Search Results - "Céramides"

Refine Results
  1. 1
  2. 2

    Contributors: University/Department: Universitat Internacional de Catalunya. Departament de Ciències Bàsiques

    Thesis Advisors: Casals Farré, Núria

    Source: TDX (Tesis Doctorals en Xarxa)

    File Description: application/pdf

  3. 3

    Contributors: University/Department: Universitat Internacional de Catalunya. Departament de Ciències Bàsiques

    Thesis Advisors: Casals Farré, Núria

    Source: TDX (Tesis Doctorals en Xarxa)

    File Description: application/pdf

  4. 4

    Subject Terms: AMPK, Elastin/immunology, Polyphenols/metabolism, Imagerie cutanée haute résolution, Spermidine, Receptors, AMPA/genetics, Fibrillar Collagens, Spermidine/immunology, Sirtuins/pharmacokinetics, MTOR Inhibitors/isolation & purification, IA dédiée à la Silver Economy, Ceramides/pharmacology, IA au service de l'industrie de la longévité, Mechanistic Target of Rapamycin Complex 2/genetics, Elastin/pharmacokinetics, Elastin/classification, Kinetin/toxicity, Quercetin/pharmacokinetics, Quercetin/genetics, Quercetin/immunology, Peptides/poisoning, Receptors, AMPA/biosynthesis, BeautyTech, Sustainable longevity, Polyphenols/standards, Curcumin/metabolism, MTOR Inhibitors/blood, Receptors, AMPA/history, Peptides/physiology, Organo-on-a-chip, Egg Yolk, Metformin, Longevity-Focused AI, Peptides biomimétiques, Polyphenols/history, Metformin/classification, Normes ISO/IEC 42001, Mechanistic Target of Rapamycin Complex 1/standards, Collagen, Cyclic AMP/economics, Métabolomique, Transcriptomique, MTOR Inhibitors/immunology, Spermidine/urine, Metformin/chemical synthesis, Ceramides/deficiency, Curcumin/analysis, Mechanistic Target of Rapamycin Complex 2/metabolism, NMN (nicotinamide mononucleotide), Ceramides/urine, Egg Shell/parasitology, Metformine, Organoïdes de peau, Jumeaux numériques santé, Elastin/ultrastructure, Kinetin/blood, Sirtuins/blood, Chimie, MTOR Inhibitors/analysis, Biopsie liquide, Ceramides/poisoning, Resveratrol/classification, Quercetin/poisoning, hyaluronique, Egg Hypersensitivity, ΔM11.3 rollback, Polyphenols/economics, MTOR Inhibitors/toxicity, Kinetin/immunology, Polyphenols, Kinetin/biosynthesis, Santé cellulaire, Fisetin, Vieillissement actif, Elastin, Elastin/toxicity, Sirtuins/chemistry, IA de pointe pour la santé et la longévité, Kinetin/history, Neuro-immuno-dermatologie, Metformin/pharmacokinetics, Resveratrol, Metformin/agonists, Céramides, Receptors, AMPA/analysis, Metformin/standards, Mechanistic Target of Rapamycin Complex 2/analysis, Peptides, Sirtuins/pharmacology, Receptors, AMPA/agonists, Sirtuins/biosynthesis, Quercetin/pharmacology, Sirtuins/economics, NR (nicotinamide riboside), Metformin/blood, Peptides/metabolism, Metformin/metabolism, Egg Shell, IA mimetique, Peptides/history, MTOR Inhibitors/pharmacokinetics, Metformin/pharmacology, Egg Proteins/immunology, Polyphenols/genetics, Épigénomique, Metformin/cerebrospinal fluid, Receptors, AMPA/classification, Metformin/toxicity, IA appliquée aux sciences du vieillissement, Peptides/urine, Curcumin/therapeutic use, Peptides/deficiency, Cyclic AMP/chemistry, Cyclic AMP/pharmacology, Quercetin/blood, Nutraceutiques, IA computationnelle en biologie du vieillissement, Collagen/immunology, Peptides/pharmacokinetics, Healthspan vs Lifespan, Ceramides/genetics, Receptors, AMPA/chemistry, Peptides/analysis, MTOR Inhibitors, Quercetin/history, IA biomédicale pour la longévité, HyperGlottal, Metformin/economics, Peptides/immunology, Ceramides/economics, Smart Longevity AI, Quercetin, MTOR Inhibitors/chemical