Search Results - "Data-driven algorithm"
-
1
Authors: et al.
Source: Journal of the ACM. 71:1-58
Subject Terms: 0301 basic medicine, data-driven algorithm design, 0303 health sciences, 03 medical and health sciences, machine learning, computational biology, General topics in the theory of algorithms, Learning and adaptive systems in artificial intelligence, automated algorithm design, automated algorithm configuration
File Description: application/xml
-
2
Authors:
Source: Journal of Causal Inference. 12(1)
Subject Terms: Mathematical Sciences, Economics, Statistics, data-driven algorithm, regression discontinuity, bootstrap
File Description: application/pdf
-
3
Authors: et al.
Source: IEEE Access, Vol 13, Pp 196155-196166 (2025)
Subject Terms: Power system stability assessment, voltage instability mitigation, OLTC blocking efficacy, real-time data driven algorithm, dual-stage deep learning model, Electrical engineering. Electronics. Nuclear engineering, TK1-9971
File Description: electronic resource
-
4
Authors: et al.
Contributors: et al.
Source: IEEE Transactions on Vehicular Technology, pp. 1-15.
Subject Terms: Optimization, rechtvaardigheid en sterke instellingen, SDG 16 - Peace, SDG 16 – Vrede, Base stations, 02 engineering and technology, Disasters, 5G mobile communication systems, Search problems, 0202 electrical engineering, electronic engineering, information engineering, data-driven algorithm, Heuristic algorithms, Drones, Dynamic traffic hotspot, Measurement, Resource management, drone base station positioning, drone base stations, Justice and Strong Institutions, Benchmarking, Dynamic traffic, dynamic traffic hotspot, Uncertainty analysis, Heuristics algorithm, Hotspots, 5G
Access URL: https://research.tue.nl/en/publications/1d794fbd-1aea-498e-b798-93867af9868f
https://doi.org/10.1109/TVT.2023.3329960
https://research.utwente.nl/en/publications/b309d135-c2bb-450e-b0eb-076832d57d5e
https://doi.org/10.1109/TVT.2023.3329960
https://resolver.tno.nl/uuid:00251193-7a8f-4315-b8e5-01544c9a2a3f -
5
Authors: et al.
Source: IEEE Transactions on Instrumentation and Measurement. 73:1-14
Subject Terms: 0209 industrial biotechnology, evolutionary computing (EC), Absolute positioning accuracy, and Infrastructure, 0202 electrical engineering, electronic engineering, information engineering, data-driven algorithm, 02 engineering and technology, Innovation, kinematic parameters, SDG 9 - Industry, industrial robot
-
6
Authors: et al.
Source: SAE International Journal of Engines. 17:237-253
Subject Terms: Industrial emissions, Knowledge management, Particles (particulate matter), Particulate emissions, AI-pipeline, Automotives, Current production, Data-driven algorithm, Particle emissions, Particulates, Performance engines, Research and development, Uncertainty evaluation, Virtual sensor, Quality control, PN10, 9. Industry and infrastructure, 13. Climate action, 7. Clean energy
File Description: application/pdf
-
7
Authors: et al.
Source: StreaMod - Effektiv modellering och beslutsstöd för faktabaserad produktionsutveckling International Journal of Design and Nature and Ecodynamics. 11(3):428-437
Subject Terms: Bottleneck detection, Average active duration, Maintenance, Data-driven algorithm, Production system
File Description: electronic
-
8
Authors: et al.
Source: IET Renewable Power Generation, Vol 18, Iss 3, Pp 442-455 (2024)
Subject Terms: deep reinforcement learning, 13. Climate action, hydrogen device, data‐driven algorithm, integrated renewable energy system, 0211 other engineering and technologies, 0202 electrical engineering, electronic engineering, information engineering, real‐time scheduling, TJ807-830, 02 engineering and technology, 7. Clean energy, Renewable energy sources
-
9
Authors: et al.
Contributors: et al.
