.1016/0021–9673(92)85474–8; Fox P. F., Guinee T. P., Cogan T. M., McSweeney P. L. H. (2017). Cheese Yield. Chapter in a book: Fundamentals of Cheese Science. Springer, Boston, MA, 2017. https://doi.org/10.1007/978–1–4899–7681–9_10; Смыков И. Т. (2018). Определение момента готовности молочного сгустка к разрезке при производстве сыров. Пищевые системы, 1(2), 12–20. https://doi.org/10.21323/2618–9771–2018–1–2–12–20; Smykov, I. T. (2019). Self segmenting of rennet induced milk gel in cheesemaking tank. International Journal of Dairy Technology, 72(4), 591–600. https://doi.org/10.1111/1471–0307.12650; Montgomery, D. C. (2013). Design and analysis of experiments. Wiley, 2013; Мягконосов, Д. С., Мордвинова, В. А., Абрамов, Д. В., Овчинникова, Е. Г., Муничева, Т. Э. (2020). Сычужная проба — важный инструмент для получения сыра высокого качества. Сыроделие и маслоделие, 2, 30–33. https://doi.org/10.31515/2073–4018–2020–2–28–31; Мягконосов, Д. С., Мордвинова, В. А., Абрамов, Д. В., Овчинникова, Е. Г., Муничева, Т. Э. (2020). Технологические свойства молокосвертывающих ферментов разного происхождения. Часть II. Влияние вида используемого МФП на процессы протеолиза при созревании сыров. Сыроделие и маслоделие, 5, 10–13. https://doi.org/10.31515/2073–4018–2020–5–10–13; Myagkonosov, D. S., Mordvinova, V. A., Delitskaya, I. N., Abramov, D. V., Ovchinnikova, E. G. (2020). The influence of milk-clotting enzymes on the functional properties of pizza-cheeses. Food Systems, 3(3), 42–50. https://doi.org/10/21323/2618–9771–2020–3–3–42–50; Garg, S. K., Johri, B. N. (1994). Rennet: Current trends and future research. Food Reviews International, 10(3), 313–355. https://doi.org/10.1080/87559129409541005; Jacob, M. (2011). Milk coagulation enzymes of various origins and their influence on cheese yield and cheese quality. Dissertation. Dresden: Technical University of Dresden, 2011. Retrieved from https://d-nb.info/1067190643/34 Accessed March 01, 2023. (In German); https://www.fsjour.com/jour/article/view/234
-
6
Authors:
Contributors:
Source: Food systems; Vol 5, No 4 (2022); 308-318 ; Пищевые системы; Vol 5, No 4 (2022); 308-318 ; 2618-7272 ; 2618-9771 ; 10.21323/2618-9771-2022-5-4
Subject Terms: риски, innovative technologies, neophobia, nanotechnologies, genetic modification, 3D printing, safety, risks, инновационные технологии, неофобия, нанотехнологии, генная модификация, ионизирующее излучение, 3D-печать, безопасность
File Description: application/pdf
Relation: https://www.fsjour.com/jour/article/view/197/200; Siegrist, M., Hartmann, C. (2020). Consumer acceptance of novel food technologies. Nature Food, 1(6), 343–350. https://doi.org/10.1038/s43016-020-0094-x; Pliner, P., Hobden, K. (1992). Development of a scale to measure the trait of food neophobia in humans. Appetite, 19(2), 105–120. https://doi.org/10.1016/0195-6663(92)90014-W; Cooke, L. J, Haworth, C. M. A., Wardle, J. (2007). Genetic and environmental influences on children’s food neophobia, American Journal of Clinical Nutrition, 86(2), 428–433. https://doi.org/10.1093/ajcn/86.2.428; Meijer, G. W., Lähteenmäki, L., Stadler, R. H., Weiss, J. (2020). Issues surrounding consumer trust and acceptance of existing and emerging food processing technologies. Critical Reviews in Food Science and Nutrition, 61(1), 97–115. https://doi.org/10.1080/10408398.2020.1718597; Cattaneo, C., Lavelli, V., Proserpio, C., Laureati, M., Pagliarini, E. (2018). Consumers’ attitude towards food by-products: the influence of food technology neophobia, education and information. International Journal of Food Science and Technology, 54(3), 679–687. https://doi.org/10.1111/ijfs.13978; Kaptan, G., Fischer, A. R. H., Frewer, L. J. (2017). Extrapolating understanding of food risk perceptions to emerging food safety cases. Journal of Risk Research, 21(8), 996–1018. https://doi.org/10.1080/13669877.2017.1281330; Lamba, A., Garg, V. (2018). Nanotechnology approach in food science: A review. International Journal of Food Sciences and Nutrition, 3(2), 183–186.; Ramkumar, C., Vishwanatha, A., Saini, R. (2019). Regulatory Aspects of Nanotechnology for Food Industry. Chapter in a book: Nanotechnology Applications in Dairy Science: Packaging, Processing, and Preservation, Dasarahally-Huligowda, L. K., Goyal M. R., Suleria H. A. R (Eds.) pp. 168–184. Apple Academic Press, New York. https://doi.org/10.1201/9780429425370; He, X., Deng, H., Hwang, H.-M. (2019). The current application of nanotechnology in food and agriculture. Journal of Food and Drug Analysis, 27(1), 1–21. https://doi.org/10.1016/j.jfda.2018.12.002; Sahani, S., Sharma, Y. C. (2020). Advancements in applications of nanotechnology in global food industry. Food Chemistry, 342, Article 128318. https://doi.org/10.1016/j.foodchem.2020.128318; Rizvi, S. S. H., Moraru, C. I., Bouwmeester, H., Kampers, F. W. H., Cheng, Y. (2022). Nanotechnology and food safety, pp. 325–340. Chapter in book: Ensuring Global Food Safety, A. Martinović, S. Oh, H. Lelieveld (Eds.), Academic Press, P. 541. https://doi.org/10.1016/B978-0-12-816011-4.00016-1; Chelliah, R., Madar, I. H., Sultan, G., Begum, M., Pahi, B., Tayubi, I. A. et al. (2023). Risk assessment and regulatory decision-making for nanomaterial use in agriculture. Chapter in a book: Engineered Nanomaterials for Sustainable Agricultural Production, Soil Improvement and Stress Management: Plant Biology, sustainability and climate change, A. Husen (Ed.), Academic Press, pp. 413–430. https://doi.org/10.1016/B978-0-323-91933-3.00009-X; Shafiq, M., Anjum, S., Hano, C., Anjum, I., Abbasi, B. H. (2020). An overview of the applications of nanomaterials and nanodevices in the food industry. Foods, 9(2), Article 148. https://doi.org/10.3390/foods9020148; Stilgoe, J., Owen, R., Macnaghten, P. (2020). Developing a framework for responsible innovation. Chapter in a book: The Ethics of Nanotechnology, Geoengineering and Clean Energy, A. Maynard, J. Stilgoe (Eds.). Routledge, London, P. 544. https://doi.org/10.4324/9781003075028; Smykov, I. T. (2020). Nanotechnology in the Dairy Industry: Benefits and Risks, pp. 277–332. Chapter in a book: The ELSI Handbook of Nanotechnology: Risk, Safety, ELSI and Commercialization, Hussain C. M. (Ed.) Scrivener Publishing LLC. https://doi.org/10.1002/9781119592990.ch11; Sadeghi, R., Rodriguez, R. J., Yao, Y., Kokini, J. L. (2017). Advances in nanotechnology as they pertain to food and agriculture: Benefits and risks. Annual Review of Food Science and Technology, 8, 467–492. https://doi.org/10.1146/annurev-food-041715–033338; Augustin, M. A., Riley, M., Stockmann, R., Bennett, L., Kahl, A., Lockett, T. et al. (2016). Role of food processing in food and nutrition security. Trends in Food Science and Technology, 56, 115–125. https://doi.org/10.1016/j.tifs.2016.08.005; Martirosyan, A., Schneider, Y.-J. (2014). Engineered nanomaterials in food: implications for food safety and consumer health. International Journal of Environmental Research and Public Health, 11(6), 5720–5750. https://doi.org/10.3390/ijerph110605720; Iavicoli, I., Leso, V., Beezhold, D. H., Shvedova, A. A. (2017). Nanotechnology in agriculture: opportunities, toxicological implications, and occupational risks. Toxicology and Applied Pharmacology, 329, 96–111. https://doi.org/10.1016/j.taap.2017.05.025; Berekaa, M. M. (2015). Nanotechnology in food industry; advances in food processing, packaging and food safety. International Journal of Current Microbiology and Applied Sciences, 4(5), 345–357.; Radha, K., Thomas, A., Sathian, C. T. (2014). Application of nanotechnology in dairy industry: prospects and challenges — A Review. Indian Journal of Dairy Science, 67(5), 367–374.; Huang, Q., Yu, H., Ru, Q. (2010). Bioavailability and delivery of nutraceuticals using nanotechnology. Journal of Food Sciences, 75(1), R50-R57. https://doi.org/10.1111/j.1750-3841.2009.01457.x; McClements, D. J., Decker, E. A., Weiss, J. (2007). Emulsion-based delivery systems for lipophilic bioactive components. Journal of Food Sciences, 72(8), R109-R124. https://doi.org/10.1111/j.1750-3841.2007.00507.x; McClements, D. J., Decker, E. A., Park, Y., Weiss, J. (2009). Structural design principles for delivery of bioactive components in nutraceuticals and functional foods. Critical Reviews in Food Science and Nutrition, 49(6),б577–606. https://doi.org/10.1080/10408390902841529; Chau, C. -F., Wu, S.-H., Yen, G.-C. (2007). The development of regulations for food nanotechnology. Trends in Food Science and Technology, 18(5), 269–280, https://doi.org/10.1016/J.TIFS.2007.01.007; Hajipour, M. J., Fromm, K. M., Akbar Ashkarran, A., Jimenez de Aberasturi, D, de Larramendi, I. R., Rojo, T. et al. (2012). Antibacterial properties of nanoparticles. Trends in Biotechnology, 30(10), 499–511. https://doi.org/10.1016/j.tibtech.2012.06.004; He, X., Fu, P., Aker, W. G., Hwang, H.