Suchergebnisse - "Deep reinforcement learning algorithm"
-
1
Autoren: et al.
Quelle: RIUMA. Repositorio Institucional de la Universidad de Málaga
Universidad de MálagaSchlagwörter: Optimization, Handover, Learning agent, Optimal network, Deep reinforcement learning algorithm, Network capacity, Federated learning, Heterogeneous network, Deep neural network, Small step, Deep reinforcement learning agent, Key performance indicators, Aprendizaje automático (Inteligencia artificial), Reinforcement learning algorithm, Training, Heuristic algorithms, Training phase, Training cell, Individual agency, Neighboring cells, Long term evolution, Deep reinforcement learning, 5 G NSA, Telecomunicaciones, Multi party computation, Hysteresis, Cell clusters, Rest of the cells, Reinforcement learning agent, Event B 1, Cellular networks, Deep learning, RAN Optimization, Rate of network, Throughput, 5 G Mobile communication, User equipment, Mobile edge computing
Zugangs-URL: https://hdl.handle.net/10630/38565
-
2
Autoren:
Quelle: Discover Artificial Intelligence, Vol 5, Iss 1, Pp 1-12 (2025)
Schlagwörter: Deep reinforcement learning algorithm, Portfolio optimisation, Effectiveness evaluation, A2C, PPO, Computational linguistics. Natural language processing, P98-98.5, Electronic computers. Computer science, QA75.5-76.95
Dateibeschreibung: electronic resource
Relation: https://doaj.org/toc/2731-0809
-
3
Autoren:
Quelle: Scientific Reports, Vol 15, Iss 1, Pp 1-23 (2025)
Schlagwörter: Multi-agent deep reinforcement learning algorithm, QMIX, Gaussian mixture model, Open-pit mining, Truck scheduling, Medicine, Science
Dateibeschreibung: electronic resource
Relation: https://doaj.org/toc/2045-2322
-
4
Autoren: et al.
Quelle: Drones, Vol 9, Iss 11, p 805 (2025)
Schlagwörter: base station layout, deep reinforcement learning algorithm, differential evolution algorithm, UAV, Motor vehicles. Aeronautics. Astronautics, TL1-4050
Dateibeschreibung: electronic resource
-
5
Autoren: et al.
Weitere Verfasser: et al.
Quelle: 2022 IEEE 47th Conference on Local Computer Networks (LCN). :351-354
Schlagwörter: Deep Reinforcement Learning, [INFO.INFO-NI] Computer Science [cs]/Networking and Internet Architecture [cs.NI], B5G/6G, Algorithm Selection, 0202 electrical engineering, electronic engineering, information engineering, Virtual Network Embedding Deep Reinforcement Learning Algorithm Selection Stationary bandit B5G/6G, 02 engineering and technology, Stationary bandit, Virtual Network Embedding
Dateibeschreibung: application/pdf
-
6
Autoren: et al.
Quelle: Frontiers in Energy Research, Vol 12 (2024)
Schlagwörter: GCCP, 13. Climate action, integrated electrical and gas system, 0211 other engineering and technologies, 0202 electrical engineering, electronic engineering, information engineering, carbon emission, 02 engineering and technology, multi-agent deep reinforcement learning algorithm, low-carbon, 7. Clean energy, General Works, 12. Responsible consumption
-
7
Autoren:
Quelle: ICT Express, Vol 8, Iss 3, Pp 479-483 (2022)
-
8
Autoren: et al.
Quelle: Sepehrzad, R, Godazi Langeroudi, A S, Khodadadi, A, Adinehpour, S, Al-Durra, A & Anvari-Moghaddam, A 2024, 'An Applied Deep Reinforcement Learning Approach to Control Active Networked Microgrids in Smart Cities with Multi-Level Participation of Battery Energy Storage System and Electric Vehicles', Sustainable Cities and Society, vol. 107, 105352, pp. 1-21. https://doi.org/10.1016/j.scs.2024.105352
Schlagwörter: name=SDG 7 - Affordable and Clean Energy, Electric vehicles, Deep reinforcement learning algorithm, 11. Sustainability, Energy management, 0211 other engineering and technologies, 0202 electrical engineering, electronic engineering, information engineering, 02 engineering and technology, name=SDG 17 - Partnerships for the Goals, name=SDG 9 - Industry, Innovation, and Infrastructure, 7. Clean energy, Networked microgrid
Dateibeschreibung: application/pdf
-
9
Autoren: et al.
Quelle: Engineering Proceedings, Vol 75, Iss 1, p 34 (2024)
Schlagwörter: printed circuit board, FlexSim simulation, PCB assembly line, deep reinforcement learning algorithm, Engineering machinery, tools, and implements, TA213-215
Dateibeschreibung: electronic resource
-
10
Autoren: et al.