Subject Terms: FOS: Computer and information sciences, data-driven algorithm design, Computer Science - Data Structures and Algorithms, solution portfolios, Data Structures and Algorithms (cs.DS), ddc:004, matroids
File Description: application/pdf
-
10
Authors: Elnaz Nasirzadeh
Source: مطالعات منابع انسانی, Vol 13, Iss 3, Pp 166-193 (2023)
Subject Terms: knowledge graph, data-driven algorithm, matching people and jobs, skills ranking, job opportunity, Employee participation in management. Employee ownership. Industrial democracy. Works councils, HD5650-5660
File Description: electronic resource
-
11
Authors: et al.
Contributors: et al.
Source: Multiple Sclerosis Journal. 28:2243-2252
Subject Terms: Multiple Sclerosis, Multiple Sclerosis, Chronic Progressive, Multiple sclerosis, 03 medical and health sciences, Multiple Sclerosis, Relapsing-Remitting, 0302 clinical medicine, big data, Area Under Curve, data-driven algorithm, disease registry, prognosis, secondary progressive, Humans, Multiple sclerosi, prognosi
File Description: application/pdf
-
12
Authors:
Source: Proceedings of the Institution of Mechanical Engineers. Part I: Journal of Systems and Control Engineering. 227(6):552-555
Subject Terms: Wind turbine, estimation of the inertia moment, data-driven algorithm, icing and shedding events
File Description: electronic
-
13
Authors: et al.
Source: Journal of Cleaner Production, 467
Subject Terms: River pollution identification, Multi-dimensional anomaly detection, Dynamic warning threshold, Data-driven algorithm, Receiver Operating characteristic curve
File Description: application/application/pdf
Relation: info:eu-repo/semantics/altIdentifier/wos/001325713200001; http://hdl.handle.net/20.500.11850/679840
-
14
Authors:
Source: Systems, Vol 12, Iss 5, p 153 (2024)
Subject Terms: data-driven algorithm, transshipment, inventory management, regret analysis, Systems engineering, TA168, Technology (General), T1-995
Relation: https://www.mdpi.com/2079-8954/12/5/153; https://doaj.org/toc/2079-8954; https://doaj.org/article/fbe6a61d237745e0bbf81fd142aee3ce
-
15
Authors:
Source: Sensors, Vol 24, Iss 2, p 369 (2024)
Subject Terms: data-driven algorithm, heat transfer modeling, quantitative thermosensation, Chemical technology, TP1-1185
Relation: https://www.mdpi.com/1424-8220/24/2/369; https://doaj.org/toc/1424-8220; https://doaj.org/article/26b4cb2f3c064655afea2ab5358589a5
-
16
Authors: et al.
Contributors: et al.
Source: Manera, A L, Dadar, M, van Swieten, J C, Borroni, B, Sanchez-Valle, R, Moreno, F, Laforce, R, Graff, C, Synofzik, M, Galimberti, D, Rowe, J B, Masellis, M, Tartaglia, M C, Finger, E, Vandenberghe, R, de Mendonca, A, Tagliavini, F, Santana, I, Butler, C R, Gerhard, A, Danek, A, Levin, J, Otto, M, Frisoni, G, Ghidoni, R, Sorbi, S, Rohrer, J D, Ducharme, S, Louis Collins, D, Rosen, H, Dickerson, B C, Domoto-Reilly, K, Knopman, D, Boeve, B F, Boxer, A L, Kornak, J, Miller, B L, Seeley, W W, Gorno-Tempini, M-L, McGinnis, S, Mandelli, M L, Afonso, S N, Almeida, M R, Anderl-Straub, S, Andersson, C, Antonell, A, Archetti, S, Arighi, A, Balasa, M, Barandiaran, M, Bargalló, N, Bartha, R, Bender, B, Benussi, A, Benussi, L, Bessi, V, Binetti, G, Black, S, Bocchetta, M, Borrego-Ecija, S, Bras, J, Bruffaerts, R, Caroppo, P, Cash, D, Castelo-Branco, M, Convery, R, Cope, T, Cosseddu, M, de Arriba, M, di Fede, G, Díaz, Z, Duro, D, Fenoglio, C, Ferrari, C, Ferreira, C, Ferreira, C