-M. (2018). Toxicity of engineered nanomaterials mediated by nano–bio–eco interactions. Journal of Environmental Science and Health, Part C Environmental Carcinogenesis and Ecotoxicology Reviews, 36(1), 21–42. https://doi.org/10.1080/10590501.2017.1418793; Sodano, V., Gorgitano, M. T., Verneau, F. (2016). Consumer acceptance of food nanotechnology in Italy. British Food Journal, 118(3), 714–733. https://doi.org/10.1108/BFJ-06-2015-0226; Schnettler, B., Crisóstomo, G., Sepúlveda, J., Mora, M., Lobos, G., Miranda H. et al. (2013). Food neophobia, nanotechnology and satisfaction with life. Appetite, 69, 71–79. https://doi.org/10.1016/j.appet.2013.05.014; Damsbo-Svendsen, M., BomFrøst, M., Olsen, A. (2017). Development of novel tools to measure food neophobia in children. Appetite, 113, 255–263. https://doi.org/10.1016/j.appet.2017.02.035; Cushen, M., Kerry, J., Morris, M., Cruz-Romero, M., Cummins, E. (2012). Nanotechnologies in the food industry — Recent developments, risks and regulation. Trends in Food Science and Technology, 24(1), 30–46. https://doi.org/10.1016/j.tifs.2011.10.006; Gallocchio, F., Belluco, S., Ricci, A. (2015). Nanotechnology and food: Brief overview of the current scenario. Procedia Food Science, 5, 85–88. https://doi.org/10.1016/j.profoo.2015.09.022; More, S., Bampidis, V., Benford, D., Bragard, C., Halldorsson, T., Hernández-Jerez, A. (2021). Guidance on risk assessment of the application of nanoscience and nanotechnologies in the food and feed chain: Human and animal health. EFSA Journal, 19(8), Article e06768. https://doi.org/10.2903/j.efsa.2021.6768; Frewer, L. J., Gupta, N., George, S., Fischer, A. R. H., Giles, E. L., Coles, D. (2014). Consumer attitudes towards nanotechnologies applied to food production. Trends in Food Science and Technology, 40(2), 211–225. https://doi.org/10.1016/j.tifs.2014.06.005; Gupta, N., Fischer, A. R. H., George, S., Frewer, L. J. (2013). Expert views on societal responses to different applications of nanotechnology: a comparative analysis of experts in countries with different economic and regulatory environments. Journal of Nanoparticle Research, 15(8), Article 1838. https://doi.org/10.1007/s11051–013–1838–4; Lopez-Vazquez, E., Brunner, T. A., Siegrist, M. (2012). Perceived risks and benefits of nanotechnology applied to the food and packaging sector in Mexico. British Food Journal, 114(2), 197–205. https://doi.org/10.1108/00070701211202386; Hundleby, P. A. C., Harwood, W. A. (2019). Impacts of the EU GMO regulatory framework for plant genome editing. Food and Energy Security, 8(2), Article e00161. https://doi.org/10.1002/fes3.161; Carreño, I., Dolle, T. (2019). The Court of justice of the European Union’s Judgment on mutagenesis and international trade: A Case of GMO, mutagenesis and international trade. Global Trade and Customs Journal, 14(3), 91–101. https://doi.org/10.54648/gtcj2019010; Van Eenennaam, A.L., Young, A.E. (2018). Public Perception of Animal Biotechnology. Chapter in a book: Animal Biotechnology. Niemann, H., Wrenzycki, C. (Eds.), pp. 275–303. Springer, Cham. https://doi.org/10.1007/978-3-319-92348-2_13; Van Eenennaam, A. L., Young, A. E. (2018). Gene editing in livestock: promise, prospects and policy. CAB Reviews: Perspectives in Agriculture, Veterinary Science, Nutrition and Natural Resources, 13, Article 027. https://doi.org/10.1079/PAVSNNR201813027; Cui, K., Shoemaker, S. P. (2018). Public perception of genetically-modified (GM) food: A nationwide Chinese consumer study. npj Science of Food, 2(1), 3–12. https://doi.org/10.1038/s41538-018-0018-4; Deckers, M., Deforce, D., Fraiture, M.-A., Roosens, N. H. C. (2020). Genetically modified micro-organisms for industrial food enzyme production: An overview. Foods, 9(3), Article 326. https://doi.org/10.3390/foods9030326; Brookes, G., Barfoot, P. (2020). Environmental impacts of genetically modified (GM) Crop use 1996–2016: Impacts on pesticide use and carbon emissions. GM Crops & Food, 11(4), 215–241. https://doi.org/10.1080/21645698.2018.147679; Ghasemi, S., Ahmadvand, M., Karami, E., Karami, A. (2020). Social risk perceptions of genetically modified foods of engineers in training: Application of a comprehensive risk model. Science and Engineering Ethics, 26, 641–665. https://doi.org/10.1007/s11948-019-00110-6; Sunil, Chauhan, N., Singh, J., Chandra, S., Chaudhary, V., Kumar, V. (2018). Non-thermal techniques: Application in food industries. A review. Journal of Pharmacognosy and Phytochemistry, 7(5), 1507–1518.; Khouryieh, H. (2020). Novel and emerging technologies used by the U.S. food processing industry. Innovative Food Science and Emerging Technologies, 67, Article 102559. https://doi.org/10.1016/j.ifset.2020.102559; Zhang, Z.-H., Wang, L.-H., Zeng, X.-A., Han, Z., Brennan, C. S. (2018). Non-thermal technologies and its current and future application in the food industry: a review. International Journal of Food Science and Technology, 54(1), 1–13. https://doi.org/10.1111/ijfs.13903; Hite, B. H. (1899). The effect of high pressure in the preservation of milk. West Virginia Agricultural Experimental Station Bulletin, 58, 15–35.; Fam, S. N., Khosravi-Darani, K., Massoud, R., Massoud, A. (2021). High-pressure processing in food, Biointerface Research in Applied Chemistry, 11(4), 11553–11561. https://doi.org/10.33263/BRIAC114.1155311561; Agregán, R., Munekata, P. E. S., Zhang, W., Zhang, J., Pérez-Santaescolástica, C., Lorenzo, J. M. (2021). High-pressure processing in inactivation of Salmonella spp. in food products. Trends in Food Science and Technology, 107, 31–37. https://doi.org/10.1016/j.tifs.2020.11.025; Huang, H.-W., Hsu, C.-P., Wang, C.-Y. (2020). Healthy expectations of high hydrostatic pressure treatment in food processing industry. Journal of Food and Drug Analysis, 28(1), 1–13. https://doi.org/10.1016/j.jfda.2019.10.002; Jolvis Pou, K. R. (2021). Applications of high pressure technology in food processing. International Journal of Food Studies, 10, 248–281. https://doi.org/10.7455/ijfs/10.1.2021.a10; Balakrishna, A.K., Abdul Wazed, M., Farid, M. (2020). A review on the effect of high pressure processing (HPP) on gelatinization and infusion of nutrients. Molecules, 25(10), Article 2369. https://doi.org/10.3390/molecules25102369; Khan, S., Keshavalu, Ghosh, S., Amaresh, Maurya, R. P., Badhautiya, S. et al. (2017). High pressure processing in food industry. Bulletin of Environment, Pharmacology and Life Sciences, 6(11), 28–31.; Tsevdou, M., Gogou, E., Taoukis, P. (2019). High hydrostatic pressure processing of foods. Chapter in a book: Green Food Processing Techniques: Preservation, Transformation and Extraction, 87–137. Academic Press, 2019. https://doi.org/10.1016/b978-0-12-815353-6.00004-5; Arshad, R. N., Abdul-Malek, Z., Munir, A., Buntat, Z., Ahmad, M. H., Jusoh, Y. M. M. et al. (2020). Electrical systems for pulsed electric field applications in the food industry: An engineering perspective. Trends in Food Science and Technology, 104, 1–13. https://doi.org/10.1016/j.tifs.2020.07.008; Niu, D., Zeng, X.-A., Ren, E.-F., Xu, F.-Y., Li, J., Wang, M.-S. et al. (2020). Review of the application of pulsed electric fields (PEF) technology for food processing in China. Food Research International, 137, Article 109715. https://doi.org/10.1016/j.foodres.2020.109715; Taha, A., Casanova, F., Šimonis, P., Stankevič, V., Gomaa, M.A.E., Stirkė, A. (2022). Pulsed electric field: Fundamentals and effects on the structural and techno-functional properties of dairy and plant proteins. Foods, 11, Article 1556. https://doi.org/10.3390/foods11111556; Zhang, S., Sun, L., Ju, H., Bao, Z., Zeng, X.-A., Lin, S. (2021). Research advances and application of pulsed electric field on proteins and peptides in food. Food Research International, 139, Article 109914. https://doi.org/10.1016/j.foodres.2020.109914; Zhang, Y., Wang, R., Wen, Q.-H., Rahaman, A., Zeng, X.-A. (2022). Effects of pulsed electric field pretreatment on mass transfer and quality of beef during marination process. Innovative Food Science and Emerging Technologies, 80, Article 103061. https://doi.org/10.1016/j.ifset.2022.103061; Guo, L., Azam, S. M. R., Guo, Y., Liu, D., Ma, H. (2021). Germicidal efficacy of the pulsed magnetic field against pathogens and spoilage microorganisms in food processing: An overview. Food Control, 136(1), Article 108496. https://doi.org/10.1016/j.foodcont.2021.108496; Hertwig, C., Meneses, N., Mathys, A. (2018). Cold atmospheric pressure plasma and low energy electron beam as alternative nonthermal decontamination technologies for dry food surfaces: A review. Trends in Food Science and Technology, 77, 131–142. https://doi.org/10.1016/j.tifs.2018.05.011; Report from the commission to the European parliament and the council on food and food ingredients treated with ionizing radiation for the year 2018–2019, European Commission, Brussels, 24.2.2021 COM (2021) 79 final. Retrieved from https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A52021DC0079 Accessed September 20, 2022.; Delorme, M. M., Guimarães, J. T., Coutinho, N. M., Balthazar, C. F., Rocha, R. S., Silva, R.et al. (2020). Ultraviolet radiation: An interesting technology to preserve quality and safety of milk and dairy foods. Trends in Food Science and Technology, 102, 146–154. https://doi.org/10.1016/j.tifs.2020.06.001; Josephson, E. S., Peterson, M. S. (Eds.). (1982). Preservation of food by ionizing radiation: Volume I (1st ed.). CRC Press. https://doi.org/10.1201/9781351076005; Sparrow, A. H., Christensen, E. (1950). Effects of X-ray, neutron and chronic gamma irradiation on growth and yield of potatoes. American Journal of Botany, 37, 667.; Nishihira, J. (2020). Safety of irradiated food. Chapter in book: Genetically Modified and Irradiated Food, V. Andersen (Ed.), Academic Press, Vienna. pp. 259–267. https://doi.org/10.1016/b978-0-12-817240-7.00016-4; Ravindran, R., Jaiswal, A. K. (2019). Wholesomeness and safety aspects of irradiated foods. Food Chemistry, 285, 363–368. https://doi.org/10.1016/j.foodchem.2019.02.002; D’Souza, C., Apaolaza, V., Hartmann, P., Brouwer, A. R., Nguyen, N. (2021). Consumer acceptance of irradiated food and information disclosure — A retail imperative. Journal of Retailing and Consumer Services, 63, Article 102699. https://doi.org/10.1016/j.jretconser.2021.102699; Bearth, A., Siegrist, M. (2019). “As long as it is not irradiated” — Influencing factors of US consumers’ acceptance of food irradiation. Food Quality and Preference, 71, 141–148. https://doi.org/10.1016/j.foodqual.2018.06.015; Zanardi, E., Caligiani, A., Novelli, E. (2017). New insights to detect irradiated food: An overview. Food Analytical Methods, 11(1), 224–235. https://doi.org/10.1007/s12161-017-0992-1; Galati, A., Moavero, P., Crescimanno, M. (2019). Consumer awareness and acceptance of irradiated foods: the case of Italian consumers. British Food Journal, 121(6), 1398–1412. https://doi.org/10.1108/bfj-05-2018-0336; Galati, A., Tulone, A., Moavero, P., Crescimanno, M. (2019). Consumer interest in information regarding novel food technologies in Italy: The case of irradiated foods. Food Research International, 119, 291–296. https://doi.org/10.1016/j.foodres.2019.01.065; Portanguen, S., Tournayre, P., Sicard, J., Astruc, T., Mirade, P.