Suchergebnisse - "Encoder-decoder structure"
-
1
Autoren:
Quelle: IEEE Access, Vol 13, Pp 111372-111391 (2025)
-
2
Autoren: et al.
Weitere Verfasser: et al.
Quelle: IEEE Transactions on Neural Networks and Learning Systems. 35:15279-15291
Schlagwörter: reinforcement learning, Vehicle routing problems, Encoder–decoder Structure, OS and Networks, Encoder–decoder structure, neural combinatorial optimization, Computer science and engineering [Engineering], Neural Combinatorial Optimization, encoder-decoder structure, vehicle routing problems (VRPs)
Dateibeschreibung: application/pdf
-
3
Autoren:
Quelle: Radioengineering, Vol 33, Iss 3, Pp 387-396 (2024)
Schlagwörter: hybrid loss function, encoder decoder structure, deep learning, edge attention mechanism, Deep learning, Electrical engineering. Electronics. Nuclear engineering, brain tumor segmentation, TK1-9971
Dateibeschreibung: text; application/pdf
-
4
Autoren: et al.
Quelle: IEEE Access, Vol 12, Pp 12919-12939 (2024)
Schlagwörter: global attention, adaptive feature fusion, Label map, multi-scale, upsampling, 0202 electrical engineering, electronic engineering, information engineering, 0401 agriculture, forestry, and fisheries, encoder-decoder structure, Electrical engineering. Electronics. Nuclear engineering, 04 agricultural and veterinary sciences, 02 engineering and technology, TK1-9971
-
5
Autoren:
Quelle: Diagnostics, Vol 15, Iss 15, p 1978 (2025)
Schlagwörter: renal structures, ultrasound images, encoder–decoder structure, attention mechanisms, multi-head self-attention mechanism, Medicine (General), R5-920
Dateibeschreibung: electronic resource
-
6
Autoren:
Quelle: Radioengineering, Vol 33, Iss 3, Pp 387-396 (2024)
Schlagwörter: deep learning, brain tumor segmentation, encoder decoder structure, edge attention mechanism, hybrid loss function, Electrical engineering. Electronics. Nuclear engineering, TK1-9971
Dateibeschreibung: electronic resource
-
7
Autoren:
Quelle: Water ; Volume 17 ; Issue 3 ; Pages: 339
Schlagwörter: regional rainfall-runoff modeling, convolutional neural networks, encoder-decoder structure, two-dimensional variation
Geographisches Schlagwort: agris
Dateibeschreibung: application/pdf
Relation: https://dx.doi.org/10.3390/w17030339
Verfügbarkeit: https://doi.org/10.3390/w17030339
-
8
Autoren: et al.
Quelle: Journal of Imaging, Vol 11, Iss 6, p 188 (2025)
Schlagwörter: RGB-T semantic segmentation, urban scene understanding, multi-modal fusion, encoder–decoder structure, attention mechanism, Photography, TR1-1050, Computer applications to medicine. Medical informatics, R858-859.7, Electronic computers. Computer science, QA75.5-76.95
Dateibeschreibung: electronic resource
-
9
Autoren:
Quelle: IEEE Access, Vol 11, Pp 143964-143979 (2023)
-
10
Autoren:
Quelle: IEEE Access, Vol 12, Pp 129601-129610 (2024)
Schlagwörter: TSP, encoder–decoder structure, deep learning, travel planning, Electrical engineering. Electronics. Nuclear engineering, TK1-9971
Dateibeschreibung: electronic resource
-
11
Autoren: et al.
Quelle: 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). :5657-5663
Dateibeschreibung: application/pdf
Zugangs-URL: https://mediatum.ub.tum.de/1621481
-
12
Autoren: et al.
Quelle: IEEE Open Journal of Intelligent Transportation Systems, Vol 3, Pp 126-136 (2022)
Schlagwörter: FOS: Computer and information sciences, Computer Science - Machine Learning, deep reinforcement learning, TA1001-1280, 05 social sciences, multiple intersections, encoder-decoder structure, Systems and Control (eess.SY), Electrical Engineering and Systems Science - Systems and Control, Machine Learning (cs.LG), Transportation engineering, Traffic control optimisation, 0502 economics and business, 11. Sustainability, FOS: Electrical engineering, electronic engineering, information engineering, Transportation and communications, HE1-9990
-
13
Autoren: et al.
Quelle: Applied Sciences, Vol 14, Iss 22, p 10550 (2024)
Schlagwörter: precipitation nowcasting, radar echo images, conditional generative adversarial networks, temporal attention unit, translator encoder–decoder structure, Technology, Engineering (General). Civil engineering (General), TA1-2040, Biology (General), QH301-705.5, Physics, QC1-999, Chemistry, QD1-999
Dateibeschreibung: electronic resource
-
14
Autoren: et al.
Quelle: Front Neurol
Frontiers in Neurology, Vol 14 (2023)Schlagwörter: deep encoder-decoder structure, Neurology, cerebral small vessel disease, correlation analysis, white matter hyperintensity, Neurology. Diseases of the nervous system, medical 3D segmentation, RC346-429
-
15
Autoren: Haitao Qin
Quelle: PeerJ Computer Science, Vol 9, p e1503 (2023)
Schlagwörter: Oral English teaching, Multi-modal perception, Encoder-decoder structure, CNN, Electronic computers. Computer science, QA75.5-76.95
Dateibeschreibung: electronic resource
-
16
Autoren: et al.
Quelle: Frontiers in Marine Science, Vol 10 (2023)
Schlagwörter: 0301 basic medicine, MCSTNet, Science, General. Including nature conservation, geographical distribution, QH1-199.5, 01 natural sciences, 03 medical and health sciences, the encoder-decoder structure, 13. Climate action, 14. Life underwater, the time transfer module, SST sequence and front prediction tasks, the memory-contextual module, 0105 earth and related environmental sciences
-
17
Autoren: et al.
Weitere Verfasser: et al.
Schlagwörter: Encoder-decoder structure, Geospatial autocorrelation, HG-LSTM, PM2.5
Relation: http://hdl.handle.net/10397/99356; 286; 119257; a2219; 47084
-
18
Autoren:
Quelle: Bioengineering, Vol 10, Iss 11, p 1325 (2023)
Schlagwörter: speech enhancement, STFT, LSTM, encoder–decoder structure, dual-path network, spectral extension block, Technology, Biology (General), QH301-705.5
Dateibeschreibung: electronic resource
-
19
Quelle: Jisuanji gongcheng, Vol 48, Iss 9, Pp 239-247,253 (2022)
Schlagwörter: anchor-free instance segmentation, deep learning(dl), encoder-decoder structure, attention mechanism, dilated convolution, Computer engineering. Computer hardware, TK7885-7895, Computer software, QA76.75-76.765
Dateibeschreibung: electronic resource
-
20
Autoren: et al.
Quelle: Remote Sensing, Vol 14, Iss 4516, p 4516 (2022)
Schlagwörter: remote sensing image, road extraction, attention module, encoder-decoder structure, Science
Relation: https://www.mdpi.com/2072-4292/14/18/4516; https://doaj.org/toc/2072-4292; https://doaj.org/article/83935e0762a14e0ea155f9ce73525dfb
Full Text Finder
Nájsť tento článok vo Web of Science