B, Flanagan, T, Fox, N, Freedman, M, Fumagalli, G, Gabilondo, A, Gasparotti, R, Gauthier, S, Gazzina, S, Giaccone, G, Gorostidi, A, Greaves, C, Guerreiro, R, Heller, C, Hoegen, T, Indakoetxea, B, Jelic, V, Jiskoot, L, Karnath, H-O, Keren, R, Leitão, M J, Lladó, A, Lombardi, G, Loosli, S, Maruta, C, Mead, S, Meeter, L, Miltenberger, G, van Minkelen, R, Mitchell, S, Moore, K M, Nacmias, B, Neason, M, Nicholas, J, Öijerstedt, L, Olives, J, Ourselin, S, Padovani, A, Panman, J, Papma, J, Peakman, G, Piaceri, I, Pievani, M, Pijnenburg, Y, Polito, C, Premi, E, Prioni, S, Prix, C, Rademakers, R, Redaelli, V, Rittman, T, Rogaeva, E, Rosa-Neto, P, Rossi, G, Rossor, M, Santiago, B, Scarpini, E, Schönecker, S, Semler, E, Shafei, R, Shoesmith, C, Tábuas-Pereira, M, Tainta, M, Taipa, R, Tang-Wai, D, Thomas, D L, Thonberg, H, Timberlake, C, Tiraboschi, P, Todd, E, Vandamme, P, Vandenbulcke, M, Veldsman, M, Verdelho, A, FTLDNI Investigators, GENFI Consortium, Villanua, J, Warren, J, Wilke, C, Woollacott, I, Wlasich, E, Zetterberg, H & Zulaica, M 2021, 'MRI data-driven algorithm for the diagnosis of behavioural variant frontotemporal dementia', Journal of Neurology, Neurosurgery and Psychiatry, vol. 92, no. 6, pp. 608-616. https://doi.org/10.1136/jnnp-2020-324106
Journal of neurology, neurosurgery, and psychiatry 92(6), 608-616 (2021). doi:10.1136/jnnp-2020-324106Subject Terms: 618.97, 03 medical and health sciences, Frontotemporal dementia, behavioural variant, Cognitive neurology, 0302 clinical medicine, SDG 3 - Good Health and Well-being, MRI data-driven, algorithm, behavioural variant frontotemporal dementia, ddc:610, GENFI Consortium, FTLDNI investigators, 3. Good health
File Description: application/pdf; application/vnd.openxmlformats-officedocument.wordprocessingml.document; image/tiff; text/xml
Access URL: https://discovery.ucl.ac.uk/10127855/3/Rohrer_MRI%20data-
driven %20algorithm%20for%20the%20diagnosis%20of%20behavioural%20variant%20frontotemporal%20dementia_AAM.pdf
https://pubmed.ncbi.nlm.nih.gov/33722819
https://hdl.handle.net/11368/3097048
https://jnnp.bmj.com/content/92/6/608
https://pure.eur.nl/en/publications/93f5105e-0ca9-4a81-a5ba-a961b0c4d20c
https://doi.org/10.1136/jnnp-2020-324106
https://www.scilit.net/article/6f7ea9d019179cc867b55a9b364ff351?action=show-references
https://europepmc.org/article/MED/33722819
https://research.vumc.nl/en/publications/mri-data -driven -algorithm -for-the-diagnosis-of-behavioural-varian
https://jnnp.bmj.com/content/jnnp/early/2021/03/14/jnnp-2020-324106.full.pdf
https://oparu.uni-ulm.de/xmlui/handle/123456789/38372
https://pubmed.ncbi.nlm.nih.gov/33722819/
https://research.vumc.nl/en/publications/ca61a396-c782-478c-98b3-58c04ab9c669
https://pub.dzne.de/record/154809
https://archive-ouverte.unige.ch/unige:173329
https://doi.org/10.1136/jnnp-2020-324106
https://hdl.handle.net/10451/50229
https://hdl.handle.net/11379/551135
https://doi.org/10.1136/jnnp-2020-324106
https://hdl.handle.net/11368/3097048
https://doi.org/10.1136/jnnp-2020-324106
https://jnnp.bmj.com/content/92/6/608
https://www.repository.cam.ac.uk/handle/1810/316875
https://doi.org/10.1136/jnnp-2020-324106
https://doi.org/10.17863/cam.63987
https://hdl.handle.net/2158/1258897
https://doi.org/10.1136/jnnp-2020-324106
https://pubmed.ncbi.nlm.nih.gov/33722819/
https://discovery-pp.ucl.ac.uk/id/eprint/10127855/ -
17
Authors: et al.
