Suchergebnisse - "Error bounds for numerical methods for ordinary differential equations"
-
1
Autoren:
Quelle: Fractional Calculus and Applied Analysis. 28:453-472
Schlagwörter: initial singularity, variable transformation, predictor-corrector method, error estimate, Numerical methods for initial value problems involving ordinary differential equations, Stability and convergence of numerical methods for ordinary differential equations, nonlinear fractional differential equation, Error bounds for numerical methods for ordinary differential equations
Dateibeschreibung: application/xml
-
2
Autoren:
Quelle: Calcolo. 62
Schlagwörter: Finite element, Rayleigh-Ritz, Galerkin and collocation methods for ordinary differential equations, continuous Galerkin method, initial value problem, Numerical methods for initial value problems involving ordinary differential equations, a posteriori error estimation, \textit{hp}-adaptive refinement procedure, Error bounds for numerical methods for ordinary differential equations
Dateibeschreibung: application/xml
-
3
Autoren:
Quelle: Computational and Applied Mathematics. 44
Schlagwörter: Finite element, Rayleigh-Ritz, Galerkin and collocation methods for ordinary differential equations, local discontinuous Galerkin method, Duran mesh, convection-diffusion, singularly perturbed, Numerical solution of singularly perturbed problems involving ordinary differential equations, Error bounds for numerical methods for ordinary differential equations, Duran-Shishkin mesh, convergence analysis
Dateibeschreibung: application/xml
-
4
Autoren:
Quelle: Chinese Annals of Mathematics, Series B. 44:765-780
Schlagwörter: saddle point, Dynamical systems in numerical analysis, numerical analysis, solution landscape, semi-implicit, FOS: Mathematics, Mathematics - Numerical Analysis, Numerical Analysis (math.NA), 0101 mathematics, Numerical nonlinear stabilities in dynamical systems, constrained saddle dynamics, 01 natural sciences, Error bounds for numerical methods for ordinary differential equations
Dateibeschreibung: application/xml
-
5
Autoren:
Quelle: Journal of Computational and Applied Mathematics. 457:116318
Schlagwörter: a posteriori error estimates, variable BDF2 method, adaptive time stepping, Error bounds for initial value and initial-boundary value problems involving PDEs, IMEX, Finite difference methods for initial value and initial-boundary value problems involving PDEs, Mesh generation, refinement, and adaptive methods for the numerical solution of initial value and initial-boundary value problems involving PDEs, nonlinear parabolic equations, second-order reconstruction, Error bounds for numerical methods for ordinary differential equations
Dateibeschreibung: application/xml
-
6
Autoren:
Quelle: Mathematical Methods in the Applied Sciences. 45:4876-4898
Schlagwörter: Numerical solution of boundary value problems involving ordinary differential equations, Finite difference and finite volume methods for ordinary differential equations, Richardson extrapolation, finite difference, convection-diffusion, discontinuous coefficients, uniform convergence, 01 natural sciences, interior layer, Mesh generation, refinement, and adaptive methods for ordinary differential equations, 0101 mathematics, Stability and convergence of numerical methods for ordinary differential equations, singular perturbation, Numerical solution of singularly perturbed problems involving ordinary differential equations, Error bounds for numerical methods for ordinary differential equations, piece-wise uniform mesh
Dateibeschreibung: application/xml
-
7
Autoren:
Quelle: Mathematical Methods in the Applied Sciences. 46:11509-11522
Schlagwörter: Finite element, Rayleigh-Ritz, Galerkin and collocation methods for ordinary differential equations, differential difference equations, Singular perturbations of functional-differential equations, Mesh generation, refinement, and adaptive methods for ordinary differential equations, asymptotic expansion approximation, Numerical methods for functional-differential equations, convection-diffusion problem, Shishkin mesh, SDFEM, 0101 mathematics, 01 natural sciences, Numerical solution of singularly perturbed problems involving ordinary differential equations, Error bounds for numerical methods for ordinary differential equations
Dateibeschreibung: application/xml
-
8
Autoren: et al.
