Suchergebnisse - "Computational aspects of field theory and polynomials"
-
1
Autoren: et al.
Weitere Verfasser: et al.
Quelle: UPCommons. Portal del coneixement obert de la UPC
Universitat Politècnica de Catalunya (UPC)Schlagwörter: [INFO.INFO-SC]Computer Science [cs]/Symbolic Computation [cs.SC], Àrees temàtiques de la UPC::Matemàtiques i estadística, Classificació AMS::14 Algebraic geometry::14Q Computational aspects in algebraic geometry, [INFO.INFO-SC] Computer Science [cs]/Symbolic Computation [cs.SC], Newton polygon, Classificació AMS::12 Field theory and polynomials::12Y05 Computational aspects of field theory and polynomials, 0102 computer and information sciences, Mathematics - Commutative Algebra, Commutative Algebra (math.AC), Classificació AMS::13 Commutative rings and algebras::13P Computational aspects of commutative algebra, 01 natural sciences, OM-algorithm, Valuation, Henselian field, Key polynomial, FOS: Mathematics, Classificació AMS::13 Commutative rings and algebras::13A General commutative ring theory, 0101 mathematics
Dateibeschreibung: application/pdf
-
2
Autoren: Maria Bras-Amorós
Quelle: The American Mathematical Monthly. 125:320-338
Schlagwörter: FOS: Computer and information sciences, 94B05 (Linear codes, general), 94B35 (Decoding), 12Y05 (Computational aspects of field theory and polynomials), Computer Science - Information Theory, Information Theory (cs.IT), 0202 electrical engineering, electronic engineering, information engineering, 0102 computer and information sciences, 02 engineering and technology, 01 natural sciences
Zugangs-URL: http://arxiv.org/pdf/1706.03504
http://arxiv.org/abs/1706.03504
http://dblp.uni-trier.de/db/journals/corr/corr1706.html#Bras-Amoros17
https://www.tandfonline.com/doi/abs/10.1080/00029890.2018.1420333
https://arxiv.org/abs/1706.03504
https://maa.tandfonline.com/doi/full/10.1080/00029890.2018.1420333
https://dblp.uni-trier.de/db/journals/corr/corr1706.html#Bras-Amoros17
http://ui.adsabs.harvard.edu/abs/2017arXiv170603504B/abstract -
3
Autoren: et al.
Quelle: Journal of Symbolic Computation. 85:148-169
Schlagwörter: Systems biology, networks, Computational aspects of field theory and polynomials, generalized polynomial, Polynomials in real and complex fields: location of zeros (algebraic theorems), real root isolation, systems biology, 0102 computer and information sciences, interval arithmetic, 0101 mathematics, Symbolic computation and algebraic computation, transcendental number, 01 natural sciences
Dateibeschreibung: application/xml
Zugangs-URL: https://zbmath.org/6789134
https://doi.org/10.1016/j.jsc.2017.07.007
https://core.ac.uk/display/132711260
http://www.sciencedirect.com/science/article/pii/S0747717117300718
https://dblp.uni-trier.de/db/journals/jsc/jsc85.html#HuangLXL18
https://doi.org/10.1016/j.jsc.2017.07.007
https://publications.rwth-aachen.de/record/709585
https://www.sciencedirect.com/science/article/pii/S0747717117300718 -
4
Autoren: et al.
Weitere Verfasser: et al.
