Suchergebnisse - "Heterogeneous graph neural network"
-
1
Autoren: et al.
Quelle: IEEE Access, Vol 13, Pp 110926-110940 (2025)
-
2
Autoren: et al.
Quelle: IEEE Access, Vol 13, Pp 36006-36023 (2025)
-
3
Quelle: Jisuanji gongcheng, Vol 51, Iss 9, Pp 129-138 (2025)
Schlagwörter: semantic parse, pre-training model, heterogeneous graph neural network (hgnn), spatial gating unit, adapter, Computer engineering. Computer hardware, TK7885-7895, Computer software, QA76.75-76.765
Dateibeschreibung: electronic resource
-
4
Autoren: et al.
Quelle: Journal of King Saud University: Computer and Information Sciences, Vol 37, Iss 8, Pp 1-22 (2025)
Schlagwörter: Multi-agent reinforcement learning, Heterogeneous graph neural network, Parallelized service function chain, Virtual network functions, Electronic computers. Computer science, QA75.5-76.95
Dateibeschreibung: electronic resource
-
5
Autoren:
Quelle: Scientific Reports, Vol 15, Iss 1, Pp 1-21 (2025)
Schlagwörter: Multimodal deep fusion, Heterogeneous graph neural network, Traffic anomaly event, Dynamic detection, Static detection, Medicine, Science
Dateibeschreibung: electronic resource
Relation: https://doaj.org/toc/2045-2322
-
6
Autoren: et al.
Quelle: International Journal of Computational Intelligence Systems, Vol 18, Iss 1, Pp 1-27 (2025)
Schlagwörter: Heterogeneous graph neural network, Hypernymy detection, Hierarchical structure construction, Semantic relation understanding, Electronic computers. Computer science, QA75.5-76.95
Dateibeschreibung: electronic resource
Relation: https://doaj.org/toc/1875-6883
-
7
Autoren: et al.
Quelle: BMC Biology, Vol 23, Iss 1, Pp 1-12 (2025)
Schlagwörter: CircRNA‒drug sensitivity association, Multi-instance learning, Heterogeneous graph neural network, Interpretable analysis, Biology (General), QH301-705.5
Dateibeschreibung: electronic resource
Relation: https://doaj.org/toc/1741-7007
-
8
Autoren: HU Haifeng, ZHU Yiwen, ZHAO Haitao
Quelle: Jisuanji kexue, Vol 52, Iss 3, Pp 349-358 (2025)
Schlagwörter: network slicing, heterogeneous graph neural network, latency prediction, deep regression, Computer software, QA76.75-76.765, Technology (General), T1-995
Dateibeschreibung: electronic resource
-
9
Autoren:
Quelle: Mathematics, Vol 13, Iss 22, p 3674 (2025)
Schlagwörter: algorithm recommendation, meta-learning, heterogeneous graph neural network, dual-channel, contrastive learning, Mathematics, QA1-939
Dateibeschreibung: electronic resource
-
10
Autoren: et al.
Quelle: Expert systems with applications. 293
Schlagwörter: Automotive parts supply chain, Feature fusion, Heterogeneous graph neural network, Joint Entity relation extraction
Dateibeschreibung: print
-
11
Autoren:
Schlagwörter: Civil engineering not elsewhere classified, Pressure estimation, water distribution network, heterogeneous graph neural network
-
12
Autoren: et al.
Quelle: Mathematics, Vol 13, Iss 17, p 2755 (2025)
Schlagwörter: enterprise bankruptcy prediction, heterogeneous graph neural network, Transformer attention mechanism, graph convolutional network, Mathematics, QA1-939
Dateibeschreibung: electronic resource
-
13
Autoren: et al.
Weitere Verfasser: et al.
Quelle: ISSN: 1536-1276 ; IEEE Transactions on Wireless Communications ; https://hal.science/hal-05378146 ; IEEE Transactions on Wireless Communications, 2025, 24 (9), pp.7940-7954. ⟨10.1109/TWC.2025.3563529⟩.
Schlagwörter: reconfigurable intelligent surfaces, heterogeneous graph neural network, Beamforming, [INFO.INFO-TS]Computer Science [cs]/Signal and Image Processing
Relation: info:eu-repo/semantics/altIdentifier/arxiv/2504.14464; ARXIV: 2504.14464
-
14
Autoren: et al.
Quelle: ISPRS International Journal of Geo-Information ; Volume 14 ; Issue 2 ; Pages: 84
Schlagwörter: heterogeneous graph neural network, hybrid scene, similarity measurement, data-driven
Geographisches Schlagwort: agris
Dateibeschreibung: application/pdf
Relation: https://dx.doi.org/10.3390/ijgi14020084
Verfügbarkeit: https://doi.org/10.3390/ijgi14020084
-
15
Autoren: et al.
Quelle: International Journal of Digital Earth, Vol 17, Iss 1 (2024)
-
16
Autoren:
Quelle: Mathematics, Vol 13, Iss 9, p 1458 (2025)
Schlagwörter: traffic flow prediction, dynamic heterogeneous graph neural network, regional aggregation, attention mechanism, spatiotemporal dependencies, Mathematics, QA1-939
Dateibeschreibung: electronic resource
-
17
Autoren: et al.
Quelle: Mathematics, Vol 13, Iss 9, p 1479 (2025)
Schlagwörter: recommendation system, heterogeneous graph neural network, attention mechanism, Mathematics, QA1-939
Dateibeschreibung: electronic resource
-
18
Quelle: Jisuanji kexue, Vol 51, Iss 1, Pp 143-149 (2024)
Schlagwörter: multi-label document classification, metadata, heterogeneous graph neural network, pre-training, long-tail distribution, Computer software, QA76.75-76.765, Technology (General), T1-995
Dateibeschreibung: electronic resource
-
19
Autoren: et al.
Quelle: BMC Bioinformatics, Vol 24, Iss 1, Pp 1-13 (2023)
Schlagwörter: Heterogeneous graph neural network, Metapath, CircRNA, Disease, Computer applications to medicine. Medical informatics, R858-859.7, Biology (General), QH301-705.5
Dateibeschreibung: electronic resource
Relation: https://doaj.org/toc/1471-2105
-
20
Autoren: et al.
Quelle: Transportation Research, Part C: Emerging Technologies. 164
Zugangs-URL: https://research.chalmers.se/publication/541737
Full Text Finder
Nájsť tento článok vo Web of Science