-S. (2019). Toward the design of functional foods and biobased products by 3D printing: A review. Trends in Food Science and Technology, 86, 188–198. https://doi.org/10.1016/j.tifs.2019.02.023; Dick, A., Bhandari, B., Prakash, S. (2019). 3-D printing of meat. Meat Science, 153, 35–44. https://doi.org/10.1016/j.meatsci.2019.03.005; Gorbunova, N.A. (2020). Possibilities of additive technologies in the meat industry. A review. Theory and Practice of Meat Processing, 5(1), 9–16. https://doi.org/10.21323/2414-438X-2020-5-1-9-16; Pereira, T., Barroso, S., Gil, M. M. (2021). Food texture design by 3D printing: A review. Foods, 10(2), Article 320. https://doi.org/10.3390/foods10020320; Ulrikh, E.V., Verkhoturov, V.V. (2022). Features of food design on a 3D printer. A review. Food Systems, 5(2), 100–106. https://doi.org/10.21323/2618–9771–2022–5–2–100–106 (In Russian); Kornienko, V. Yu., Minaev, M. Yu. (2022). Trends in the development of 3d food printing. Food Systems, 5(1), 23–29. https://doi.org/10.21323/2618–9771–2022–5–1–23–29 (In Russian); Nachal, N., Moses, J. A., Karthik, P., Anandharamakrishnan, C. (2019). Applications of 3D printing in food processing. Food Engineering Reviews, 11(3), 123–141. https://doi.org/10.1007/s12393–019–09199–8; Zhang, J., Li, Y., Cai, Y., Ahmad, I., Zhang, A., Ding, Y. et al. (2022). Hot extrusion 3D printing technologies based on starchy food: A review. Carbohydrate Polymers, 294, Article 119763. https://doi.org/10.1016/j.carbpol.2022.119763; Demei, K., Zhang, M., Phuhongsung, P., Mujumdar, A. S. (2022). 3D food printing: Controlling characteristics and improving technological effect during food processing. Food Research International, 156, Article 111120. https://doi.org/10.1016/j.foodres.2022.111120; Panghal, A., Vern, P., Mor, R. S., Panghal, D., Sindhu, S., Dahiya, S. (2022). A study on adoption enablers of 3D printing technology for sustainable food supply chain. Management of Environmental Quality. https://doi.org/10.1108/MEQ-03–2022–0056 (unpublished data); Bedoya, M. G., Montoya, D.R., Tabilo-Munizaga, G., Pérez-Won, M., Lemus-Mondaca, R. (2022). Promising perspectives on novel protein food sources combining artificial intelligence and 3D food printing for food industry. Trends in Food Science and Technology, 128, 38–52. https://doi.org/10.1016/j.tifs.2022.05.013; Singh, H., Kour, R. (2022). Commercial market of food printing technologies. Chapter in a book: Food Printing: 3D Printing in Food Industry, Sandhu, K., Singh, S. (Eds). Springer, Singapore, pp. 155–176. https://doi.org/10.1007/978–981–16–8121–9_9; Mavri, M., Fronimaki, E., Kadrefi, A. (2021). Survey analysis for the adoption of 3D printing technology: consumers’ perspective. Journal of Science and Technology Policy Management. https://doi.org/10.1108/JSTPM-02–2020–0023 (unpublished data); Teng, X., Zhang, M., Mujumdar, A. S. (2021). 4D printing: Recent advances and proposals in the food sector. Trends in Food Science and Technology, 110, 349–363. https://doi.org/10.1016/j.tifs.2021.01.076; Ghazal, A. F, Zhang, M., Mujumdar A. S., Ghamry, M. (2022). Progress in 4D/5D/6D printing of foods: applications and R&D opportunities. Critical Reviews in Food Science and Nutrition. https://doi.org/10.1080/10408398.2022.2045896 (unpublished data); Cheng, Y., Fu, Y., Ma, L., Yap, P. L., Losic, D., Wang, H. et al. (2022). Rheology of edible food inks from 2D/3D/4D printing, and its role in future 5D/6D printing. Food Hydrocolloids, 32, Article 107855. https://doi.org/10.1016/j.foodhyd.2022.107855; Scheufele, D. A., Corley, E.A., Shih, T. -J., Dalrymple, K. E., Ho, S.S. (2009). Religious beliefs and public attitudes toward nanotechnology in Europe and the United States. Nature Nanotechnology, 4(2), 91–94. https://doi.org/10.1038/nnano.2008.361; Kriwy, P., Mecking, R.-A. (2012). Health and environmental consciousness, costs of behaviour and the purchase of organic food. International Journal of Consumer Studies, 36(1), 30–37. http://doi.org/10.1111/j.1470–6431.2011.01004.x; Hingley, M., Mikkola, M., Canavari, M., Asioli, D. (2012). Local and sustainable food supply: The role of European retail consumer cooperatives. International Journal on Food System Dynamics, 2(4), 340–347. http://doi.org/10.18461/ijfsd.v2i4.241; Harvey, D., Hubbard, C. (2013). Reconsidering the political economy of farm animal welfare: An anatomy of market failure. Food Policy, 38(1), 105–114. https://doi.org/10.1016/j.foodpol.2012.11.006; https://www.fsjour.com/jour/article/view/197
-
7
Authors: et al.
Source: IOP Conference Series: Earth & Environmental Science; 2022, Vol. 1052 Issue 1, p1-9, 9p
-
8
Authors: et al.
Source: Food systems; Vol 5, No 2 (2022); 164-171 ; Пищевые системы; Vol 5, No 2 (2022); 164-171 ; 2618-7272 ; 2618-9771 ; 10.21323/2618-9771-2022-5-2
Subject Terms: подсырная сыворотка, рекомбинантный химозин, ферментативное свертывание, Streptococcus thermophilus, мягкие сыры
File Description: application/pdf
Relation: https://www.fsjour.com/jour/article/view/164/186; Soodam, K., Ong, L., Powell, I. B., Kentish, S. E., Gras, S. L. (2015). Effect of rennet on the composition, proteolysis and microstructure of reducedfat cheddar cheese during ripening. Dairy Science and Technology, 95(5), 665–686. https://doi.org/10.1007/s13594–015–0250–5; Alinovi, M., Cordioli, M., Francolino, S., Locci, F., Ghiglietti, R., Monti, L. et al. (2018). Effect of fermentation-produced camel chymosin on quality of Crescenza cheese. International Dairy Journal, 84, 72–78, https://doi.org/10.1016/j.idairyj.2018.04.001; McCarthy, C. M., Wilkinson, M. G., Guinee, T. P. (2017). Effect of coagulant type and level on the properties of half-salt, half-fat Cheddar cheese made with or without adjunct starter: improving texture and functionality. International Dairy Journal, 75, 30–40. https://doi.org/10.1016/j.idairyj.2017.07.006; Sheehan J. J., O’Sullivan K., Guinee T. P. (2004). Effect of coagulant type and storage temperature on the functionality of reduced-fat Mozzarella cheese. Lait, 84(6), 551–566. https://doi.org/10.1051/lait:2004031; Мягконосов, Д. С., Смыков, И. Т., Абрамов, Д. В., Делицкая, И. Н., Овчинникова, Е. Г. (2021). Влияние молокосвертывающих ферментов животного и микробного происхождения на качество и срок хранения мягких сыров. Пищевые системы, 4(4), 286–293. https://doi.org/10.21323/2618–9771–2021–4–4–286–293; Harboe, M., Broe, M. L. Qvist, K. B. (2010). The Production, Action and Application of Rennet and Coagulants. Chapter 3 in book: Technology of cheesemaking. (ed. Law B. A. & Tamime A. Y.), 2nd Ed. — Chichester: Blackwell Publishing Ltd. 2010.; Jacob, M., Jaros, D., Rohm, H. (2011). Recent advances in milk clotting enzymes. International Journal of Dairy Technology, 64(1), 14–33. https://doi. org/10.1111/j.1471–0307.2010.00633.x; HA-La biotec. Chy-max® Supreme — A produção de queijo em um novo patamar. Retrieved from https://halabiotec.com.br/wp-content/uploads/2019/06/Ha-La_Biotec_147.pdf Accessed April 12, 2022; Мягконосов, Д. С., Абрамов, Д. В., Делицкая, И. Н., Овчинникова, Е. Г. (2022). Протеолитическая активность молокосвертывающих ферментов разного происхождения. Пищевые системы, 5(1), 47–54. https://doi.org/10.21323/2618–9771–2022–5–1–47–54; Moynihan, A. C., Govindasamy-Lucey, S., Jaeggi, J. J., Johnson, M. E., Lucey, J. A., McSweeney, P. L. H. (2014). Effect of camel chymosin on the texture, functionality, and sensory properties of low-moisture, part-skim Mozzarella cheese. Journal of Dairy Science, 97(1), 85–96. https://doi.org/10.3168/jds.2013–7081; Bansal, N., Drake, M. A., Piraino, P., Broe, M. L., Harboe, M., Fox, P. F. et al. (2009). Suitability of recombinant camel (Camelus dromedarius) chymosin as a coagulant for Cheddar cheese. International Dairy Journal, 19(9), 510–517. https://doi.org/10.1016/j.idairyj.2009.03.010; Fox, P. F., Cogan, T. M., Guinee, T. P. (2017). Factors That Affect the Quality of Cheese. Chapter in a book: Cheese: Chemistry, Physics and Microbiology. (Ed. by McSweeney, P.L.H., Fox, P.F., Cotter, P.D. and David W. Everett), 4th Ed. — Vol. 2. Elsevier: Academic Press, 2017.; Mullan, W. M. A. (2006). Use of starter concentrates in fermented dairy product manufacture. Retrieved from https://www.dairyscience.info/index.php/cheese-starters/108-starter-concentrates.html?jjj=1653231647740 Accessed April 12, 2022; Mozzarella is the biggest category in the commercial cheese market. Retrieved from https://mejeritekniskselskab.dk/sites/default/files/dms/Seminarprogrammer/ulf_mortensen_new_syrning_og_koagulering_i_mozzarella_apr2018_final_version.pdf Accessed April 12, 2022; Alinovi, M., Rinaldi, M., Mucchetti, G. (2018). Spatiotemporal characterization of texture of Crescenza cheese, a soft fresh Italian cheese. Journal of Food Quality, 2018, Article 5062124. https://doi.org/10.1155/2018/5062124; Tidona, F., Francolino, S., Ghiglietti, R., Locci, F., Carminati, D., Laforce, P. et al. (2020). Characterization and pre-industrial validation of Streptococcus thermophilus strains to be used as starter cultures for Crescenza, an Italian soft cheese. Food Microbiology, 92, Article 103599. https://doi.org/10.1016/j.fm.2020.103599; Смыков, И. Т. (2018). Определение момента готовности молочного сгустка к разрезке при производстве сыров. Пищевые системы, 1(2), 12–20. https://doi.org/10.21323/2618–9771–2018–1–2–12–20; Smykov, I. T. (2019). Self segmenting of rennet induced milk gel in cheesemaking tank. International Journal of Dairy Technology, 72(4), 591–600. https://doi.org/10.1111/1471–0307.12650; Montgomery D. C. (2013). Design and analysis of experiments. 8th Ed. Wiley, 2013.; Myagkonosov, D. S., Mordvinova, V. A., Delitskaya, I. N., Abramov, D. V., Ovchinnikova, E. G. (2020). The influence of milk-clotting enzymes on the functional properties of pizza-cheeses. Food System; https://www.fsjour.com/jour/article/view/164
-
9
Authors: et al.