Quelle: UPCommons. Portal del coneixement obert de la UPC
Universitat Politècnica de Catalunya (UPC)
Recercat. Dipósit de la Recerca de Catalunya
instnameSchlagwörter: Matemàtiques i estadística::Àlgebra::Teoria de cossos i polinomis [Àrees temàtiques de la UPC], Classificació AMS::11 Number theory::11C Polynomials and matrices, De Bruijn and Kautz digraphs, Àrees temàtiques de la UPC::Matemàtiques i estadística::Àlgebra::Teoria de cossos i polinomis, 05 social sciences, 0211 other engineering and technologies, Classificació AMS::12 Field theory and polynomials::12Y05 Computational aspects of field theory and polynomials, 02 engineering and technology, Deflection routing, Matrius (Matemàtica), Polynomials, 12 Field theory and polynomials::12Y05 Computational aspects of field theory and polynomials [Classificació AMS], General iterated line digraphs, Matrices, 0508 media and communications, Polinomis, Matemàtiques i estadística::Àlgebra::Teoria de nombres [Àrees temàtiques de la UPC], 11 Number theory::11C Polynomials and matrices [Classificació AMS], Àrees temàtiques de la UPC::Matemàtiques i estadística::Àlgebra::Teoria de nombres
Dateibeschreibung: application/pdf
Zugangs-URL: https://upcommons.upc.edu/bitstream/2117/103040/4/Layer%2bstructure%2bof%2bDe%2bBruijn%2band%2bKautz.pdf
http://hdl.handle.net/2117/103040
https://www.sciencedirect.com/science/article/pii/S1571065316301226
https://upcommons.upc.edu/bitstream/2117/103040/4/Layer%2bstructure%2bof%2bDe%2bBruijn%2band%2bKautz.pdf
https://www.infona.pl/resource/bwmeta1.element.elsevier-e0a44c4c-8ad7-33e2-ab28-a559e2e26ed6
https://core.ac.uk/display/81582836
https://dblp.uni-trier.de/db/journals/endm/endm54.html#FabregaMM16
https://upcommons.upc.edu/handle/2117/103040 -
5
Autoren: et al.
Weitere Verfasser: et al.
Quelle: Lecture Notes in Computer Science ISBN: 9783642382321
UPCommons. Portal del coneixement obert de la UPC
Universitat Politècnica de Catalunya (UPC)
Recercat. Dipósit de la Recerca de Catalunya
instnameSchlagwörter: FOS: Computer and information sciences, Matemàtiques i estadística::Àlgebra::Teoria de cossos i polinomis [Àrees temàtiques de la UPC], Disjoint segments, Line segment, Àrees temàtiques de la UPC::Matemàtiques i estadística::Àlgebra::Teoria de cossos i polinomis, Classificació AMS::12 Field theory and polynomials::12Y05 Computational aspects of field theory and polynomials, 0102 computer and information sciences, Transversal, Computational Complexity (cs.CC), Polynomials, 12 Field theory and polynomials::12Y05 Computational aspects of field theory and polynomials [Classificació AMS], 01 natural sciences, Computational geometry, Geometria computacional, Classificació AMS::65 Numerical analysis::65D Numerical approximation and computational geometry, 65 Numerical analysis::65D Numerical approximation and computational geometry [Classificació AMS], Polynomial-time algorithms, Àrees temàtiques de la UPC::Matemàtiques i estadística::Anàlisi numèrica::Modelització matemàtica, Matemàtiques i estadística::Geometria::Geometria computacional [Àrees temàtiques de la UPC], 0101 mathematics, Anàlisi numèrica, Matemàtiques i estadística::Anàlisi numèrica::Modelització matemàtica [Àrees temàtiques de la UPC], Stabber, Simple polygon, Computer Science - Computational Complexity, Segments, Àrees temàtiques de la UPC::Matemàtiques i estadística::Geometria::Geometria computacional, Convex hull, Polinomis, Natural variation, Numerical analysis, Imprecise points
Dateibeschreibung: application/pdf
-
6
Autoren: Michael Kaminski
Quelle: Lecture Notes in Computer Science ISBN: 9783540249986
Schlagwörter: polynomial multiplication, 4. Education, 0102 computer and information sciences, 02 engineering and technology, Symbolic computation and algebraic computation, 01 natural sciences, Polynomials over finite fields, 0202 electrical engineering, electronic engineering, information engineering, Computational aspects of field theory and polynomials, Recurrences, quadratic algorithms, finite fields, Number-theoretic algorithms, complexity, Polynomials in number theory
Dateibeschreibung: application/xml
Zugangs-URL: https://zbmath.org/2205880
https://doi.org/10.1137/s0097539704442118
https://link.springer.com/chapter/10.1007/978-3-540-31856-9_40
https://dblp.uni-trier.de/db/conf/stacs/stacs2005.html#Kaminski05
https://rd.springer.com/chapter/10.1007/978-3-540-31856-9_40
https://dblp.uni-trier.de/db/journals/siamcomp/siamcomp34.html#Kaminski05
https://locus.siam.org/doi/abs/10.1137/S0097539704442118
https://epubs.siam.org/doi/abs/10.1137/S0097539704442118
https://doi.org/10.1137/S0097539704442118 -
7
Autoren: et al.
