Suchergebnisse - "Dynamic multi-objective evolutionary algorithms"
-
1
Weitere Verfasser:
Schlagwörter: dynamic multi-objective evolutionary algorithms, learning in non-stationary environments, severity of changes, feature drift, memory-based algorithms, FEATURE-SELECTION, OPTIMIZATION
Relation: 2020 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC); IEEE Congress on Evolutionary Computation; https://hdl.handle.net/11424/226409; WOS:000703998201116
Verfügbarkeit: https://hdl.handle.net/11424/226409
-
2
Weitere Verfasser: Sahmoud S., Topcuoglu H.R.
Schlagwörter: dynamic multi-objective evolutionary algorithms, feature drift, learning in non-stationary environments, memory-based algorithms, severity of changes
Relation: 2020 IEEE Congress on Evolutionary Computation, CEC 2020 - Conference Proceedings; https://hdl.handle.net/11424/248120
-
3
Autoren:
Weitere Verfasser:
Schlagwörter: Dynamic Multi-Objective Evolutionary Algorithms, Learning in Non-Stationary Environments, Severity of Changes, Feature Drift, Memory-Based Algorithms
Dateibeschreibung: application/pdf
Relation: IEEE Congress on Evolutionary Computation (CEC); Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı; https://hdl.handle.net/11352/3545
Verfügbarkeit: https://hdl.handle.net/11352/3545
-
4
Autoren: et al.
Schlagwörter: Dynamic multi-objective evolutionary algorithms, Region of interest, Reference points, Changing preference point
Dateibeschreibung: application/pdf
-
5
Autoren:
Weitere Verfasser:
Schlagwörter: Workflow scheduling, Resource failures, Changing number of objectives, Dynamic multi-objective evolutionary algorithms, Neural networks, OPTIMIZATION, COST
Relation: FUTURE GENERATION COMPUTER SYSTEMS-THE INTERNATIONAL JOURNAL OF ESCIENCE; https://hdl.handle.net/11424/235945; WOS:000501936300025
-
6
Autoren:
Weitere Verfasser:
Schlagwörter: Feature drift, Classification of data streams, Dynamic multi-objective evolutionary algorithms, Filter-based feature selection, FEATURE-SELECTION, OPTIMIZATION
Relation: FUTURE GENERATION COMPUTER SYSTEMS-THE INTERNATIONAL JOURNAL OF ESCIENCE; https://hdl.handle.net/11424/235882; WOS:000501936300004
-
7
Weitere Verfasser: et al.
Schlagwörter: Workflow scheduling, resource failures, dynamic multi-objective evolutionary algorithms, OPTIMIZATION
Relation: 2018 IEEE/ACM INTERNATIONAL CONFERENCE ON UTILITY AND CLOUD COMPUTING COMPANION (UCC COMPANION); International Conference on Utility and Cloud Computing; https://hdl.handle.net/11424/226081; WOS:000458720100025
-
8
Autoren: et al.
Weitere Verfasser: et al.
Schlagwörter: Dynamic Multi-objective Optimization Problems, Non-dominated Sorting Genetic Algorithm (NSGA-II), Type detection, Dynamic Multi-objective Evolutionary Algorithms, NSGA-II, OPTIMIZATION
Relation: APPLICATIONS OF EVOLUTIONARY COMPUTATION, EVOAPPLICATIONS 2018; Lecture Notes in Computer Science; https://hdl.handle.net/11424/226045; WOS:000433244800058
-
9
Autoren:
Weitere Verfasser:
Schlagwörter: Dynamic multi-objective optimization problems, Dynamic multi-objective evolutionary algorithms, Change detection, Characterization of change, OPTIMIZATION
Relation: APPLIED SOFT COMPUTING; https://hdl.handle.net/11424/235264; WOS:000500691600063
Nájsť tento článok vo Web of Science
Full Text Finder