Contributors: et al.
Source: Food systems; Vol 4, No 4 (2021); 286-293 ; Пищевые системы; Vol 4, No 4 (2021); 286-293 ; 2618-7272 ; 2618-9771 ; 10.21323/2618-9771-2021-4-4
Subject Terms: микроструктура, milk-clotting enzymes, proteolysis, bitter taste, rheology, microstructure, молокосвертывающие ферменты, протеолиз, горький вкус, реология
File Description: application/pdf
Relation: https://www.fsjour.com/jour/article/view/137/163; Soodam, K., Ong, L., Powell, I. B., Kentish, S. E., Gras, S. L. (2015). Effect of rennet on the composition, proteolysis and microstructure of reduced-fat cheddar cheese during ripening. Dairy Science and Technology, 95(5), 665–686. https://doi.org/10.1007/s13594–015–0250–5; Johnson, M., Law, B.A. (2010). The origins, development and basic operations of cheesemaking technology. Chapter in a book: Technology of cheesemaking. (ed. Law B. A., Tamime A. Y.), 2 nd Ed. Chichester: Blackwell Publishing Ltd. 2010.; Alinovi, M., Cordioli, M., Francolino, S., Locci, F., Ghiglietti, R., Monti, L. et al. (2018). Effect of fermentation-produced camel chymosin on quality of crescenza cheese. International Dairy Journal, 84, 72–78. https://doi.org/10.1016/j.idairyj.2018.04.001; McCarthy, C.M., Wilkinson, M.G., Guinee, T.P. (2017). Effect of coagulant type and level on the properties of half-salt, half-fat Cheddar cheese made with or without adjunct starter: improving texture and functionality. International Dairy Journal, 75, 30–40. https://doi.org/10.1016/j.idairyj.2017.07.006; Soltani, M., Sahingil, D., Gokce, Y., Hayaloglu, A. A. (2019). Effect of blends of camel chymosin and microbial rennet (rhizomucor miehei) on chemical composition, proteolysis and residual coagulant activity in Iranian Ultrafiltered White cheese. Journal of Food Science and Technology, 56(2), 589–598 https://doi.org/10.1007/s13197–018–3513–3; Harboe, M., Broe, M. L. Qvist, K.B. (2010). The Production, action and application of rennet and coagulants. Chapter in a book: Technology of cheesemaking. (ed. Law B. A., Tamime A. Y.), 2 nd Ed. Chichester: Blackwell Publishing Ltd., 2010.; Moynihan, A.C., Govindasamy-Lucey, S., Jaeggi, J.J., Johnson, M.E., Lucey, J.A., McSweeney, P.L.H. (2014). Effect of camel chymosin on the texture, functionality, and sensory properties of low-moisture, part-skim Mozzarella cheese. Journal of Dairy Science, 97(1), 85–96. https://dx.doi.org/10.3168/jds.2013–7081; Bansal, N., Drake, M.A., Piraino, P., Broe, M.L., Harboe, M., Fox, P.F. et al. (2009). Suitability of recombinant camel (Camelus dromedarius) chymosin as a coagulant for Cheddar cheese. International Dairy Journal, 19(9), 510–517. https://doi.org/10.1016/j.idairyj.2009.03.010; Kuchroo, C.N., Fox, P.F. (1982). Soluble nitrogen in Cheddar cheese: Comparison of extraction procedures. Milchwissenschaft, 37, 331–335.; Hayaloglu, A.A. (2007). Comparisons of different single-strain starter cultures for their effects on ripening and grading of Beyaz cheese. International Journal of Food Science and Technology, 42(8), 930–938. https://doi.org/10.1111/j.1365–2621.2006.01312.x; Visser, S., Slangen, C.J., Robben, A.J.P.M. (1992). Determination of molecular mass distributions of whey protein hydrolysates by high-pergomance size-exclusion chromatography. Journal of Chromatography A, 599(1–2), 205–209. https://doi.org/10.1016/0021–9673(92)85474–8; Мягконосов, Д.С., Смыков, И.Т., Абрамов, Д. В., Делицкая, И.Н., Краюшкина, В. Н. (2021). Влияние различных молокосвертывающих ферментов на процесс изготовления мягких сыров. Пищевые системы, 4(3), 204–212. https://doi.org/10/21323/2618–9771–2021-4–3–204–212; Тюрин Ю. Н., Макаров А. А. (1998). Статистический анализ данных на компьютере. — М.: ИНФРА-М, 1998; Fox, P.F., Guinee, T.P., Cogan, T.M., McSweeney, P.L.H. (2017). Cheese: Enzymatic Coagulation of Milk. Chapter in a book: Fundamentals of Cheese Science, 2nd Ed. New York: Springer, 2017.; Børsting, M.W., Qvist, K.B., Ardö, Y. (2014). Influence of pH on retention of camel chymosin in curd. International Dairy Journal, 38(2), 133–135. https://doi.org/10.1016/j.idairyj.2014.01.001; Wilkinson, M.G., Kilcawley, K.N. (2005). Mechanisms of incorporation and release of enzymes into cheese during ripening. International Dairy Journal, 15(6–9), 817–830. https://doi.org/10.1016/j.idairyj.2004.08.021; Moschopoulou, E. (2017). Microbial milk coagulants. Chapter in a book: Microbial enzyme technology in food applications (ed. Ray R. C, Rosell C. M.). Boca Raton: CRC Press, 2017.; Jaros, D., Rohm, H. (2017). Rennets: Applied Aspects. Chapter in a book: Cheese: Chemistry, Physics and Microbiology. (Ed. by McSweeney, P.L.H., Fox, P.F., Cotter, P.D. and David W. Everett), 4 th Ed. — Vol. 1. Elsevier: Academic Press, 2017.; Lemieux, L., Simard, R.E. (1991). Bitter flavour in dairy products. I. A review of the factors likely to influence its development, mainly in cheese manufacture. Lait, 71(6), 599–636.; Lemieux, L., Simard, R.E. (1992). Bitter flavour in dairy products. II. A review of bitter peptides from caseins: their formation, isolation and identification, structure masking and inhibition. Lait, 72(4), 335–385.; Lee, K.-P. D., Warthesen, J.J. (1996). Preparative Methods of Isolating Bitter Peptides from Cheddar Cheese. Journal of Agricultural and Food Chemistry, 44(4), 1058–1063. https://doi.org/10.1021/jf950521j; Lee, K. D, Lo, C. G, Warthesen, J. J. (1996). Removal of bitterness from the bitter peptides extracted from cheddar cheese with peptidases from Lactococcus lactis sp. cremoris SK11. Journal of Dairy Science, 79(9), 1521-1528. https://doi.org/10.3168/jds.S0022–0302(96)76512–8; Madadlou, A., Khosroshahi, A., Mousavi, M.E. (2005). Rheology, microstructure, and functionality of low-fat Iranian White cheese made with different concentrations of rennet. Journal of Dairy Science, 88(9), 3052-3062. https://doi.org/10.3168/jds.S0022–0302(05)72986–6; Sheehan, J. J., O’Sullivan, K., Guinee, T. P. (2004). Effect of coagulant type and storage temperature on the functionality of reduced-fat mozzarella cheese. Lait, 84(6), 551–566. https://doi.org/10.1051/lait:2004031; Yasar, K., Guzeler, N. (2011). Effects of coagulant type on the physicochemical and organoleptic properties of Kashar cheese. International Journal of Dairy Technology, 64(3), 372–379. https://doi.org/10.1111/j.1471-0307.2011.00679.x; García, V., Rovira, S., Teruel, R., Boutoial, K., Rodríguez, J., Roa, I. et al. (2012). Effect of vegetable coagulant, microbial coagulant and calf rennet on physicochemical, proteolysis, sensory and texture profiles of fresh goats cheese. Dairy Science and Technology, 92(6), 691–707. https://doi.org/10.1007/s13594–012–0086–1; Soltani M., Boran O. S., Hayaloglu A. A. (2016). Effect of various blends of camel chymosin and microbial rennet (Rhizomucor miehei) on microstructure and rheological properties of Iranian UF White cheese. LWT — Food Science and Technology, 68, 724–728. https://doi.org/10.1016/j.lwt.2016.01.028; Karami, M., Ehsani, M.R., Mousavi, S.M., Rezaei, K., Safari, M. (2009). Changes in the rheological properties of Iranian UF-Feta cheese during ripening. Food Chemistry, 112(3), 539–544. https://doi.org/10.1016/j.foodchem.2008.06.003; Jacob, M., Jaros, D., Rohm, H. (2010). The effect of coagulant type on yield and sensory properties of semihard cheese from laboratory-, pilot- and commercial-scale productions. International Journal of Dairy Technology, 63(3), 370–380. https://doi.org/10.1111/j.1471–0307.2010.00598.x; Gunasekaran, S., Ak, M.M. (2000). Dynamic oscillatory shear testing of foods — selected applications. Trends in Food science and Technology, 11(3), 115–127. https://doi.org/10.1016/S0924–2244(00)00058–3; Piska I., Štětina J. (2004). Influence of cheese ripening and rate of cooling of the processed cheese mixture on rheological properties of processed cheese. Journal of Food Engineering, 61(4), 551–555. https://doi.org/10.1016/S0260–8774(03)00217–6; https://www.fsjour.com/jour/article/view/137
-
10
Authors:
Source: Food systems; Vol 5, No 2 (2022); 94-99 ; Пищевые системы; Vol 5, No 2 (2022); 94-99 ; 2618-7272 ; 2618-9771 ; 10.21323/2618-9771-2022-5-2
Subject Terms: самосегметация геля, cheesemaking, Benard cells, gel self-segmentation, производство сыра, ячейки Бенара
File Description: application/pdf