Weitere Verfasser: et al.
Quelle: Journal of Symbolic Computation. 30:635-651
Schlagwörter: galois theory, Algebra and Number Theory, [INFO.INFO-SC] Computer Science [cs]/Symbolic Computation [cs.SC], Separable extensions, Galois theory, characteristic polynomials, idéal de galois, resolvent, 0102 computer and information sciences, separable triangular set of polynomials, [INFO] Computer Science [cs], Symbolic computation and algebraic computation, algorithms, 01 natural sciences, ideal of relations, résolvante, galois ideal, [INFO.INFO-OH] Computer Science [cs]/Other [cs.OH], Computational Mathematics, relative resolvents, Computational aspects of field theory and polynomials, Galois ideals, idéal des relations, 0101 mathematics, théorie de galois, reduced Gröbner basis
Dateibeschreibung: application/xml
Zugangs-URL: https://inria.hal.science/inria-00099277v1
https://doi.org/10.1006/jsco.2000.0376
https://hal.science/hal-01617378v1
https://zbmath.org/1579160
https://doi.org/10.1006/jsco.2000.0376
https://www.sciencedirect.com/science/article/pii/S0747717100903766
https://dialnet.unirioja.es/servlet/articulo?codigo=712562
https://www-apr.lip6.fr/~avb/DonneesTelechargeables/MesArticles/JSC2000.pdf
https://www.sciencedirect.com/science/article/abs/pii/S0747717100903766
https://hal.inria.fr/inria-00099277
https://dblp.uni-trier.de/db/journals/jsc/jsc30.html#AubryV00 -
8
Autoren: Adam Strzebonski
Quelle: Developments in Reliable Computing ISBN: 9789048153503
Schlagwörter: Numerical mathematical programming methods, Nonlinear programming, Zeros of polynomials, rational functions, and other analytic functions of one complex variable (e.g., zeros of functions with bounded Dirichlet integral), Numerical computation of solutions to systems of equations, real polynomial decision algorithm, Computational aspects of field theory and polynomials, Mathematica, cylindrical algebraic decomposition algorithm, system of real polynomial equations and inequalities, Real polynomials: location of zeros
Dateibeschreibung: application/xml
-
9
Autoren:
Quelle: SIAM Journal on Numerical Analysis. 33:128-148
Schlagwörter: path following, 4. Education, Numerical computation of solutions to systems of equations, 16. Peace & justice, 01 natural sciences, Global methods, including homotopy approaches to the numerical solution of nonlinear equations, projective Newton method, system of polynomial equations, General theory of numerical methods in complex analysis (potential theory, etc.), Complexity and performance of numerical algorithms, Zeros of polynomials, rational functions, and other analytic functions of one complex variable (e.g., zeros of functions with bounded Dirichlet integral), unitary group, Computational aspects of field theory and polynomials, 0101 mathematics, complexity, homotopy methods, Bezout's theorem, integral geometry, condition number
Dateibeschreibung: application/xml
Zugangs-URL: https://epubs.siam.org/doi/abs/10.1137/0733008
-
10
Autoren: N.V. Durov
Quelle: Journal of Mathematical Sciences. 136:3880-3907
Schlagwörter: 4. Education, Separable extensions, Galois theory, Computational aspects of field theory and polynomials, 0101 mathematics, 16. Peace & justice, 01 natural sciences
Dateibeschreibung: application/xml
-
11
Autoren:
Quelle: Theoretical Computer Science. 133:141-164
Schlagwörter: polynomial time, Numerical computation of solutions to systems of equations, algorithms, 01 natural sciences, approximate zero, system of polynomial equations, Theoretical Computer Science, number of arithmetic operations, Complexity and performance of numerical algorithms, Zeros of polynomials, rational functions, and other analytic functions of one complex variable (e.g., zeros of functions with bounded Dirichlet integral), Computational aspects of field theory and polynomials, 0101 mathematics, complexity, Bezout's theorem, Computer Science(all)
Dateibeschreibung: application/xml
