Search Results - "Complex Event Processing"

Refine Results
  1. 1

    Source: Relaxed Semantics Across the Data Analytics Stack (RELAX-DN) 19th ACM International Conference on Distributed and Event-Based Systems, DEBS 2025 , Gothenburg, Sweden Debs 2025 Proceedings of the 19th ACM International Conference on Distributed and Event Based Systems. :33-38

    File Description: electronic

  2. 2
  3. 3
  4. 4
  5. 5

    Thesis Advisors: Valdés Vela, Mercedes, Skarmeta Gómez, Antonio Fernando, Universidad de Murcia. Departamento de Ingeniería de la Información y las Comunicaciones

    Source: TDR (Tesis Doctorales en Red)

    File Description: application/pdf

  6. 6
  7. 7
  8. 8
  9. 9
  10. 10
  11. 11

    File Description: application/pdf

    Relation: Lecture Notes in Informatics; [Ar14] Artikis, Alexander; Weidlich, Matthias; Schnitzler, François; Boutsis, Ioannis; Liebig, Thomas; Piatkowski, Nico; Bockermann, Christian; Morik, Katharina; Kalogeraki, Vana; Marecek, Jakub; Gal, Avigdor; Mannor, Shie; Gunopulos, Dimitrios; Kinane, Dermot: Heterogeneous Stream Processing and Crowdsourcing for Urban Traffic Management. In (Amer-Yahia, Sihem; Christophides, Vassilis; Kementsietsidis, Anastasios; Garofalakis, Minos N.; Idreos, Stratos; Leroy, Vincent, eds): Proceedings of the 17th International Conference on Extending Database Technology, EDBT 2014, Athens, Greece, March 24-28, 2014. OpenProceedings.org, pp. 712–723, 2014. [CA12] Cugola, Gianpaolo; Alessandro: Processing flows of information: From data stream to complex event processing. ACM Comput. Surv., 44(3):15:1–15:62, 2012. [Ch10] Chandramouli, Badrish; Ali, Mohamed H.; Goldstein, Jonathan; Sezgin, Beysim; Raman, Balan Sethu: Data Stream Management Systems for Computational Finance. Computer, 43(12):45–52, 2010. [DBF20] Drozdyuk, Andriy; Buffett, Scott; Fleming, Michael W.: Incremental Sequential Rule Mining with Streaming Input Traces. In (Goutte, Cyril; Zhu, Xiaodan, eds): Advances in Artificial Intelligence. Springer International Publishing, Cham, pp. 79–91, 2020. [EO15] EODData: NASDAQ Intra-Day Data. https://eoddata.com/, 2015. Accessed: 2015-09-27. [Fo14] Fournier-Viger, Philippe; Gueniche, Ted; Zida, Souleymane; Tseng, Vincent S.: ERMiner: Sequential Rule Mining Using Equivalence Classes. In (Blockeel, Hendrik; van Leeuwen, Matthijs; Vinciotti, Veronica, eds): Advances in Intelligent Data Analysis XIII. Springer International Publishing, Cham, pp. 108–119, 2014. [FVNT11] Fournier-Viger, Philippe; Nkambou, Roger; Tseng, Vincent Shin-Mu: RuleGrowth: mining sequential rules common to several sequences by pattern-growth. In: Proceedings of the 2011 ACM symposium on applied computing. pp. 956–961, 2011. [GCW16] George, Lars; Cadonna, Bruno; Weidlich, Matthias: IL-Miner: Instance-Level Discovery of Complex Event Patterns. Proc. VLDB Endow., 10(1):25–36, September 2016. [Gi20] Giatrakos, Nikos; Alevizos, Elias; Artikis, Alexander; Deligiannakis, Antonios; Garofalakis, Minos N.: Complex event recognition in the Big Data era: a survey. VLDB J., 29(1):313–352, 2020. [KL19] Konovalenko, Iurii; Ludwig, André: Event processing in supply chain management - The status quo and research outlook. Comput. Ind., 105:229–249, 2019. [Kl22] Kleest-Meißner, Sarah; Sattler, Rebecca; Schmid, Markus L.; Schweikardt, Nicole; Weidlich, Matthias: Discovering Event Queries from Traces: Laying Foundations for Subsequence-Queries with Wildcards and Gap-Size Constraints. In (Olteanu, Dan; Vortmeier, Nils, eds): 25th International Conference on Database Theory, ICDT 2022, March 29 to April 1, 2022, Edinburgh, UK (Virtual Conference). volume 220 of LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, pp. 18:1–18:21, 2022. [Kl23] Kleest-Meißner, Sarah; Sattler, Rebecca; Schmid, Markus L.; Schweikardt, Nicole; Weidlich, Matthias: Discovering Multi-Dimensional Subsequence Queries from Traces - From Theory to Practice. In (König-Ries, Birgitta; Scherzinger, Stefanie; Lehner, Wolfgang; Vossen, Gottfried, eds): Datenbanksysteme für Business, Technologie und Web (BTW 2023), 20. Fachtagung des GI-Fachbereichs „Datenbanken und Informationssysteme"(DBIS), 06.-10, März 2023, Dresden, Germany, Proceedings. volume P-331 of LNI. Gesellschaft für Informatik e.V., pp. 511–533, 2023. [MCT14] Margara, Alessandro; Cugola, Gianpaolo; Tamburrelli, Giordano: Learning from the Past: Automated Rule Generation for Complex Event Processing. In: Proceedings of the 8th ACM International Conference on Distributed Event-Based Systems. DEBS ’14, Association for Computing Machinery, New York, NY, USA, p. 47–58, 2014. [MGG13] Mallick, Bhawna; Garg, Deepak; Grover, P. S.: Incremental Mining of Sequential Patterns: Progress and Challenges. Intelligent Data Analysis, 17(3):507–530, January 2013. [Re12] Reiss, Charles; Tumanov, Alexey; Ganger, Gregory R; Katz, Randy H; Kozuch, Michael A: Towards understanding heterogeneous clouds at scale: Google trace analysis. Intel Science and Technology Center for Cloud Computing, Tech. Rep, 84:1–12, 2012. [RWH11] Reiss, Charles; Wilkes, John; Hellerstein, Joseph L: Google cluster-usage traces: format+schema. Google Inc., White Paper, 1:1–14, 2011. [YR15] Yun, Unil; Ryang, Heungmo: Incremental High Utility Pattern Mining with Static and Dynamic Databases. Applied Intelligence, 42(2):323–352, March 2015. [ZDI14] Zhang, Haopeng; Diao, Yanlei; Immerman, Neil: On complexity and optimization of expensive queries in complex event processing. In (Dyreson, Curtis E.; Li, Feifei; Özsu, M. Tamer, eds): International Conference on Management of Data, SIGMOD 2014, Snowbird, UT, USA, June 22-27, 2014. ACM, pp. 217–228, 2014. [Zh02] Zheng, Qingguo; Xu, Ke; Ma, Shilong; Lv, Weifeng: The Algorithms of Updating Sequetial Patterns, 2002. [ZXM03] Zheng, Qingguo; Xu, Ke; Ma, Shilong: When to Update the Sequential Patterns of Stream Data? In (Whang, Kyu-Young; Jeon, Jongwoo; Shim, Kyuseok; Srivastava, Jaideep, eds): Advances in Knowledge Discovery and Data Mining, 7th Pacific-Asia Conference, PAKDD 2003, Seoul, Korea, April 30 - May 2, 2003, Proceedings. volume 2637 of Lecture Notes in Computer Science. Springer, pp. 545–550, 2003.; P-361; https://hdl.handle.net/1942/45798; 437; 417; https://dl.gi.de/handle/20.500.12116/45882