Relation: https://www.fsjour.com/jour/article/view/155/177; Lucey, J. A. (2020). Milk protein gels. Chapter in a book: Milk proteins: From expression to food. Oxford: Academic Press. https://doi.org/10.1016/B978–0–12–815251–5.00016–5; Fox, P. F., Guinee, T. P., Cogan, T. M., McSweeney P. L. H. (2017). Fundamentals of cheese science. Springer, New York, 2017.; Dalgleish, D. G. (1993). The enzymatic coagulation of milk. Chapter in a book: Fox, P. F., (Ed.), Cheese: Chemistry, Physics and Microbiology, Vol 1, (2nd edn. pp. 69–100) Chapman & Hall, London. https://doi.org/10.1007/978–1–4615–2650–6_3; Hyslop, D. B. (2003). Enzymatic coagulation of milk. Chapter in a book: Fox, P. F., McSweeney, P. L. H. (Eds.), Advanced Dairy Chemistry, Vol. 1, Part B, Proteins, (3rd edn., pp. 839–878). Kluwer Academic — Plenum Publishers, New York. https://doi.org/10.1007/978–1–4419–8602–3_24; Fox, P F, Guinee, T P. (2013). Cheese science and technology. Chapter in a book: Y. W. Park., G. F. W. Haenlein (Eds). Milk and dairy products in human nutrition: Production, Composition and Health. Wiley Blackwell, Oxford. https://doi.org/10.1002/9781118534168.ch17; Smykov, I. T. (2015). Kinetics of milk gelation. Part I. Coagulation mechanism. Chapter in a book: Rheology: Principles, Applications and Environmental Impacts. New York, NY: Nova Science Publications, 2015.; Arai, M., Kuwajima, K. (2000). Role of the molten globule state in protein folding. Advanced Protein Chemistry, 53, 209–282. https://doi.org/10.1016/s0065–3233(00)53005–8; Surkov, B. A., Klimovskii, I. I., Krayushkin, V. A. (1982). Turbidimetric study of kinetics and mechanism of milk clotting by rennet. Milchwissenschaft, 37, 393–395.; Farrel, Jr. H. M., Qi, P.X., Brown, E. M., Cooke, P. H., Tunick, M. H., Wickham, E. D. et al. (2002). Molten globule structures in milk proteins: Implications for potential new structure-function relationships. Journal of Dairy Science, 85(3), 459–471. https://doi.org/10.3168/jds.S0022–0302(02)74096–4; Green, M. L, Grandison, A. S. (1993). Secondary (non-enzymatic) phase of rennet coagulation and postcoagulation phenomena. Chapter in a book: Fox, P. F. (Ed.), Cheese: Chemistry, Physics and Microbiology, Vol. 1, General Aspects. (pp. 101–140) Elsevier Applied Science, New York. https://doi.org/10.1007/978–1–4615–2650–6_4; Tuszynski, W. B. (1971). A kinetic model of the clotting of casein by rennet. Journal of Dairy Research, 3, 115–125.; Witten, T. A. Meakin, P. (1983). Diffusion-limited aggregation at multiple growth sites. Physical Review A, 28(10), 5632–5642. https://doi.org/10.1103/PhysRevB.28.5632; De Kruif, C. G., Holt, C. (2003). Casein micelle structure, functions and interactions. Chapter in a book: Fox, P. F., McSweeney, P. L. H. (Eds.), Advanced Dairy Chemistry, Vol. 1, Part B, Proteins, (3rd edn., pp. 233–276). Kluwer Academic — Plenum Publishers, New York.; Drake, M. A., Delahunty, C. M. (2017). Sensory Character of Cheese and Its Evaluation. Chapter in a book: P. L. H. McSweeney, P. F. Fox, P. D. Cotter, D. W. Everett (Eds), Cheese. Chemistry, Physics and Microbiology, (2nd edn., pp. 517–545). Springer Nature Switzerland AG. https://doi.org/10.1016/b978–0–12–417012–4.00020-x; Biango-Daniels, M. N., Wolfe, B. E. (2021). American artisan cheese quality and spoilage: A survey of cheesemakers’ concerns and needs. Journal of Dairy Science, 104(5), 6283–6294. https://doi.org/10.3168/jds.2020–19345; Tunick, M. (2016). Texture. Chapter in a book: The Oxford Companion to Cheese, C. W. Donnelly (Ed.), Oxford University Press pp. 708–709.; Muthukumarappan, K., Karunanithy, C. (2021). Texture. Chapter in a book: Handbook of Dairy Foods Analysis. F. Toldrá, L. M. L. Nollet (Eds.), (2nd ed.). CRC Press Boca Raton. https://doi.org/10.1201/97804293429671; Ong, L., Li, X., Ong, A., Gras, S. L. (2022). New Insights into Cheese Microstructure. Annual Review of Food Science, 13, 89–115. https://doi.org/10.1146/annurev-food 032519–051812; Danev, A., Bosakova-Ardenska, A., Boyanova, P., Panayotov, P., Kostadinova-Georgieva, L. (2019). Cheese quality evaluation by image segmentation. Proceedings of the 20th International Conference on Computer Systems and Technologies — CompSysTech’19. https://doi.org/10.1145/3345252.3345258; Hori, T. (1985). Objective measurements of the process of curd formation during rennet treatment of milks by the hot wire method. Journal of Food Science, 50(4), 911–917. https://doi.org/10.1111/j.1365–2621.1985.tb12978.x; Goncalves, B.J., Pereira, C. G, Lago, A. M. T., Goncalves, C. S., Giarola, T. M. O., Abreu, L. R. et al. (2017). Thermal conductivity as influenced by the temperature and apparent viscosity of dairy products. Journal of Dairy Science, 100(5), 3513–3525. https://doi.org/10.3168/jds.2016–12051; Miyawaki, O., Akalke, S., Yano, T., Ito, K., Saeki, Y. (1993). Shielded hotwire viscosity sensor on-line for a flowing system using a shield of high thermal conductivity. Bioscience, Biotechnology, and Biochemistry, 57, 1816–1819. https://doi.org/10.1271/bbb.57.1816; Smykov, I.T. (2018). Milk curd cutting time determination in cheesemaking. Food systems, 1(2), 12–20. https://doi.org/10.21323/2618–9771–2018–1–2–12–20 (In Russian); Dennig, D., Bureick, J., Link, J., Diener, D., Hesse, C., Neumann, I. (2017). Comprehensive and highly accurate measurements of crane runways, profiles and fastenings. Sensors, 17(5), Article 1118. https://doi.org/10.3390/s17051118; Benard, H. (1901). Cell vortices in a liquid web. Optical methods of observation and recording. Journal of Physics: Theories and Applications, 10(1), 254–266. https://doi.org/10.1051/jphystap:0190100100025400 (In French); https://www.fsjour.com/jour/article/view/155
-
11
Authors: et al.
Source: Food systems; Vol 4, No 3 (2021); 204-212 ; Пищевые системы; Vol 4, No 3 (2021); 204-212 ; 2618-7272 ; 2618-9771 ; 10.21323/2618-9771-2021-4-3
Subject Terms: выход сыра, enzymatic coagulation, soft cheese, cheese whey, cheese yield, ферментативное свертывание, мягкие сыры, подсырная сыворотка
File Description: application/pdf
Relation: https://www.fsjour.com/jour/article/view/125/152; Fox, P.F., Guinee, T.P., Cogan, T.M., McSweeney, P.L.H. (2017). Cheese: Enzymatic Coagulation of Milk. Chapter in a book: Fundamentals of Cheese Science, 2nd Ed. New York: Springer, 2017.; Jaros, D., Rohm, H. (2017). Rennets: Applied Aspects. Chapter in a book: Cheese: Chemistry, Physics and Microbiology. (Ed. by McSweeney, P.L.H., Fox, P.F., Cotter, P.D. and David W. Everett), 4th Ed. — Vol. 1. Elsevier: Academic Press, 2017.; Harboe, M., Broe, M. L. Qvist, K.B. (2010). The Production, Action and Application of Rennet and Coagulants. Chapter in a book: Technology of cheesemaking. (ed. Law B. A., Tamime A. Y.), 2nd Ed. Chichester: Blackwell Publishing Ltd., 2010.; Jacob, M., Jaros, D., Rohm, H. (2010). The effect of coagulant type on yield and sensory properties of semihard cheese from laboratory-, pilot- and commercial-scale productions. International Journal of Dairy Technology, 63(3), 370-380. https://doi.org/10.1111/j.1471-0307.2010.00598.x; Garg, S.K., Johri, B.N. (1994). Rennet: current trends and future research. Food Reviews International, 10(3), 313-355. https://doi.org/10.1080/87559129409541005; Garcia, H.S., Lopez-Hernandez, A., Hill, C.G. (2017). Enzyme Technology — Dairy Industry Applications. Comprehensive Biotechnology (Ed. Moo-Young M.) 3rd Ed. Pergamon, 2017.; Jacob, M., Jaros, D., Rohm, H. (2011). Recent advances in milk clotting enzymes. International Journal of Dairy Technology, 64(1), 14-33. https://doi.org/10.1111/j.1471-0307.2010.00633.x; Абрамов, Д.В., Мягконосов, Д.С., Мордвинова, В.А., Делицкая, И.Н., Овчинникова, Е.Г. (2018). Современные тенденции рынка молокосвертывающих ферментных препаратов. Сыроделие и маслоделие, 6, 7-11.; Мягконосов, Д.С., Абрамов, Д.В., Мордвинова, В.А., Овчинникова, Е.Г., Муничева, Т.Э. (2019). Рекомбинантные молокосвертывающие ферменты — использование в сыроделии. Часть II. Технологические особенности применения рекомбинантных химозинов. Сыроделие и маслоделие, 6, 16-20. https://doi.org/10.31515/2073-4018-2019-6-16-20; Мягконосов, Д.С., Абрамов, Д.В., Мордвинова, В.А., Муничева, Т.Э., Овчинникова, Е.Г. (2019). Обзор российского рынка молокосвертывающих препаратов и перспективы его развития. Сыроделие и маслоделие, 2, 11-13. https://doi.org/10.31515/2073-4018-2019-2-11-13; Dekker, P. (2019). Dairy Enzymes. Chapter in a book: Industrial Enzyme Applications. (Ed. by Vogel A. and May O.), 1st Ed. — Weinheim: Wiley-VCH Verlag GmbH & Co., 2019.; Trono, D. (2019). Recombinant Enzymes in the Food and Pharmaceutical Industries. Chapter in a book: Advances in Enzyme Technology. (Ed. by Singh R. S., Singhania R. R., Pandey A., Larroche C.). Elsevier B. V., 2019.; O'Callaghan, D. J., O'Donnell, C. P., Payne, F. A. (2002). Review of systems for monitoring curd setting during cheesemaking. International Journal of Dairy Technology, 55(2), 65-74. https://doi.org/10.1046/j.1471-0307.2002.00043.x; Visser, S., Slangen, C.J., Robben, A.J.P.M. (1992). Determination of molecular mass distributions of whey protein hydrolysates by high-pergomance size-exclusion chromatography. Journal of Chromatography A, 599(1-2), 205-209. https://doi.org/10.1016/0021-9673(92)85474-8; Fox, P.F., Guinee, T.P., Cogan, T.M., McSweeney, P.L.H. (2017). Cheese Yield. Chapter in a book: Fundamentals of Cheese Science (2nd Edition). New York: Springer, 2017.; Смыков, И.Т. (2018). Определение момента готовности молочного сгустка к разрезке при производстве сыров. Пищевые системы, 1(2), 12-20. https://doi.org/10.21323/2618-9771-2018-1-2-12-20; Smykov, I.T. (2019). Self segmenting of rennet induced milk gel in cheesemaking tank. International Journal of Dairy Technology, 72(4), 591-600. https://doi.org/10.1111/1471-0307.12650; Тюрин Ю. Н., Макаров А. А. (1998). Статистический анализ данных на компьютере. — М.: ИНФРА-М, 1998.; Абрамов, Д.В., Мягконосов, Д.С., Овчинникова, Е.Г., Муничева, Т.Э. (22-24 июня 2021 года). Различия в специфике молокосвертывающей активности МФ разного происхождения. Сборник материалов международной научно-практической конференции «Молоко и молочная продукция: актуальные вопросы производства», Углич: Всероссийский научно-исследовательский институт маслоделия и сыроделия — филиал Федерального научного центра пищевых систем им. В. М. Горбатова РАН, 2021; Soodam, K., Ong, L., Powell, I. B., Kentish, S. E., Gras, S. L. (2015). Effect of rennet on the composition, proteolysis and microstructure of reduced-fat cheddar cheese during ripening. Dairy Science and Technology, 95(5), 665-686. https://doi.org/10.1007/s13594-015-0250; Alinovi, M., Cordioli, M., Francolino, S., Locci, F., Ghiglietti, R., Monti, L. et al. (2018). Effect of fermentation-produced camel chymosin on quality of crescenza cheese. International Dairy Journal, 84, 72-78. https://doi.org/10.1016/j.idairyj.2018.04.001; Morr, C.V., Ha, E.Y.W. (1993). Whey Protein Concentrates and Isolates: Processing and Functional Properties. Critical Reviews in Food Science and Nutrition, 33(6), 431-476. https://doi.org/10.1080/10408399309527643; https://www.fsjour.com/jour/article/view/125