Quelle: Numerical Algorithms. 85:1123-1153
Schlagwörter: nonlinear differential equations, \( \varepsilon \)-approximate solutions, Newton's iterative formula, Finite element, Rayleigh-Ritz, Galerkin and collocation methods for ordinary differential equations, 4. Education, fractional delay differential equations, 0101 mathematics, Stability and convergence of numerical methods for ordinary differential equations, 01 natural sciences, Functional-differential equations with fractional derivatives, Error bounds for numerical methods for ordinary differential equations
Dateibeschreibung: application/xml
Zugangs-URL: https://link.springer.com/content/pdf/10.1007/s11075-019-00858-9.pdf
https://zbmath.org/7290711
https://doi.org/10.1007/s11075-019-00858-9
https://link.springer.com/content/pdf/10.1007/s11075-019-00858-9.pdf
https://dblp.uni-trier.de/db/journals/na/na85.html#ShiCDM20
https://link.springer.com/article/10.1007/s11075-019-00858-9 -
9
Autoren: Ömür Kıvanç Kürkçü
Quelle: Comp. Appl. Math.
Schlagwörter: terminal condition, matrix-collocation method, delay differential equation, fractional derivative, Numerical methods for functional-differential equations, 0101 mathematics, 01 natural sciences, Functional-differential equations with fractional derivatives, General biology and biomathematics, error analysis, Article, Error bounds for numerical methods for ordinary differential equations
Dateibeschreibung: application/xml
-
10
Autoren:
Quelle: Computational and Applied Mathematics. 41
Schlagwörter: Finite difference and finite volume methods for ordinary differential equations, nonlinear system, 0101 mathematics, a posteriori analysis, Numerical methods for initial value problems involving ordinary differential equations, uniform convergence, 01 natural sciences, singularly perturbed, Numerical solution of singularly perturbed problems involving ordinary differential equations, Error bounds for numerical methods for ordinary differential equations, adaptive meshes
Dateibeschreibung: application/xml
-
11
Autoren: Barnabas M. Garay
Quelle: International Journal of Bifurcation and Chaos. 15:729-742
Schlagwörter: invariant manifolds, hyperbolic periodic orbits, Attractors and repellers of smooth dynamical systems and their topological structure, saddle structure, Kamke monotonicity, Generic properties, structural stability of dynamical systems, Numerical methods for Hamiltonian systems including symplectic integrators, Numerical approximation of solutions of functional-differential equations, Stability theory for smooth dynamical systems, 01 natural sciences, Runge-Kutta discretizations, survey paper, Multistep, Runge-Kutta and extrapolation methods for ordinary differential equations, compact attractors, hyperbolic equilibria, retarded functional differential equations, error estimates, Research exposition (monographs, survey articles) pertaining to numerical analysis, structural stability, Periodic orbits of vector fields and flows, inertial manifolds, delay equations, center-unstable manifolds, 0101 mathematics, Error bounds for numerical methods for ordinary differential equations
Dateibeschreibung: application/xml
Zugangs-URL: http://www.math.bme.hu/~garay/gfarkas.pdf
https://ui.adsabs.harvard.edu/abs/2006mcds.book...33G/abstract
https://ui.adsabs.harvard.edu/abs/2005IJBC...15..729G/abstract
http://www.math.bme.hu/~garay/gfarkas.pdf
https://www.worldscientific.com/doi/abs/10.1142/S021812740501251X
https://dblp.uni-trier.de/db/journals/ijbc/ijbc15.html#Garay05 -
12
Autoren:
Quelle: Acta Numerica 2003 ISBN: 9780521825238
Acta Numerica, Vol. 12 (2003) pp. 399-450Schlagwörter: Störmer-Verlet method, geometric numerical integration, near-integrable systems, Numerical methods for Hamiltonian systems including symplectic integrators, Shake, Numerical methods for initial value problems involving ordinary differential equations, 01 natural sciences, Geometric numerical integration, reversibility, linear error growth, backward error analysis, ddc:510, Hamiltonian systems, 0101 mathematics, Störmer/Verlet method, Numerical experiments, Error bounds for numerical methods for ordinary differential equations, Discretization methods and integrators (symplectic, variational, geometric, etc.) for dynamical systems, volume preservation, Symplecticity, Completely integrable finite-dimensional Hamiltonian systems, integration methods, integrability tests, symplecticity, Conservation of first integrals and adiabatic invariants backward error analysis, Symmetry and reversibility, long-time energy conservation