  12. 12

    Source: ALLDATA 2023: The Ninth International Conference on Big Data, Small Data, Linked Data and Open Data

    File Description: application/pdf

    Relation: info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2021-2023/PDC2022-133522-I00/ES/APLICACION DE TECNICAS AVANZADAS DE PROCESAMIENTO DE DATOS Y PRUEBA EN LA INDUSTRIA/; info:eu-repo/grantAgreement/Junta de Andalucía//P20_00865; http://hdl.handle.net/10498/36274; https://www.thinkmind.org/index.php?view=article&articleid=alldata_2023_1_40_80017

  13. 13

    Source: J. Boubeta-Puig, J. Rosa-Bilbao, y J. Mendling, "CEPchain: A graphical model-driven solution for integrating complex event processing and blockchain (Abstract)", en XXVI Jornadas de Ingeniería del Software y Bases de Datos (JISBD 2022), Santiago de Compostela, España: SISTEDES, sep. 2022, pp. 1-1. [En línea]. Disponible en: http://hdl.handle.net/11705/JISBD/2022/475

    File Description: application/pdf

    Relation: info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-093608-B-C33/ES/MODELADO FORMAL Y METODOS AVANZADOS DE TESTING. APLICACIONES A MEDICINA Y SISTEMAS/; http://hdl.handle.net/10498/36250; http://hdl.handle.net/11705/JISBD/2022/475

  14. 14

    Source: Re-Unir. Archivo Institucional de la Universidad Internacional de La Rioja
    Universidad Internacional de La Rioja (UNIR)
    BURJC-Digital. Repositorio Institucional de la Universidad Rey Juan Carlos
    Universidad Rey Juan Carlos
    International Journal of Interactive Multimedia and Artificial Intelligence, Vol 8, Iss 3, Pp 85-97 (2023)

    File Description: application/pdf

  15. 15
  16. 16
  17. 17
  18. 18
  19. 19
  20. 20