-
12
Authors:
Contributors:
Source: Food systems; Vol 3, No 4 (2020); 24-33 ; Пищевые системы; Vol 3, No 4 (2020); 24-33 ; 2618-7272 ; 2618-9771 ; 10.21323/2618-9771-2020-3-4
Subject Terms: nanostructure, polysaccharides, biocomposites, dairyproducts, functional foods
File Description: application/pdf
Relation: https://www.fsjour.com/jour/article/view/90/122; Iriondo-DeHond, M., Miguel, E., del Castillo, M.D. (2018). Food Byproducts as Sustainable Ingredients for Innovative and Healthy Dairy Foods. Nutrients, 10, 1358. http://doi.org/10.3390/nu10101358; Yemenicioğlu, A., Farris, S., Turkyilmaz, M., Gulec, S. (2020). A review of current and future food applications of natural hydrocolloids. International Journal of Food Science & Technology, 55(4), 1389–1406. https://doi.org/10.1111/ijfs.14363; Cao, Y., Mezzenga, R. (2020). Design principles of food gels. Nature Food, 1, 106–118. https://doi.org/10.1038/s43016–019–0009-x; Bealer, E.J., Onissema-Karimu, S., Rivera-Galletti, A., Francis, M., Wilkowski, J., Salas-de la Cruz, D., Hu, X. (2020). Protein–Polysaccharide Composite Materials: Fabrication and Applications. Polymers, 12(2), 464. https://doi.org/10.3390/polym12020464; Dalgleish, D.G., Spagnuolo, P.A., Goff, H.D. (2004). A possible structure of the casein micelle based on high-resolution field-emission scanning electron microscopy. International Dairy Journal, 14(12), 1025–1031. https://doi.org/10.1016/j.idairyj.2004.04.008; Holt, C., Horne, D.S. (1996). The hairy casein micelle: evolution of the concept and its implications for dairy technology. Netherlands Milk Dairy Journal, 50, 85–111.; Holt, C., Carver, J.A., Ecroyd, H., Thorn, D.C. (2013). Invited review: Caseins and the casein micelle: Their biological functions, structures, and behavior in foods. Journal of Dairy Science, 96(10), 6127–6146. https://doi.org/10.3168/jds.2013–6831; Whey Proteins: From Milk to Medicine. (2018). Ed. by: Deeth, H.C., Bansal, N. Elsevier, Academic Press, UK. —746 p. ISBN: 978–0–12–812124–5; Milk Proteins: From Expression to Food, (2020). Third. ed., Ed. by: Boland, M., Singh, H. Elsevier, Academic Press, UK. 764 p. ISBN: 978–0–12– 815251–5. https://doi.org/10.1016/B978–0–12–815251–5.09989–8; Balandrán-Quintana, R.R., Mendoza-Wilson, A.M., Montfort, G.R.-C., Huerta-Ocampo, J.Á. (2019). Plant-Based Proteins. In book: Proteins: Sustainable Source, Processing and Applications, ed. by Galanakis, C. M. Academic Press, 358 p. ISBN:9780128166956. https://doi.org/10.1016/B978-0-12-816695-6.00004-0; Lin, D., Lu, W., Kelly, A.L., Zhang, L., Zheng, B., Miao, S. (2017). Interactions of vegetable proteins with other polymers: Structure-function relationships and applications in the food industry. Trends in Food Science & Technology, 68, 130–144. https://doi.org/10.1016/j.tifs.2017.08.006; Razavi, S.M.A. (2019). Introduction to Emerging Natural Hydrocolloids. In book: Emerging Natural Hydrocolloids: Rheology and Functions,. Ed. by Razavi, S.M.A. First Edition. John Wiley & Sons Ltd, 672 p. ISBN: 978–1– 119–41866–5; Yi, Y., Xu, W., Wang, H.-X., Huang, F., Wang, L.-M. (2020). Natural polysaccharides experience physiochemical and functional changes during preparation: A review. Carbohydrate Polymers, 234(15), 115896. https://doi.org/10.1016/j.carbpol.2020.115896; Kobayashi, S. (2007). New developments of polysaccharide synthesis via enzymatic polymerization. Proceedings of the Japan Academy, Ser. B, Physical and Biological Sciences, 83(8), 215–247. https://doi.org/10.2183/pjab/83.215; Food polysaccharides and their applications. (2006). ed. by Stephen, A.M., Phillips, G.O., Williams, P.A. — 2nd ed. CRC Press, 712 p. ISBN0– 8247–5922–2; Soukoulis, C., Gaiani, C., Hoffmann, L. (2018). Plant seed mucilage as emerging biopolymer in food industry applications, Current Opinion in Food Science, 22, 28–42. https://doi.org/10.1016/j.cofs.2018.01.004; Ramalingam, C., Priya, J., Mundra, S. (2014). Applications of Microbial Polysaccharides in Food Industry. International Journal of Pharmaceutical Sciences Review and Research, 27(1), 58, 322–324.; Gentès, M.-C., St-Gelais, D., Turgeon, S.L. (2011). Gel formation and rheological properties of fermented milk with in situ exopolysaccharide production by lactic acid bacteria. Dairy Science & Technology, 91(5), 645– 661. https://doi.org/10.1007/s13594–011–0039–0; Biopolymers for Food Design. (2018). Ed. by: Grumezesku, A.M., Holban, A.M. Academic Press, Elsevier Inc. 536 p. ISBN: 978–0–12–811449–0. https://doi.org/10.1016/C2016–0–00686–1; Food polysaccharides and their applications. (2006). Ed. by Stephen, A. M., Phillips, G.O., Williams, P. A. — 2nd ed., CRC Press, Taylor & Francis Group, 712 p. ISBN: 0–8247–5922–2; Sulieman, A.M.E-H. (2018). Gum Arabic as Thickener and Stabilizing Agents in Dairy Products, p 142–165. In book: Gum Arabic: Structure, Properties, Application and Economics. Ed. by: Mariod, A. A. Elsevier Inc., 342 p. https://doi.org//10.1016/B978–0–12–812002–6.00013–0; Goh, K.K.T., Teo, A., Sarkar, A., Singh, H. (2019). Milk protein-polysaccharide interactions. In book: Milk Proteins: From Expression to Food. Eds. by Boland, M and Singh, H. Academic Press, London, UK, 536 p. ISBN978–0– 12–815251–5. https://doi.org/10.1016/B978–0–12–815251–5.00013-X; Gentile, L. (2020). Protein–polysaccharide interactions and aggregates in food formulations. Current Opinion in Colloid & Interface Science, 48, 18–27. https://doi.org/10.1016/j.cocis.2020.03.002; Manab, A. (2017). Casein polysaccaharides interaction — A Review. International Journal of ChemTech Research, 10(5), 01–09.; Malaka, R., Ohashi, T., Baco, S. (2013). Effect of Bacteria Exopolysaccharide on Milk Gel Formation. Open Journal of Forestry, 3(4B), 10–12. https://doi.org//10.4236/ojf.2013.34B004; Xu, Y., Yang, N., Yang, J., Hu, J., Zhang, K., Nishinari, K., Phillips, G.O., Fang, Y. (2020). Protein/polysaccharide intramolecular electrostatic complex as superior food-grade foaming agent. Food Hydrocolloids, 101, 105474. https://doi.org/10.1016/j.foodhyd.2019.105474; Wusigale, Liang, L., Luo, Y. (2020). Casein and pectin: Structures, interactions, and applications. Trends in Food Science & Technology, 97, 391–403. https://doi.org/10.1016/j.tifs.2020.01.027; Artiga Artigas, M., Reichert, C., Salvia Trujillo, L., Zeeb, B., Martín Belloso, O., Weiss, J. (2020). Protein/Polysaccharide Complexes to Stabilize Decane-in-Water Nanoemulsions. Food Biophysics, In press. https://doi.org/10.1007/s11483–019–09622-x; Li, N., Zhong, Q. (2020). Casein core-polysaccharide shell nanocomplexes stable at pH 4.5 enabled by chelating and complexation properties of dextran sulfate. Food Hydrocolloids, 103, 105723. https://doi.org/10.1016/j.foodhyd.2020.105723; Yang, W., Deng, C., Xu, L., Jin, W., Zeng, J., Li, B., Gao, Y. (2020). Proteinneutral polysaccharide nanoand micro-biopolymer complexes fabricated by lactoferrin and oat -glucan: Structural characteristics and molecular interaction mechanisms. Food Research International, 132, 109111. https://doi.org/10.1016/j.foodres.2020.109111; Mulcahy, E.M. (2017). Preparation, characterisation and functional applications of whey protein-carbohydrate conjugates as food ingredients. PhD Thesis, University College Cork.; Sukhikh, S., Astakhova, L., Golubcova, Y., Lukin, A., Prosekova, E., Kostina, N., Rasshchepkin, A. (2019). Functional dairy products enriched with plant ingredients. Foods and Raw materials, 7(2), 428–438. http:/doi.org/10.21603/2308–4057–2019–2–428–438; Walsh, M.C., Gunn, C. (2020). Non-dairy milk substitutes: Are they of adequate nutritional composition? In book: Milk and Dairy Foods, Their Functionality in Human Health and Disease, ed. by Givens, I. Elsevier Inc., 440 p. https://doi.org/10.1016/B978–0–12–815603–2.00013–9; Kabanov, V.L., Novinyuk, L.V. (2020). Chitosan application in food technology: F review of recent advances. Food systems. 3(1),10–15. https://doi.org/10.21323/2618–9771–2020–3–1–10–15; Yuliarti, O., Mei, K.H., Ting, Z.K.X., Yi, K.Y. (2019). Influence of combination carboxymethylcellulose and pectin on the stability of acidified milk drinks. Food Hydrocolloids, 89, 216–223. https://doi.org/10.1016/j.foodhyd.2018.10.040; Abd El-Maksoud, A.A., Abd El-Ghany, I.H., El-Beltagi, H.S., Anankanbil, S., Banerjee, C., Petersen, S.V., Perez, B., Guo, Z. (2018). Adding functionality to milk-based protein: Preparation, and physico-chemical characterization of beta-lactoglobulin-phenolic conjugates. Food Chemistry, 241, 281–289. https://doi.org/10.1016/j.foodchem.2017.08.101; Park, H., Lee, M., Kim, K.-T., Park, E., Paik, H.-D. (2018). Antioxidant and antigenotoxic effect of dairy products supplemented with red ginseng extract. Journal of Dairy Science. 