Quelle: Sepehrzad, R, Godazi Langeroudi, A S, Khodadadi, A, Adinehpour, S, Al-Durra, A & Anvari-Moghaddam, A 2024, 'An Applied Deep Reinforcement Learning Approach to Control Active Networked Microgrids in Smart Cities with Multi-Level Participation of Battery Energy Storage System and Electric Vehicles', Sustainable Cities and Society, vol. 107, 105352, pp. 1-21. https://doi.org/10.1016/j.scs.2024.105352
Schlagwörter: Networked microgrid, Electric vehicles, Energy management, Deep reinforcement learning algorithm, /dk/atira/pure/sustainabledevelopmentgoals/affordable_and_clean_energy, name=SDG 7 - Affordable and Clean Energy, /dk/atira/pure/sustainabledevelopmentgoals/industry_innovation_and_infrastructure, name=SDG 9 - Industry, Innovation, and Infrastructure, /dk/atira/pure/sustainabledevelopmentgoals/partnerships, name=SDG 17 - Partnerships for the Goals
Dateibeschreibung: application/pdf
Relation: info:eu-repo/semantics/altIdentifier/pissn/2210-6707
-
11
Autoren:
Quelle: Sustainability ; Volume 16 ; Issue 23 ; Pages: 10534
Schlagwörter: alternative fuels in shipping, CII ratings, deep reinforcement learning algorithm, EEXI compliance, optimization, maritime energy efficiency
Geographisches Schlagwort: agris
Dateibeschreibung: application/pdf
Relation: Sustainable Transportation; https://dx.doi.org/10.3390/su162310534
Verfügbarkeit: https://doi.org/10.3390/su162310534
-
12
Autoren:
Quelle: CAAI Transactions on Intelligence Technology (2020)
Schlagwörter: multirobot path planning, volume-based technology, multi-robot systems, robot path-planning problem, path-planning problems, unmanned warehouse dispatching system, 02 engineering and technology, warehouse picking operation, scheduling system algorithm, improved dqn algorithm converges, QA76.75-76.765, deep q-network algorithm, mobile robots, Computational linguistics. Natural language processing, 0202 electrical engineering, electronic engineering, information engineering, learning (artificial intelligence), q-learning algorithm, handling robot, Computer software, classic deep reinforcement learning algorithm, P98-98.5, path planning, algorithmic process
Zugangs-URL: https://ietresearch.onlinelibrary.wiley.com/doi/pdfdirect/10.1049/trit.2020.0024
https://doaj.org/article/f65a13d5958a4533aa5e0fd31f5e1ada
https://dblp.uni-trier.de/db/journals/caaitrit/caaitrit5.html#YangJL20
https://digital-library.theiet.org/content/journals/10.1049/trit.2020.0024
https://ietresearch.onlinelibrary.wiley.com/doi/10.1049/trit.2020.0024 -
13
Autoren:
Quelle: Heliyon, Vol 8, Iss 6, Pp e09669- (2022)
Schlagwörter: Maximum power point tracking (MPPT), Deep reinforcement learning algorithm (DRLA), Deep learning algorithm (DLA), Reinforcement learning algorithm (RLA), Deep deterministic policy gradient (DDPG), Partial shading conditions (PSC), Science (General), Q1-390, Social sciences (General), H1-99
Dateibeschreibung: electronic resource
-
14
Autoren: et al.
Quelle: Proceedings of the Japan Joint Automatic Control Conference. 2022, :1434
-
15
Autoren: et al.
Quelle: Journal of Nano- and Electronic Physics. 15:03004-1
Schlagwörter: energy management, 13. Climate action, енергоменеджмент, improved swarm optimized deep reinforcement learning algorithm (IS-DRLA), електричні транспортні засоби, 7. Clean energy, удосконалений алгоритм глибокого підсилення навчання (IS-DRLA), electric vehicles
Dateibeschreibung: application/pdf
Zugangs-URL: https://essuir.sumdu.edu.ua/handle/123456789/92374
-
16
Autoren:
Schlagwörter: Multiplayer board game, Convolutional neural network, Deep reinforcement learning algorithm, Expert Iteration, Alpha Zero, Recherche opérationnelle
Time: 003
Relation: Applications of Evolutionary Computation : EvoApplications 2022; Springer International Publishing; Berlin Heidelberg; 2022; SPAIN; non; https://basepub.dauphine.psl.eu/handle/123456789/24585
-
17
Autoren: et al.
Schlagwörter: енергоменеджмент, електричні транспортні засоби, удосконалений алгоритм глибокого підсилення навчання (IS-DRLA), energy management, electric vehicles, improved swarm optimized deep reinforcement learning algorithm (IS-DRLA)
Dateibeschreibung: application/pdf
Verfügbarkeit: https://essuir.sumdu.edu.ua/handle/123456789/92374
-
18
Autoren:
Quelle: Neural computing & applications [Neural Comput Appl] 2023; Vol. 35 (12), pp. 8823-8832. Date of Electronic Publication: 2022 Aug 24.
Publikationsart: Journal Article
Info zur Zeitschrift: Publisher: Springer International Country of Publication: England NLM ID: 9313239 Publication Model: Print-Electronic Cited Medium: Print ISSN: 0941-0643 (Print) Linking ISSN: 09410643 NLM ISO Abbreviation: Neural Comput Appl Subsets: PubMed not MEDLINE
Full Text Finder
Nájsť tento článok vo Web of Science