Suchergebnisse - "Gradient boosting models"
-
1
Autoren:
Quelle: Neurocomputing. 655
Schlagwörter: Benchmark, Deep learning, Gradient boosting models, Adaptive boosting, Classification (of information), Learning systems, Excel, Gradient boosting, Gradient boosting model, Learning models, Machine-learning, Real-world, Scientific researches, Structured data, article, benchmarking, classification, filtration, machine learning, major clinical study
Dateibeschreibung: print
-
2
Autoren: et al.
Quelle: Sensors, Vol 25, Iss 19, p 6082 (2025)
Schlagwörter: smart home automation, machine learning, human activity recognition, edge computing, intelligent environments, gradient boosting models, Chemical technology, TP1-1185
Dateibeschreibung: electronic resource
-
3
Autoren:
Weitere Verfasser:
Quelle: Insurance: Mathematics and Economics. 104:158-184
Schlagwörter: Mathematics, Interdisciplinary Applications, Covariate shift, Economics, PREDICTION, Statistics & Probability, 38 Economics, Social Sciences, AGGREGATE, 01 natural sciences, Moving window evaluation, FOS: Economics and business, [STAT.AP] Statistics [stat]/Applications [stat.AP], Business & Economics, 35 Commerce, management, tourism and services, gradient boosting models, 0101 mathematics, moving window evaluation, 01 Mathematical Sciences, 14 Economics, Science & Technology, 15 Commerce, Management, Tourism and Services, individual claims reserving, Individual claims reserving, Social Sciences, Mathematical Methods, model and variable selection, Model and variable selection, covariate shift, Risk Management (q-fin.RM), Physical Sciences, Simulation machine, 49 Mathematical sciences, Mathematics, Mathematical Methods In Social Sciences, Quantitative Finance - Risk Management
Dateibeschreibung: application/pdf
-
4
Autoren: et al.
Quelle: Diagnostics ; Volume 14 ; Issue 23 ; Pages: 2763
Schlagwörter: hypoxemia, machine learning, patient triage, disaster management, CBRNE events, VIMY Multi-System, gradient boosting models, NEWS2+, data preprocessing, feature importance, LSTM, GRU, time series interpolation, deep learning, imputation, interpolation, sliding window, masks, early warning scores, EWS, artificial intelligence, XGBoost, CatBoost, LightGBM, random forest, Tree-based models, voting classifier ensemble, MIMIC-III, MIMIC-IV
Dateibeschreibung: application/pdf
Relation: Machine Learning and Artificial Intelligence in Diagnostics; https://dx.doi.org/10.3390/diagnostics14232763
Verfügbarkeit: https://doi.org/10.3390/diagnostics14232763
-
5
Autoren: et al.
Schlagwörter: Machine learning not elsewhere classified, Gradient boosting models, Hyperparameter optimization, Machine learning, Transfer learning, UAV, Wildfire detection
Relation: 10779/cqu.29434418.v1
-
6
Autoren: Van Langenhove, Christophe
Quelle: Working Papers of Faculty of Economics and Business Administration, Ghent University
Schlagwörter: Business and Economics, wealth mobility, wealth inequality, inter-generational wealth transmission, lifecycle dynamics, intra-generational wealth mobility, machine learning, hierarchical clustering, gradient-boosting models
Dateibeschreibung: application/pdf
Relation: https://biblio.ugent.be/publication/01K360Z9BSKPF4RK9KW0HE7G1A; https://doi.org/10.2139/ssrn.5119173; https://biblio.ugent.be/publication/01K360Z9BSKPF4RK9KW0HE7G1A/file/01K3615HZPE3JM8Q4WND4YJ2JM
-
7
Autoren: et al.
Quelle: Remote Sensing, Vol 14, Iss 3204, p 3204 (2022)
Schlagwörter: soil salinity, soil organic carbon, machine learning, extreme gradient boosting models, arid inland regions, Science
Relation: https://www.mdpi.com/2072-4292/14/13/3204; https://doaj.org/toc/2072-4292; https://doaj.org/article/f585483529e443f6b908e383ec0574d9
-
8
Autoren: et al.
Quelle: Int J Environ Res Public Health
International Journal of Environmental Research and Public Health
Volume 20
Issue 3
Pages: 2220Schlagwörter: Male, Employment, hypertension, Intersectional Framework, Adolescent, health reporting, self-rated health, Article, 03 medical and health sciences, Sex Factors, 0302 clinical medicine, 5. Gender equality, health monitoring, Pregnancy, gender, score, Humans, gradient boosting models, 10. No inequality, decision trees, 3. Good health, Cross-Sectional Studies, Female, Public Health, intersectionality, mental health
Dateibeschreibung: application/pdf
Zugangs-URL: https://pubmed.ncbi.nlm.nih.gov/36767592
-
9
Autoren:
Index Begriffe: Benchmark, Deep learning, Gradient boosting models, Adaptive boosting, Classification (of information), Learning systems, Excel, Gradient boosting, Gradient boosting model, Learning models, Machine-learning, Real-world, Scientific researches, Structured data, article, benchmarking, classification, filtration, machine learning, major clinical study, Computer and Information Sciences, Data- och informationsvetenskap, Article in journal, info:eu-repo/semantics/article, text
URL:
http://urn.kb.se/resolve?urn=urn:nbn:se:hj:diva-69810
Neurocomputing, 0925-2312, 2025, 655 -
10
Autoren: et al.
Quelle: Alcohol, clinical & experimental research [Alcohol Clin Exp Res (Hoboken)] 2023 Nov; Vol. 47 (11), pp. 2138-2148. Date of Electronic Publication: 2023 Sep 15.
Publikationsart: Journal Article
Info zur Zeitschrift: Publisher: Wiley Periodicals Country of Publication: United States NLM ID: 9918609780906676 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 2993-7175 (Electronic) Linking ISSN: 29937175 NLM ISO Abbreviation: Alcohol Clin Exp Res (Hoboken) Subsets: PubMed not MEDLINE; MEDLINE
-
11
Autoren: et al.
Quelle: Molecular ecology resources [Mol Ecol Resour] 2021 Nov; Vol. 21 (8), pp. 2766-2781. Date of Electronic Publication: 2021 Sep 06.
Publikationsart: Journal Article
Info zur Zeitschrift: Publisher: Blackwell Country of Publication: England NLM ID: 101465604 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1755-0998 (Electronic) Linking ISSN: 1755098X NLM ISO Abbreviation: Mol Ecol Resour Subsets: MEDLINE
MeSH-Schlagworte: Lynx* , Populus*, Adaptation, Physiological ; Animals ; Genomics ; Machine Learning
-
12
Autoren: et al.
Quelle: The Journal of animal ecology [J Anim Ecol] 2019 Oct; Vol. 88 (10), pp. 1447-1461. Date of Electronic Publication: 2019 Aug 19.
Publikationsart: Journal Article; Research Support, Non-U.S. Gov't; Research Support, U.S. Gov't, Non-P.H.S.
Info zur Zeitschrift: Publisher: Blackwell Country of Publication: England NLM ID: 0376574 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1365-2656 (Electronic) Linking ISSN: 00218790 NLM ISO Abbreviation: J Anim Ecol Subsets: MEDLINE
MeSH-Schlagworte: Distemper Virus, Canine* , Lions*, Animals ; Animals, Wild ; Ecology ; Machine Learning
HTML Volltext PDF-Volltext
Full Text Finder
Nájsť tento článok vo Web of Science