Suchergebnisse - "Graph Autoencoder"
-
1
Autoren:
Quelle: International Journal of Architectural Computing. 23:742-752
-
2
Autoren: et al.
Quelle: Complex & Intelligent Systems, Vol 12, Iss 1, Pp 1-16 (2025)
Schlagwörter: Graph neural networks, Variational graph autoencoder, Variational inference, Importance weighted, Electronic computers. Computer science, QA75.5-76.95, Information technology, T58.5-58.64
Dateibeschreibung: electronic resource
-
3
Autoren: et al.
Quelle: Proceedings of the 31st ACM SIGKDD Conference on Knowledge Discovery and Data Mining V.1. :2067-2078
Schlagwörter: Social and Information Networks (cs.SI), FOS: Computer and information sciences, Computer Science - Machine Learning, Computer Science - Social and Information Networks, Machine Learning (cs.LG)
Zugangs-URL: http://arxiv.org/abs/2311.07929
-
4
Autoren: et al.
Quelle: IEEE Transactions on Pattern Analysis and Machine Intelligence. 47:5760-5777
Zugangs-URL: https://pubmed.ncbi.nlm.nih.gov/40184302
-
5
Autoren:
Quelle: Proceedings of the 20th ACM Asia Conference on Computer and Communications Security. :1175-1187
-
6
Autoren: et al.
Quelle: International Journal of Production Research. :1-27
-
7
Autoren: et al.
Weitere Verfasser: et al.
Quelle: International Journal of Digital Earth. 16(1):1828-1852
Schlagwörter: Natural Sciences, Earth and Related Environmental Sciences, Other Earth Sciences (including Geographical Information Science), Naturvetenskap, Geovetenskap och relaterad miljövetenskap, Annan geovetenskap (Här ingår: Geografisk informationsvetenskap), Physical Geography, Naturgeografi
Zugangs-URL: https://doi.org/10.1080/17538947.2023.2212920
-
8
Autoren: et al.
Quelle: Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering ISBN: 9783032002174
-
9
Autoren: et al.
Quelle: IEEE Journal of Biomedical and Health Informatics. 29:3069-3078
Schlagwörter: Bacteria, Host-Pathogen Interactions, Computational Biology, Humans, Bacteriophages, Autoencoder, Host Specificity, Algorithms
Zugangs-URL: https://pubmed.ncbi.nlm.nih.gov/40030240
-
10
Autoren: et al.
Quelle: Journal of Intelligence and Information Systems. 31:111-130
-
11
Autoren: et al.
Quelle: 2025 IEEE 6th International Conference on Pattern Recognition and Machine Learning (PRML). :134-138
-
12
Autoren: et al.
Quelle: Knowledge and Information Systems. 67:8085-8114
-
13
Autoren: et al.
Quelle: IEEE Internet of Things Journal. 12:13697-13708
-
14
Autoren: et al.
Quelle: 2025 IEEE 14th Data Driven Control and Learning Systems (DDCLS). :750-755
-
15
Autoren: et al.
Quelle: IEEE Transactions on Consumer Electronics. 71:6867-6879
-
16
Autoren: et al.
Quelle: Proceedings of the ACM on Web Conference 2025. :3772-3782
Schlagwörter: FOS: Computer and information sciences, Computer Science - Machine Learning, Machine Learning (cs.LG)
Zugangs-URL: http://arxiv.org/abs/2504.12715
-
17
Autoren: et al.
Quelle: 2025 IEEE International Conference on Web Services (ICWS). :943-945
-
18
Autoren: et al.
Quelle: IEEE Journal of Biomedical and Health Informatics. :1-11
Zugangs-URL: https://pubmed.ncbi.nlm.nih.gov/40168534
-
19
Autoren: et al.
Quelle: AI, Vol 5, Iss 3, Pp 1695-1708 (2024)
-
20
Prediction of Associations between Nanoparticle, Drug and Cancer Using Variational Graph Autoencoder
Autoren: Emrah İNAN
Quelle: Volume: 26, Issue: 76 167-172
Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen ve Mühendislik DergisiSchlagwörter: Bilgisayar Görüşü ve Çoklu Ortam Hesaplama (Diğer), Varyasyonel Çizge Otokodlayıcı, Nanoparçacıklar, İlaç-hastalık İlişkisi, Variational Graph Autoencoder, Nanoparticles, Drug–disease Association, Computer Vision and Multimedia Computation (Other), 3. Good health
Dateibeschreibung: application/pdf
Nájsť tento článok vo Web of Science
Full Text Finder