-
12
Autoren: Victor Y. Pan
Quelle: Lecture Notes in Computer Science ISBN: 3540555536
Schlagwörter: computational complexity, parallel computing, polynomials, Analysis of algorithms and problem complexity, randomized algorithms, approximate factorization, 1. No poverty, Polynomials in real and complex fields: factorization, Parallel numerical computation, deterministic algorithm, 0102 computer and information sciences, 01 natural sciences, Complexity and performance of numerical algorithms, monic univariate polynomial, probabilistic estimates, polynomial factorization, 0103 physical sciences, zeros, Computational aspects of field theory and polynomials, complex field, resultant
Dateibeschreibung: application/xml
Zugangs-URL: https://dblp.uni-trier.de/db/conf/istcs/istcs1992.html#Pan92
https://locus.siam.org/doi/abs/10.1137/S0097539792235712
https://link.springer.com/chapter/10.1007/BFb0035172
https://dblp.uni-trier.de/db/journals/siamcomp/siamcomp23.html#Pan94
https://rd.springer.com/chapter/10.1007/BFb0035172
https://link.springer.com/content/pdf/10.1007%2FBFb0035172.pdf
https://epubs.siam.org/doi/abs/10.1137/S0097539792235712 -
13
Autoren:
Quelle: Lecture Notes in Computer Science ISBN: 9783540586913
Schlagwörter: resultant decomposition, Computational Mathematics, Algebra and Number Theory, functional decomposition, Computational aspects of field theory and polynomials, 0101 mathematics, Symbolic computation and algebraic computation, 01 natural sciences, Polynomials in general fields (irreducibility, etc.), Number-theoretic algorithms, complexity
Dateibeschreibung: application/xml
Zugangs-URL: http://www.cs.cornell.edu/~kozen/papers/alg.pdf
https://zbmath.org/987580
https://doi.org/10.1006/jsco.1996.0051
https://link.springer.com/chapter/10.1007/3-540-58691-1_46
https://dblp.uni-trier.de/db/conf/ants/ants1994.html#KozenLZ94
https://core.ac.uk/display/24352293
https://rd.springer.com/chapter/10.1007/3-540-58691-1_46
https://link.springer.com/chapter/10.1007/3-540-58691-1_46
https://dblp.uni-trier.de/db/journals/jsc/jsc22.html#KozenLZ96
https://www.sciencedirect.com/science/article/abs/pii/S0747717196900516
https://core.ac.uk/display/82343569 -
14
Autoren:
Quelle: Applied Mathematics and Computation. 170:237-257
Schlagwörter: 0209 industrial biotechnology, Numerical computation of solutions to systems of equations, polynomial systems, 02 engineering and technology, 01 natural sciences, Real polynomials: location of zeros, Mechanization, Algorithm, Dixon resultant, Zeros of polynomials, rational functions, and other analytic functions of one complex variable (e.g., zeros of functions with bounded Dirichlet integral), Maple, Computational aspects of field theory and polynomials, Multi-resultant, 0101 mathematics, computer algebra, Macaulay resultant
Dateibeschreibung: application/xml
-
15
Autoren:
Quelle: Journal of Computational and Applied Mathematics. 182:416-432
Schlagwörter: Acceleration of convergence, numerical examples, Applied Mathematics, Interval and finite arithmetic, Inclusion methods, 01 natural sciences, Computational Mathematics, General theory of numerical methods in complex analysis (potential theory, etc.), Zeros of polynomials, rational functions, and other analytic functions of one complex variable (e.g., zeros of functions with bounded Dirichlet integral), Computational aspects of field theory and polynomials, Numerical computation of solutions to single equations, Circular interval arithmetic, 0101 mathematics, Simultaneous methods, Convergence, Polynomial zeros
Dateibeschreibung: application/xml
-
16
Autoren: Ling Zhu
Quelle: Applied Mathematics and Computation. 169:179-191