Dateibeschreibung: application/xml; application/pdf
Zugangs-URL: http://www.math.kit.edu/ianm3/lehre/geonumint2009s/media/gni_by_stoermer-verlet.pdf
https://archive-ouverte.unige.ch/unige:12277/ATTACHMENT01
http://cco.cup.cam.ac.uk/chapter.jsf?bid=CBO9780511550157&cid=CBO9780511550157A010
http://ebooks.cambridge.org/ref/id/CBO9780511550157A010
https://www.math.kit.edu/ianm3/lehre/geonumint2009s/media/gni_by_stoermer-verlet.pdf
https://archive-ouverte.unige.ch/unige:12277/ATTACHMENT01
https://archive-ouverte.unige.ch/unige:12277
http://www.mat.uc.pt/~alma/aulas/modelos/ficheiros/geometric.pdf
https://www.scilit.net/article/0c8a79698e31c86a8349279cd40783a4
http://www.math.kit.edu/ianm3/lehre/geonumint2009s/media/gni_by_stoermer-verlet.pdf
https://archive-ouverte.unige.ch/unige:12277 -
13
Autoren:
Quelle: Mathematical Methods in the Applied Sciences. 36:336-348
Schlagwörter: Numerical solution of boundary value problems involving ordinary differential equations, numerical examples, 0209 industrial biotechnology, system of linear differential equations, Finite element, Rayleigh-Ritz, Galerkin and collocation methods for ordinary differential equations, error estimation, 0202 electrical engineering, electronic engineering, information engineering, Linear boundary value problems for ordinary differential equations, collocation points, 02 engineering and technology, exponential approximate, Error bounds for numerical methods for ordinary differential equations, exponential matrix method
Dateibeschreibung: application/xml
-
14
Autoren:
Quelle: Developments in Reliable Computing ISBN: 9789048153503
Schlagwörter: General methods in interval analysis, interval methods, Hermite-Obreschkoff method, guaranteed bounds, Nonlinear ordinary differential equations and systems, stability, Numerical methods for initial value problems involving ordinary differential equations, Taylor series methods, Error bounds for numerical methods for ordinary differential equations
Dateibeschreibung: application/xml
Zugangs-URL: https://zbmath.org/1421491
https://doi.org/10.1023/a:1009936607335
https://link.springer.com/10.1007/978-94-017-1247-7_23
https://rd.springer.com/chapter/10.1007/978-94-017-1247-7_23
https://link.springer.com/chapter/10.1007/978-94-017-1247-7_23
https://dblp.uni-trier.de/db/journals/rc/rc5.html#NedialkovJ99 -
15
Autoren:
Quelle: Numerical Analysis and Applications. 3:317-328
Schlagwörter: Cauchy problem, Abstract parabolic equations, convergence, Finite element, Rayleigh-Ritz, Galerkin and collocation methods for ordinary differential equations, projection-difference method, operator-differential equation, Nonlinear differential equations in abstract spaces, 01 natural sciences, Error bounds for initial value and initial-boundary value problems involving PDEs, error estimates, monotone operator, Numerical solutions to abstract evolution equations, parabolic problem, Faedo-Galerkin method, Finite element, Rayleigh-Ritz and Galerkin methods for initial value and initial-boundary value problems involving PDEs, 0101 mathematics, Stability and convergence of numerical methods for initial value and initial-boundary value problems involving PDEs, Stability and convergence of numerical methods for ordinary differential equations, Error bounds for numerical methods for ordinary differential equations
Dateibeschreibung: application/xml
-
16
Autoren:
Quelle: Journal of Computational and Applied Mathematics. 402:113810
Schlagwörter: Diethelm's schemes, finite difference, Numerical methods for functional-differential equations, fractional delay differential equations, initial value problems, 14. Life underwater, 0101 mathematics, Stability and convergence of numerical methods for ordinary differential equations, 01 natural sciences, Functional-differential equations with fractional derivatives, interpolation, Error bounds for numerical methods for ordinary differential equations
Dateibeschreibung: application/xml
-
17
Autoren: et al.
