Výsledky vyhľadávania - "Data augmentation algorithm"
-
1
Autori:
Zdroj: Underground Space, Vol 21, Iss, Pp 215-231 (2025)
Predmety: Data augmentation, Machine learning, Geomechanical parameters, TA703-712, Engineering geology. Rock mechanics. Soil mechanics. Underground construction, Back analysis
Prístupová URL adresa: https://doaj.org/article/b192462ee5ca4b768d3629014114f74e
-
2
Autori:
Zdroj: IEEE Transactions on Industrial Informatics. 21:4200-4209
-
3
Autori:
Zdroj: Procedia CIRP. 134:437-442
-
4
Autori:
Prispievatelia:
Zdroj: Algorithms. 17
Prístupová URL adresa: https://res.slu.se/id/publ/130796
https://pub.epsilon.slu.se/id/eprint/34431/contents -
5
Autori: a ďalší
Zdroj: 2024 IEEE 7th International Conference on Information Systems and Computer Aided Education (ICISCAE). :1023-1026
-
6
Autori: a ďalší
Zdroj: Journal of Computer Science and Technology. 39:951-966
-
7
Autori:
Zdroj: Lecture Notes in Networks and Systems ISBN: 9783031789458
-
8
Autori: a ďalší
Zdroj: EMODE '23: Proceedings of the 1st ACM SIGSPATIAL International Workshop on Methods for Enriched Mobility Data: Emerging issues and Ethical perspectives, pp. 25–29, Hamburg, Germany, 13/11/2023
info:cnr-pdr/source/autori:Haranwala Y.J.; Spadon G.; Renso C.; Soares A./congresso_nome:EMODE '23: Proceedings of the 1st ACM SIGSPATIAL International Workshop on Methods for Enriched Mobility Data: Emerging issues and Ethical perspectives/congresso_luogo:Hamburg, Germany/congresso_data:13%2F11%2F2023/anno:2023/pagina_da:25/pagina_a:29/intervallo_pagine:25–29
EMODE '23: Proceedings of the 1st ACM SIGSPATIAL International Workshop on Methods for Enriched Mobility Data
Proceedings of the 1st ACM SIGSPATIAL International Workshop on Methods for Enriched Mobility Data: Emerging issues and Ethical perspectives 2023Predmety: Datavetenskap (datalogi), Data augmentation, Trajecrtories, Computer Sciences, 0202 electrical engineering, electronic engineering, information engineering, 02 engineering and technology
Popis súboru: application/pdf
-
9
Autori: a ďalší
Zdroj: Multidisciplinary Biomechanics Journal.
-
10
Autori:
Zdroj: JMIR Bioinformatics and Biotechnology, Vol 6, Pp e68848-e68848 (2025)
Predmety: Biotechnology, TP248.13-248.65, Biology (General), QH301-705.5
Popis súboru: electronic resource
Prístupová URL adresa: https://doaj.org/article/9f6d8c46d8b54d3690ee19a72c52a465
-
11
Autori: a ďalší
Zdroj: 2023 2nd International Conference on Cloud Computing, Big Data Application and Software Engineering (CBASE). :98-103
-
12
Autori: a ďalší
Zdroj: 2023 IEEE International Conference on Systems, Man, and Cybernetics (SMC). :584-590
Predmety: FOS: Computer and information sciences, Computer Science - Computation and Language, Artificial Intelligence (cs.AI), Computer Science - Artificial Intelligence, 0202 electrical engineering, electronic engineering, information engineering, 02 engineering and technology, Computation and Language (cs.CL)
Prístupová URL adresa: http://arxiv.org/abs/2212.05961
-
13
Autori:
Zdroj: Fourth International Conference on Electronics Technology and Artificial Intelligence (ETAI 2025). :159
-
14
Autori: a ďalší
Zdroj: Food Research International. 212:116498
Predmety: Spectroscopy, Near-Infrared, Seeds, Water, Hyperspectral Imaging, Neural Networks, Computer, Triticum, Algorithms
Prístupová URL adresa: https://pubmed.ncbi.nlm.nih.gov/40382076
-
15
Autori: a ďalší
Zdroj: 2023 IEEE/IAS Industrial and Commercial Power System Asia (I&CPS Asia). :1218-1223
-
16
Autori:
Zdroj: Proceedings of the AAAI Conference on Artificial Intelligence. 37:4954-4962
Predmety: FOS: Computer and information sciences, Computer Science - Machine Learning, 0202 electrical engineering, electronic engineering, information engineering, 02 engineering and technology, Machine Learning (cs.LG)
Prístupová URL adresa: http://arxiv.org/abs/2302.12814
-
17
Autori: a ďalší
Zdroj: IEEE Sensors Journal. 23:8714-8726
-
18
Autori: a ďalší
Zdroj: 2024 Conference of Science and Technology for Integrated Circuits (CSTIC). :1-3
-
19
Autori:
Zdroj: IEEE Access, Vol 11, Pp 18252-18260 (2023)
Predmety: machine learning, 0202 electrical engineering, electronic engineering, information engineering, open-set recognition, Electrical engineering. Electronics. Nuclear engineering, 02 engineering and technology, Electronic nose, feature augmentation, TK1-9971
Prístupová URL adresa: https://doaj.org/article/e84b9d1ca0c7452dadbc9ab6baf29170
-
20
Autori: a ďalší
Zdroj: Communications in Computer and Information Science ISBN: 9783031622168
Full Text Finder
Nájsť tento článok vo Web of Science