Schlagwörter: Parallel circular iteration, convergence, polynomials, Parallel numerical computation, Durand-Kerner method, 01 natural sciences, General theory of numerical methods in complex analysis (potential theory, etc.), Zeros of polynomials, rational functions, and other analytic functions of one complex variable (e.g., zeros of functions with bounded Dirichlet integral), Computational aspects of field theory and polynomials, circular arithmetic, Numerical computation of solutions to single equations, Multistep method, 0101 mathematics, simple complex zeros
Dateibeschreibung: application/xml
-
17
Autoren:
Quelle: Journal of Complexity. 21:420-446
Schlagwörter: Statistics and Probability, Numerical Analysis, Algebra and Number Theory, Control and Optimization, Analysis of algorithms and problem complexity, Applied Mathematics, Complexity, 0102 computer and information sciences, Symbolic computation and algebraic computation, 01 natural sciences, Transposition principle, Polynomial evaluation and interpolation, Computational aspects of field theory and polynomials, Polynomials, factorization in commutative rings, Analysis of algorithms, Polynomial matrix multiplication, complexity estimates, 0101 mathematics
Dateibeschreibung: application/xml
-
18
Autoren:
Quelle: Applied Mathematics and Computation. 167:125-142
Schlagwörter: algorithm, Bernstein polynomials, derivative evaluation, 01 natural sciences, computer-aided design, Numerical differentiation, Computer-aided design (modeling of curves and surfaces), polynomial evaluation, Numerical aspects of computer graphics, image analysis, and computational geometry, computational geometry, Computational aspects of field theory and polynomials, Chebyshev polynomials, 0101 mathematics, numerical experiments, Real polynomials: analytic properties, etc, orthogonal polynomials, basis conversion, error analysis
Dateibeschreibung: application/xml
-
19
Autoren:
Quelle: J. Complexity 2005;21(4):502-531
Biblioteca Digital (UBA-FCEN)
Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
instacron:UBA-FCENSchlagwörter: Statistics and Probability, positive solutions, Control and Optimization, Analysis of algorithms and problem complexity, Numerical computation of solutions to systems of equations, 0102 computer and information sciences, Symbolic computation and algebraic computation, Matrix algebra, Polynomials, Polynomial system solving, 01 natural sciences, Boundary value problems, Complexity and performance of numerical algorithms, semi-linear parabolic problems, Homotopy algorithms, symbolic methods, Stationary solutions, Computational aspects of field theory and polynomials, 0101 mathematics, Semi-linear parabolic problems, Mathematical models, Numerical Analysis, Algebra and Number Theory, Applied Mathematics, Complexity, polynomial systems, Partial differential equations, Global methods, including homotopy approaches to the numerical solution of nonlinear equations, Real polynomials: location of zeros, Computational complexity, Semi linear parabolic problems, Set theory, complexity, Algorithms, homotopy methods, Conditioning
Dateibeschreibung: application/xml; application/pdf
Zugangs-URL: https://zbmath.org/2201763
https://doi.org/10.1016/j.jco.2004.09.008
https://dblp.uni-trier.de/db/journals/jc/jc21.html#LeoDM05
https://www.sciencedirect.com/science/article/pii/S0885064X04001086
https://core.ac.uk/display/82166302
https://www.sciencedirect.com/science/article/abs/pii/S0885064X04001086
https://www.sciencedirect.com/science/article/pii/S0885064X04001086#!
http://hdl.handle.net/20.500.12110/paper_0885064X_v21_n4_p502_DeLeo -
20
Autoren: Salvador Lucas
Quelle: RAIRO - Theoretical Informatics and Applications. 39:547-586
Schlagwörter: constraint-solving systems, term rewriting, Grammars and rewriting systems, 0202 electrical engineering, electronic engineering, information engineering, Computational aspects of field theory and polynomials, polynomial algebras, 0102 computer and information sciences, 02 engineering and technology, Symbolic computation and algebraic computation, 01 natural sciences
Dateibeschreibung: application/xml
Full Text Finder
Nájsť tento článok vo Web of Science