Quelle: Mathematical and Computer Modelling. 46:657-669
Schlagwörter: first order matrix differential equations, numerical examples, Numerical Analysis (math.NA), Nonlinear ordinary differential equations and systems, Numerical methods for initial value problems involving ordinary differential equations, cubic-matrix splines, 01 natural sciences, Sylvester and Riccati differential equations, Computer Science Applications, error estimates, Modelling and Simulation, FOS: Mathematics, Mathematics - Numerical Analysis, 0101 mathematics, Error bounds for numerical methods for ordinary differential equations
Dateibeschreibung: application/xml
-
18
Open issues in devising software for the numerical solution of implicit delay differential equations
Autoren: GUGLIELMI, NICOLA
Quelle: Journal of Computational and Applied Mathematics. 185:261-277
Schlagwörter: RADAR5, pantograph equation, numerical examples, Applied Mathematics, Numerical code, 3-stage Radau IIA Runge-Kutta method, RADAR5, Implicit delay differential equations, Radau method, Numerical code, Error control, Numerical approximation of solutions of functional-differential equations, Error control, Numerical methods for initial value problems involving ordinary differential equations, 01 natural sciences, Multistep, Runge-Kutta and extrapolation methods for ordinary differential equations, Computational Mathematics, Radau method, 0101 mathematics, Implicit delay differential equations, Error bounds for numerical methods for ordinary differential equations
Dateibeschreibung: application/xml
Zugangs-URL: https://www.sciencedirect.com/science/article/abs/pii/S0377042705001147
https://ui.adsabs.harvard.edu/abs/2006JCoAM.185..261G/abstract
https://www.sciencedirect.com/science/article/pii/S0377042705001147
https://dialnet.unirioja.es/servlet/articulo?codigo=1276509
https://univaq.it/~guglielm/PAPERS/DDESoft.pdf
https://core.ac.uk/display/82776617 -
19
Autoren: et al.
Weitere Verfasser: et al.
Quelle: Journal of Computational and Applied Mathematics. 185:212-224
Schlagwörter: Numerical solution of boundary value problems involving ordinary differential equations, Nonlinear boundary value problems for ordinary differential equations, Applied Mathematics, error estimate, algorithms, 01 natural sciences, Computational Mathematics, Mesh generation, refinement, and adaptive methods for ordinary differential equations, Mesh selection, Two-point boundary value problems, grid refinement, 0101 mathematics, singular perturbation, residual control, Error bounds for numerical methods for ordinary differential equations, Conditioning, condition number
Dateibeschreibung: application/xml
Zugangs-URL: https://www.sciencedirect.com/science/article/pii/S0377042705001111
https://dialnet.unirioja.es/servlet/articulo?codigo=1276506
https://core.ac.uk/display/54130311
https://www.sciencedirect.com/science/article/abs/pii/S0377042705001111
https://ui.adsabs.harvard.edu/abs/2006JCoAM.185..212C/abstract
https://hdl.handle.net/2158/256835 -
20
Autoren: et al.
Weitere Verfasser: et al.
Quelle: Journal of Computational and Applied Mathematics. 184:362-381
Schlagwörter: Numerical solution of boundary value problems involving ordinary differential equations, numerical examples, Nonlinear boundary value problems for ordinary differential equations, Deferred correction, Applied Mathematics, 01 natural sciences, Boundary value methods, Computational Mathematics, Mesh generation, refinement, and adaptive methods for ordinary differential equations, Mesh selection, Two-point boundary value problems, a posteriori error estimate, 0101 mathematics, Error bounds for numerical methods for ordinary differential equations, Conditioning
Dateibeschreibung: application/xml
Zugangs-URL: https://zbmath.org/2207437
https://doi.org/10.1016/j.cam.2005.01.016
https://ricerca.uniba.it/handle/11586/21965
https://www.sciencedirect.com/science/article/pii/S0377042705000373
https://www.sciencedirect.com/science/article/abs/pii/S0377042705000373
https://core.ac.uk/display/54107237
http://ui.adsabs.harvard.edu/abs/2005JCoAM.184..362C/abstract
Nájsť tento článok vo Web of Science
Full Text Finder