101(10), 8702–8710. https://doi.org/10.3168/jds.2018–14690; Tanna, B., and Mishra, A. (2019). Nutraceutical Potential of Seaweed Polysaccharides: Structure, Bioactivity, Safety, and Toxicity. Comprehensive Reviews in Food Science and Food Safety, 18(3), 817–831. https://doi.org/10.1111/1541–4337.12441; Abd El-Maksoud, A.A., Korany, R.M.S., Abd El-Ghany, I.H., El-Beltagi, H.S., de Gouveia G. M.A.F. (2020). Dietary solutions to dyslipidemia: Milk protein–polysaccharide conjugates as liver biochemical enhancers. Journal of Food Biochemistry, 44(3), https://doi.org/10.1111/jfbc.13142; Sharafi S., Nateghi, L., Eyvazzade, O., Ebrahimi, M.T.A. (2020). The physicochemical, texture hardness and sensorial properties of ultrafiltrated low-fat cheese containing galactomannan and novagel gum. Acta Sci.Pol. Technol. Aliment. 19(1), 83–100. https://doi.org/10.17306/J.AFS.2020.0685; Jayamanohar, J., Devi, P.B., Kavitake, D., Priyadarisini, V.B., Shetty, P.H. (2019). Prebiotic potential of water extractable polysaccharide from red kidney bean (Phaseolus vulgaris L.). LWT — Food Science and Technology, 101, 703–710. https://doi.org/10.1016/j.lwt.2018.11.089; Ho, K.K.H.Y., Schroën, K., San Martín-González, M.F., Berton-Carabin, C.C. (2018). Synergistic and antagonistic effects of plant and dairy protein blends on the physicochemical stability of lycopene-loaded emulsions. Food Hydrocolloids, 81, 180–190. https://doi.org/10.1016/j.foodhyd.2018.02.033; Fazilah, N.F., Ariff, A.B., Khayat, M.E., Rios-Solis, L., Halim, M. (2018). Influence of probiotics, prebiotics, synbiotics and bioactive phytochemicals on the formulation of functional yogurt. Journal of Functional Foods, 48, 387–399. https://doi.org/10.1016/j.jff.2018.07.039; Zannini, E., Jeske, S., Lynch, K., Arendt, E.K. (2018). Development of novel quinoa-based yoghurt fermented with dextran producer Weissella cibaria MG1. International Journal of Food Microbiology, 268, 19–26. https://doi.org/10.1016/j.ijfoodmicro.2018.01.001; David, S., Levi, C.S., Fahoum, L., Ungar, Y., Meyron-Holtz, E. G., Shpigelman, A., Lesmes, U. (2018). Revisiting the carrageenan controversy: do we really understand the digestive fate and safety of carrageenan in our foods? Food & Function, 9, 1344–1352. https://doi.org/10.1039/C7FO01721A.; Smykov, I.T. (2020). Nanotechnology in dairy industry. In book ESLI: Handbook of Nanotechnology, ed. by Hussain, C.M., Wiley — Scrivener, 468 p.; Characterization of Nanoencapsulated Food Ingredients, Volume 4, Nanoencapsulation in the Food Industry. (2020), ed. by S. M. Jafari. Academic Press, Elsevier, 696 p. ISBN: 978–0–12–815667–4, https://doi.org/10.1016/C2017–0–03547–4; Zhang, Y., Wang, L. (2020). Core–shell biopolymer nanoparticles. In book: Biopolymer-Based Formulations: Biomedical and Food Applications, eds. by: Pal, K., Banerjee, I., Sarkar, P., Kim, D., Deng, W.-P., Dubey, N.K., Majumder, K. Elsevier Science, 969 p. ISBN: 9780128168981. https://doi.org/10.1016/B978–0–12–816897–4.00010–2; Xu, G., Li, L., Bao, X., Yao, P. (2020). Curcumin, casein and soy polysaccharide ternary complex nanoparticles for enhanced dispersibility, stability and oral bioavailability of curcumin. Food Bioscience, 35, 100569, in Press. https://doi.org/10.1016/j.fbio.2020.100569; Hu, Q., Hu, S., Fleming, E., Lee, J.-Y., Luo, Y. (2020). Chitosan-caseinatedextran ternary complex nanoparticles for potential oral delivery of astaxanthin with significantly improved bioactivity. International Journal of Biological Macromolecules, 151, 747–756. https://doi.org/10.1016/j.ijbiomac.2020.02.170; Anderson, J. W., Baird, P., Davis Jr, R.H., Ferreri, S., Knudtson, M., Koraym, A., Waters, V., Williams, C. L. (2009). Health benefi of dietary fi . Nutrition Reviews. 67(4), 188–205. https://doi.org/10.1111/j.1753–4887.2009.00189; Reynolds, A., Mann, J., Cummings, J., Winter, N., Mete, E., Morenga, L.T. (2019). Carbohydrate quality and human health: a series of systematic reviews and meta-analyses. The Lancet, 393, 434–445. https://doi.org/10.1016/S0140–6736(18)31809–9; Pop, O.L., L.-C., Salanță, L.-C., Pop, C.R., Coldea, T., Socaci, S.A., Suharoschi, R., Vodnar, D. C. (2019). Prebiotics and Dairy Applications. In book: Dietary Fiber: Properties, Recovery, and Applications, ed. by Galanakis, C.M., Elsevier Inc., 364 p. ISBN: 978–0–12–816495–2. https://doi.org/10.1016/B978–0–12–816495–2.00008–3; Chiewchan, N. (2018). Microstructure, constituents, and their relationship with quality and functionality of dietary fibers. In book: Food Microstructure and Its Relationship with Quality and Stability, ed. by Devahastin, S. Elsevier Ltd., Woodhead Publishing, Thailand. 300 p. ISBN: 978–0–08– 100764–8. https://doi.org//10.1016/B978–0–08–100764–8.00010–1; Fagan, C.C., O’Donnell, C.P., Cullen, P.J., Brennan, C.S. (2006). The effect of dietary fibre inclusion on milk coagulation kinetics. Journal of Food Engineering, 77, 261–268. https://doi.org/10.1016/j.jfoodeng.2005.06.030; Condict, L., Paramita V. D., Kasapis, S. (2019). Dairy protein-ligand interactions upon thermal processing and targeted delivery for the design of functional foods, Current Opinion in Food Science, 27, 8–17. https://doi.org/10.1016/j.cofs.2019.03.007; Kutzli, I., Gibis, M., Baier, S.K., Weiss, J. (2019). Electrospinning of whey and soy protein mixed with maltodextrin — Influence of protein type and ratio on the production and morphology of fibers, Food Hydrocolloids, 93, 206–214. https://doi.org/10.1016/j.foodhyd.2019.02.028; Martin, A.H., Goff, H.D., Smith, A., Dalgleish, D.G. (2006). Immobilization of casein micelles for probing their structure and interactions with polysaccharides using scanning electron microscopy (SEM). Food Hydrocolloids, 20, 817–824. https://doi.org/10.1016/j.foodhyd.2005.08.004; Liu, D., Zhou, P., Nicolai, T. (2020). Effect of Kappa carrageenan on acidinduced gelation of whey protein aggregates. Part I: Potentiometric titration, rheology and turbidity. Food Hydrocolloids, 102, 105589. https://doi.org/10.1016/j.foodhyd.2019.105589; Xu, K., Guo, M., Du, J., Zhang, Z. (2019). Okra polysaccharide: Effect on the texture and microstructure of set yoghurt as a new natural stabilizer. International Journal of Biological Macromolecules, 133, 117–126. https://doi.org/10.1016/j.ijbiomac.2019.04.035; Hidalgo, Ma.E., Ingrassa, R., Nielsen, N.S., Porfiri, Ma.C., Tapia-Maruri, D., Risso, P.H. (2020). Tara gum-bovine sodium caseinate acid gels: Stabilisation of W/W emulsions. International Journal of Dairy Technology, 73(3), 521–531. https://doi.org/10.1111/1471–0307.12693; Fu, R., Li, J., Zhang, T., Zhu, T., Cheng, R., Wang, S., Zhang, J. (2018). Salecan stabilizes the microstructure and improves the rheological performance of yogurt, Food Hydrocolloids, 81, 474–480. https://doi.org/10.1016/j.foodhyd.2018.03.034; Kycia, K., Chlebowska-Smigiel, A., Gniewosz, M., Sokol, E. (2017). Effect of pullulan on the physicochemical properties of yoghurt. International Journal of Dairy Technology, 71(1), 64–70. https://doi.org/10.1111/1471–0307.12401; Cais-Sokolinska, D., Stachowiak, B., Kaczynski, Ł.K., Bierzunska, P., Gorna, B. (2018). The stability of the casein–gluconate matrix in reducedlactose kefir with soluble fraction polysaccharides containing b-glucan from Pleurotus ostreatus. International Journal of Dairy Technology, 71(1), 122–130. https://doi.org/10.1111/1471–0307.12429; Pratama, Y., Abduh, S.B.M., Legowo, A.M., Pramono, Y.B., Albaarri, A.N. (2018). Optimum carrageenan concentration improved the physical properties of cabinet-dried yoghurt powder IOP Conf. Ser.: Earth Environ. Sci. 102 012023 IOP Conference Series: Earth and Environmental Science.; Behrouzain, F., Razavi, S.M.A., Joyner, H. (2020). Mechanisms of whey protein isolate interaction with basil seed gum: Influence of pH and protein-polysaccharide ratio. Carbohydrate Polymers, 232, 115775. https://doi.org/10.1016/j.carbpol.2019.115775; Soukoulis, C., Cambier, Sé., Serchi, T., Tsevdou, M., Gaiani, C., Ferrer, P., Taoukis, P.S., Hoffmann, L. (2019). Rheological and structural characterisation of whey protein acid gels co-structured with chia (Salvia hispanica L.) or flax seed (Linum usitatissimum L.) mucilage, Food Hydrocolloids, 89, 542–553. https://doi.org/10.1016/j.foodhyd.2018.11.002; Madadlou, A., Famelart, M. — H., Pezennec, S., Rousseau, F., Floury, J., Dupont, D. (2020). Interfacial and (emulsion) gel rheology of hydrophobised whey proteins. International Dairy Journal, 100, 104556. https://doi.org/10.1016/j.idairyj.2019.104556; Alting, A.C., Hamer, R.J., De Kruif, C.G., Visschers, R.W. (2003). Cold-Set Globular Protein Gels: Interactions, Structure and Rheology as a Function of Protein Concentration. Journal of Agricultural and Food Chemistry, 51(10), 3150–3156. https://doi.org/10.1021/jf0209342; Li, X., He, X., Mao, L., Gao, Y., Yuan, F. (2020). Modification of the structural and rheological properties of -lactoglobulin/-carrageenan mixed gels induced by high pressure processing. Journal of Food Engineering, 274, 109851. https://doi.org/10.1016/j.jfoodeng.2019.109851; Xu, Y., Yang, N., Yang, J., Hu, J., Zhang, K., Nishinari, K., Phillips, G.O., Fang, Y. (2020) Protein/polysaccharide intramolecular electrostatic complex as superior food-grade foaming agent. Food Hydrocolloids, 101, 105474. https://doi.org/10.1016/j.foodhyd.2019.105474; Xu, Y., Coda, R., Holopainen-Mantila, U., Laitila, A., Katina, K., Tenkanen, M. (2019). Impact of in situ produced exopolysaccharides on rheology and texture of fava bean protein concentrate. Food Research International, 115, 191–199. https://doi.org/10.1016/j.foodres.2018.08.054; Youssef, A.M., El-Sayed, S.M. (2018). Bionanocomposites materials for food packaging applications: Concepts and future outlook. Carbohydrate Polymers, 193, 19–27. doi:10.1016/j.carbpol.2018.03.088; Zubair, M., Ullah, A. (2020). Recent advances in protein derived bionanocomposites for food packaging applications, Critical Reviews in Food Science and Nutrition, 60(3), 406–434. https://doi.org/10.1080 /10408398.2018.1534800; Ryder, K., Ali, M.A., Billakanti, J., Carne, A. (2020). Evaluation of Dairy Coproduct Containing Composite Solutions for the Formation of Bioplastic Films. Journal of Polymer Environ, 28, 725–736. https://doi.org/10.1007/s10924–019–01635–4; Wu, Z., Yin, H., Liu, W., Huang, D., Hu, N., Yang, C., Zhao, X. (2020). Xanthan gum assisted foam fractionation for the recovery of casein from the dairy wastewater. Preparative Biochemistry & Biotechnology, 50(1), 37–46. https://doi.org/10.1080/10826068.2019.1658119; https://www.fsjour.com/jour/article/view/90
