Search Results - "Gaussian Processes in Machine Learning"

Refine Results
  1. 1

    Source: Digital.CSIC. Repositorio Institucional del CSIC
    Consejo Superior de Investigaciones Científicas (CSIC)
    lenseuclid 2023, 'The impact of human expert visual inspection on the discovery of strong gravitational lenses', MNRAS, vol. 523, no. 3, pp. 4413-4430. https://doi.org/10.1093/mnras/stad1680
    MNRAS

    File Description: application/pdf

  2. 2
  3. 3
  4. 4
  5. 5

    Contributors: J. Cordero I. Harrison R. P. Rollins et al.

    Source: Biblos-e Archivo. Repositorio Institucional de la UAM
    Universidad Autónoma de Madrid
    Digital.CSIC. Repositorio Institucional del CSIC
    Consejo Superior de Investigaciones Científicas (CSIC)
    instname
    Repositório Institucional da UNESP
    Universidade Estadual Paulista (UNESP)
    instacron:UNESP
    Cordero, J P, Harrison, I, Rollins, R P, Bernstein, G M, Bridle, S L, Alarcon, A, Alves, O, Amon, A, Andrade-oliveira, F, Camacho, H, Campos, A, Choi, A, Derose, J, Dodelson, S, Eckert, K, Eifler, T F, Everett, S, Fang, X, Friedrich, O, Gruen, D, Gruendl, R A, Hartley, W G, Huff, E M, Krause, E, Kuropatkin, N, Maccrann, N, Mccullough, J, Myles, J, Pandey, S, Raveri, M, Rosenfeld, R, Rykoff, E S, Sánchez, C, Sánchez, J, Sevilla-noarbe, I, Sheldon, E, Troxel, M, Wechsler, R, Yanny, B, Yin, B, Zhang, Y, Aguena, M, Allam, S, Bertin, E, Brooks, D, Burke, D L, Carnero rosell, A, Carrasco kind, M, Carretero, J, Castander, F J, Cawthon, R, Costanzi, M, Da costa, L, Da silva pereira, M E, De vicente, J, Diehl, H T, Dietrich, J, Doel, P, Elvin-poole, J, Ferrero, I, Flaugher, B, Fosalba, P, Frieman, J, Garcia-bellido, J, Gerdes, D, Gschwend, J, Gutierrez, G, Hinton, S, Hollowood, D L, Honscheid, K, Hoyle, B, James, D, Kuehn, K, Lahav, O, Maia, M A G, March, M, Menanteau, F, Miquel, R, Morgan, R, Muir, J, Palmese, A, Paz-chinchon, F, Pieres, A, Plazas malagón, A, Sánchez, E, Scarpine, V, Serrano, S, Smith, M, Soares-santos, M, Suchyta, E, Swanson, M, Tarle, G, Thomas, D, To, C & Varga, T N 2022, 'Dark Energy Survey Year 3 results: marginalization over redshift distribution uncertainties using ranking of discrete realizations', Monthly Notices of the Royal Astronomical Society, vol. 511, no. 2, pp. 2170-2185. https://doi.org/10.1093/mnras/stac147

    File Description: application/pdf

  6. 6
  7. 7
  8. 8

    Source: Digital.CSIC. Repositorio Institucional del CSIC
    Consejo Superior de Investigaciones Científicas (CSIC)
    instname

    Subject Terms: FOS: Computer and information sciences, statistical [Methods], Computer Science - Machine Learning, Artificial intelligence, software: data analysis, Astrophysics, 01 natural sciences, Machine Learning (cs.LG), Gaussian Processes in Machine Learning, Probability distribution, Software: data analysis, Sparse Regression, Probability density function, Astrophysics - Cosmology and Nongalactic Astrophysic, data analysis [Methods], galaxies: fundamental parameter, Methods: statistical, Ecology, Galaxy Formation and Evolution in the Universe, Physics, Star formation, Python (programming language), Statistics, Galaxies: evolution, galaxies: fundamental parameters, Remote Sensing in Vegetation Monitoring and Phenology, Cosmology, Algorithm, Software: public realese, fundamental parameters [Galaxies], Physical Sciences, Photometric redshift, software: data analysi, galaxies: evolution, Astrophysics - Instrumentation and Methods for Astrophysics, methods: data analysi, Astrophysics - Cosmology and Nongalactic Astrophysics, public realese [Software], Galaxies: fundamental parameters, Cosmology and Nongalactic Astrophysics (astro-ph.CO), methods: data analysis, methods: statistical, software: public release, Astrophysics - Astrophysics of Galaxies, FOS: Physical sciences, [INFO] Computer Science [cs], Joint probability distribution, Astrophysics - Astrophysics of Galaxie, Methods: data analysis, Artificial Intelligence, Stellar mass, 0103 physical sciences, FOS: Mathematics, Instrumentation and Methods for Astrophysics (astro-ph.IM), Astronomy and Astrophysics, Redshift, evolution [Galaxies], Computer science, Stars, Galaxy, Operating system, Physics and Astronomy, [PHYS.PHYS.PHYS-INS-DET] Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det], data analysis [Software], Photometry (optics), Astrophysics of Galaxies (astro-ph.GA), FOS: Biological sciences, Environmental Science, Computer Science, [PHYS.ASTR] Physics [physics]/Astrophysics [astro-ph], Astrophysics - Instrumentation and Methods for Astrophysic, Mathematics, Random forest

    File Description: application/pdf; PDF

  9. 9

    Source: Revista Colombiana de Estadística, Volume: 44, Issue: 1, Pages: 159-170, Published: 27 FEB 2021

    File Description: text/html

  10. 10

    Source: Statistics and Computing. 34

  11. 11

    Source: Frontiers in Astronomy and Space Sciences, Vol 10 (2023)

  12. 12
  13. 13

    Source: ESAIM: Probability and Statistics. 24:842-882

    File Description: application/pdf

  14. 14

    Source: CONICET Digital (CONICET)
    Consejo Nacional de Investigaciones Científicas y Técnicas

    File Description: application/pdf

  15. 15
  16. 16

    Source: Digital.CSIC. Repositorio Institucional del CSIC
    Consejo Superior de Investigaciones Científicas (CSIC)
    The Astrophysical Journal, Vol 963, Iss 1, p 56 (2024)

    File Description: application/pdf

  17. 17
  18. 18

    Source: Machine Learning: Science and Technology, Vol 4, Iss 4, p 045019 (2023)

  19. 19
  20. 20