Contributors: et al.
Source: Multiple Sclerosis Journal. 27:430-438
Subject Terms: Big data, Data-driven algorithm, Disease registry, Multiple sclerosis, Prognosis, Secondary progressive, Multiple Sclerosis, Multiple Sclerosis, Chronic Progressive, 3. Good health, 03 medical and health sciences, Multiple Sclerosis, Relapsing-Remitting, 0302 clinical medicine, big data, Recurrence, Risk Factors, data-driven algorithm, disease registry, prognosis, secondary progressive, Disease Progression, Humans, Multiple sclerosi, 10. No inequality, prognosi
File Description: application/pdf
Access URL: https://pubmed.ncbi.nlm.nih.gov/33210986
https://pubmed.ncbi.nlm.nih.gov/33210986/
https://cris.unibo.it/handle/11585/802574
https://iris.unimore.it/handle/11380/1251077
https://moh-it.pure.elsevier.com/en/publications/transition-to-secondary-progression-in-relapsing-onset-multiple-s-4
https://www.ncbi.nlm.nih.gov/pubmed/33210986
https://journals.sagepub.com/doi/full/10.1177/1352458520974366 -
18
Authors: et al.
Subject Terms: data-driven algorithm design, matroids, solution portfolios
Relation: 16th Innovations in Theoretical Computer Science Conference (ITCS 2025); Leibniz International Proceedings in Informatics (LIPIcs); 325; The 16th Annual Innovations in Theoretical Computer Science (ITCS) conference; #PLACEHOLDER_PARENT_METADATA_VALUE#; MB22.00054; https://infoscience.epfl.ch/handle/20.500.14299/247349
-
19
Authors: et al.
Source: IEEE Access, Vol 8, Pp 24675-24686 (2020)
Subject Terms: abnormal detection, 0211 other engineering and technologies, 0202 electrical engineering, electronic engineering, information engineering, data-driven algorithm, risk assessment, control chart, Electrical engineering. Electronics. Nuclear engineering, 02 engineering and technology, Power loss, TK1-9971
Access URL: https://ieeexplore.ieee.org/ielx7/6287639/8948470/08976185.pdf
https://doaj.org/article/0b982505c351483dbe0dacb2d835fa4d
https://ieeexplore.ieee.org/document/8976185/
https://doi.org/10.1109/ACCESS.2020.2970548
https://dblp.uni-trier.de/db/journals/access/access8.html#LongCGXWL20
https://doaj.org/article/0b982505c351483dbe0dacb2d835fa4d -
20
Authors: et al.
Source: Journal of Cleaner Production, 467
Subject Terms: 13. Climate action, Multi-dimensional anomaly detection, 4. Education, River pollution identification, Dynamic warning threshold, Data-driven algorithm, Receiver Operating characteristic curve, 14. Life underwater, 6. Clean water
File Description: application/application/pdf
Access URL: http://hdl.handle.net/20.500.11850/679840
Full Text Finder
Nájsť tento článok vo Web of Science