-
13
Authors:
Source: Journal of Food Measurement & Characterization; Aug2021, Vol. 15 Issue 4, p3800-3810, 11p
Subject Terms: CONDENSED milk, CONCENTRATED milk, MALTODEXTRIN, FRUCTOSE, LACTOSE
-
14
Authors: I. T. Smykov
Source: Food systems; Vol 2, No 3 (2019); 4-8 ; Пищевые системы; Vol 2, No 3 (2019); 4-8 ; 2618-7272 ; 2618-9771 ; 10.21323/2618-9771-2019-2-3
Subject Terms: microstructure, rennet gelation, enzymatic stage, casein micelles, viscosity
File Description: application/pdf
Relation: https://www.fsjour.com/jour/article/view/43/78; Walstra, P., Wouters, J. T. M., Geurt, T. J. (2006). Dairy Science and Technology. 2nd Ed. — CRC Press. — 808 p. ISBN 1420028014; Croguennec, T., Jeantet, R., Brulé, G. (2008). Fondements physicochimiques de la technologie laitière. Paris: Lavoisier. — 161 p. ISBN 9782743018641; Troch, T., Lefébure, É., Baeten, V., Colinet, F., Gengler N., Sindic, M. (2017). Cow milk coagulation: process description, variation factors and evaluation methodologies. A review. Biotechnology, Agronomy, Society and Environment, 21(4), 276–287.; Lucey, J. A. (2011). Rennet-induced coagulation of milk. In book: Fuquay, J. W., Fox, P. F., McSweeney, P. L. H. (eds) Encyclopedia of Dairy Sciences, V. 1, 2nd edn. Academic, Oxford, pp 579–584. ISBN 978–0–12–374402–9; Sinaga, H., Bansal, N., Bhandari, B. (2017). Gelation properties of partially renneted milk. International Journal of Food Properties, 20(8), 1700–1714. DOI:10.1080/10942912.2016.1193515; Fox, P. F., Guinee, T. P., Cogan, T. M., McSweeney, P. L. H. (2017). Fundamentals of Cheese Science, Sec. Ed., Springer. —799 p. ISBN 978–1– 4899–7679–6; Walstra, P., Bloomfield, V. A., Jason Wei, G., Jenness, R. (1981). Effect of chymosin action on the hydrodynamic diameter of casein micelles. BBA — Protein Structure, 669(2), 258–259. DOI:10.1016/0005– 2795(81)90249-X; Horne, D. S., Davidson C. M. (1993). Direct observation of decrease in size of casein micelles during the initial stages of renneting of skim milk. International Dairy Journal, 3(1), 61–71. DOI:10.1016/0958– 6946(93)90076-C; Fox, P. F. and Guinee T. P. (2013). Cheese Science and Technology. In book: Milk and Dairy Products in Human Nutrition. Y. W. Park and G. F. Haenlein (eds). p. 357–389. ISBN 978–92–5–107863–1; Smykov, I. T. (2015). Kinetics of Milk Gelation. Part I. Coagulation Mechanism. In book: Rheology: principles, applications and environmental impacts, Nova Science Publ., New York, pp 65–82. ISBN 978– 1–63482–223–7; Surkov, B. A., Klimovskii, I. I., Krayushkin, V. A. (1982). Turbidimetric study of kinetics and mechanism of milk clotting by rennet. Milchwissenschaft, 37, 393–395.; Arai, M., Kuwajima, K. (2000). Role of the molten globule state in protein folding. Advances in Protein Chemistry, 53, 209–282. DOI:10.1016/ S0065–3233(00)53005–8; Farrell, H. M. Jr., Qi, P. X., Brown, E. M., Cooke, P. H., Tunick, M. H., Wickham, E. D., Unruh, J. J. (2002). Molten Globule Structures in Milk Proteins: Implications for Potential New Structure-Function Relationships. Journal of Dairy Science, 85(3), 459–471. DOI:10.3168/jds.S0022– 0302(02)74096–4; Smykov, I. T. (2018). Milk curd cutting time determination in cheesemaking. Food systems, 1(2), 16–20. DOI:10.21323/2618–9771–2018–1–2– 12–20 (In Russian); The composition and properties of milk as raw materials for the dairy industry. (1986). Handbook ed. by Kostin Ya. I. Moscow: Agropromizdat. — 240 p. (In Russian); Zhang, Y., Liu, D., Liu, X., Hang, F., Zhou, P., Zhao, J., Chen, W. (2018) Effect of temperature on casein micelle composition and gelation of bovine milk. International Dairy Journal, 78, 20–27. DOI:10.1016/j.idairyj.2017.10.008; Gonçalves, B. J., Pereira, C. G., Lago, A. M. T., Gonçalves, C. S., Giarola, T. M. O., Abreu, L. R., Resend, J. V. (2017). Thermal conductivity as influenced by the temperature and apparent viscosity of dairy products. Journal of Dairy Science, 100(5), 3513–3525. DOI:10.3168/jds.2016– 12051; Smykov I. T., Myagkonosov D. S., Smirnov V. V. (2004). Study of the protein particles structuring in milk. Dairy Industry, 9, 58–60. (In Russian); De Kruif, C. G. (1998). Supra-aggregates of Casein Micelles as a Prelude to Coagulation. Journal of Dairy Science, 81(11), 3019–3028. DOI:10.3168/ jds.S0022–0302(98)75866–7; Totosaus, A., Montejano, J. G., Salazar, J. A., Guerrero, I. (2002). A review of physical and chemical protein-gel induction. International Journal of Food Science and Technology, 37(6), 589–601. DOI:10.1046/j.1365– 2621.2002.00623.x; Ptitsyn, O. B. (1995). Molten globule and protein folding. Advances in Protein Chemistry, 47, 83–229.; Finkelstein, A. V., Ptitsyn, O. B. (2005). Protein Physics: Lecture Course. 3rd ed. Moscow: KDU. — 455 p (In Russian); Protein Structure, Stability and Folding (2001). Murphy K. P. ed., Totowa: Humana Press Inc. — 252 p.; Marangoni, C. (1869). Sull’espansione delle goccie d’un liquido galleggianti sulla superficie di altro liquido (On the expansion of a droplet of a liquid floating on the surface of another liquid) (Pavia, Italy: fratelli Fusi (Fusi brothers).; https://www.fsjour.com/jour/article/view/43
-
15
Authors:
Source: Polymer Science - Series B; Jul2019, Vol. 61 Issue 4, p442-450, 9p
-
16
Authors:
Source: Food systems; Vol 1, No 2 (2018); 12-20 ; Пищевые системы; Vol 1, No 2 (2018); 12-20 ; 2618-7272 ; 2618-9771 ; 10.21323/2618-9771-2018-1-2
Subject Terms: сыр, gel-point, milk curd, cutting point, cheese, гель-точка, молочный сгусток, момент разрезки
File Description: application/pdf
Relation: https://www.fsjour.com/jour/article/view/9/35; https://www.fsjour.com/jour/article/view/9/38; O’Callaghan, D. J., O’Donnell, C. P., Payne, F. A. (2002). Review of systems for monitoring curd setting during cheesemaking. International Journal of Dairy technology, 55(2), 65–74.; Castillo, M. (2010). Cutting time Prediction Methods in Cheese Making // in book: Encyclopedia of Agricultural, Food, and Biological Engineering, eds. Heldman, D. R. and Moraru C. I., — CRC Press.— 762 P.; Arango, O., Castillo, M. (2018). A method for the inline measurement of milk gel firmness using an optical sensor. Journal of dairy science, 101(5), 3910–3917.; Ozer, B. Destructive (2004). Effects of Classical Viscosimeters on the Microstructure of Yoghurt Gel. Turkish Journal of Agriculture and Forestry, 28(1), 19–23.; Derra, M., Bakkali F., Amghar A., Sahsah H. (2018). Estimation of coagulation time in cheese manufacture using an ultrasonic pulse-echo technique. Journal of Food engineering, 216(1), 65–71.; Hori, t. (1985). Objective measurements of the process of curd formation during rennet treatment of milks by the hot wire method. Journal of Food science, 50(4), 911–917.; Miyawaki, O., Sato, Y., Yano, t., Ito, K., Saeko, Y. (1990).Fundamental aspects of viscosity monitoring by the hot wire technique. Journal of Food science, 55(3),854–857.; Osintsev, A. M. (2014). theoretical and practical aspects of the thermographic method for milk coagulation research. Foods and raw Materials, 2(2), 147–155.; O’Callaghan, D. J., O’Donnell, C. P., Payne, F. A. (1999). A comparison of on-line techniques for determination of curd setting time using cheesemilks under different rates of coagulation. Journal of Food engineering, 41(1), 43–54.; O’Callaghan, D. J., O’Donnell, C. P., Payne, F. A.(2000).On-line sensing techniques for coagulum setting in renneted milks. Journal of Food engineering, 43(3), 155–165.; Gonçalves, B. J., Pereira, C. G., Lago, A. M. t., Gonçalves, C. S., Giarola, t. M. O., Abreu, L. R., Resend, J. V. (2017). thermal conductivity as influenced by the temperature and apparent viscosity of dairy products.Journal of dairy science, 100(5), 3513–3525.; Liu, X. t., Zhang, H., Wang, F., Luo, J., Guo, H. Y., Ren F. Z. (2014). Rheological and structural properties of differently acidified and renneted milk gels. Journal of dairy science, 97, 3292–3299.; Rogelj, I., Perko, B., Francky, A., Penca, V., Pungercar, J. (2001).Recombinant Lamb Chymosin as an Alternative Coagulating Enzyme in Cheese Production. Journal of dairy science, 84(5), 1020–1026.; https://www.fsjour.com/jour/article/view/9
-
17
-
18
Full Text Finder
Nájsť tento článok vo Web of Science