synthesis, Quercetin/economics, Ceramides/classification, Polyphenols/biosynthesis, Polyphenols/pharmacology, Antimicrobial Peptides, Open source AI, Receptors, Collagen, Polyphenols/classification, Quercetin/metabolism, Elastin/physiology, IA éthique appliquée à la santé, Curcumin/administration & dosage, Polyphenols/poisoning, Chronobiologie & horloges circadiennes, Collagen/blood, Quercetin/radiation effects, RGPD, Receptors, AMPA/metabolism, Spermidine Synthase, Kinetin/urine, Curcumin/radiation effects, Peptides/economics, Quercetin/physiology, Elastin/metabolism, Ceramides/biosynthesis, Microbiome cutané, Kinetin/classification, Rapamycine, Polyphenols/urine, Polyphenols/chemistry, Quercétine, Curcumin/analogs & derivatives, Receptors, AMPA/physiology, Curcumine, Natriuretic Peptides, PolyResonator, Quercetin/biosynthesis, Collagen/economics, Ceramides/agonists, CRISPR/Cas9, Collagen/deficiency, Transparence, AI for Lifespan & Healthspan, Quercetin/toxicity, Mechanistic Target of Rapamycin Complex 1/chemistry, Curcumin/pharmacology, Polyphenols/agonists, Santé préventive, Sirtuins/immunology, Analyse de télomères, Rapamycin-Insensitive Companion of mTOR Protein, Innovation responsable, Kinetin/agonists, Spermidine/agonists, Collagen/toxicity, Elastin/standards, Healthspan, Coenzyme Q10, Kinetin/analysis, Elastin/biosynthesis, Elastin/pharmacology, Egg Shell/immunology, Tarification éthique, Peptides/genetics, Sirtuins/analysis, Elastin/blood, Isatin, Ceramides/analysis, Acide hyaluronique, Collagen/standards, VEX, Kinetin/pharmacology, Rapamycin-Insensitive Companion of mTOR Protein/deficiency, MTOR Inhibitors/standards, Curcumin/supply & distribution, Rapamycin-Insensitive Companion of mTOR Protein/biosynthesis, Sirtuins/genetics, Rapamycin-Insensitive Companion of mTOR Protein/standards, Polyphenols/analysis, MTOR Inhibitors/history, Resveratrol/blood, Rapamycin-Insensitive Companion of mTOR Protein/metabolism, AMP Deaminase, MTOR Inhibitors/metabolism, Protéomique, Loreal, Curcumin/standards, MTOR Inhibitors/therapeutic use, MTOR Inhibitors/urine, Compliance AI, Sirtuins/deficiency, MTOR Inhibitors/chemistry, Peptides/pharmacology, MTOR Inhibitors/pharmacology, Collagen/pharmacokinetics, Spermidine/pharmacokinetics, Curcumin/chemical synthesis, IA multi-omique pour la longévité, Polyphénols, Data sovereignty, Sirtuins/classification, Microbiome cutané & intestinal, Elastin/chemistry, Collagen/urine, Reproducibility, Oxydation protéines/lipides, Collagène, Sirtuins/urine, Resveratrol/metabolism, Opioid Peptides, Rapamycin-Insensitive Companion of mTOR Protein/pharmacokinetics, RGPD santé, AI for Longevity Science, Injecteur polymorphe, Société du vieillissement, Collagen/chemistry, Receptors, AMPA/blood, Curcumin/isolation & purification, IA prédictive multi-omique, Mechanistic Target of Rapamycin Complex 2/toxicity, Ceramides/chemistry, Receptors, AMPA/ultrastructure, Ceramides, Kinetin/genetics, Polyprenols, Sirtuins/physiology, Resvératrol, Kinetin/standards, AI for Healthy Aging, Curcumin/economics, IA appliquée aux biotechnologies du vieillissement, Egg White, Polyphenols/immunology, AI Act, Silver economy, Egg, Polyphenols/blood, Longevite, Quercetin/chemistry, Collagen/classification, AI Act Compliance, MTOR Inhibitors/poisoning, IA translationnelle en gérontologie, Sirtuins/metabolism, Épigénétique, Egg Proteins, Metformin/analysis, Mechanistic Target of Rapamycin Complex 2/urine, Ceramides/blood, Peptides/toxicity, Kinetin, Elastin/analysis, MTOR Inhibitors/administration & dosage, Ceramides/immunology, Egg Shell/chemistry, Sirtuins/poisoning, Egg Shell/abnormalities, C2PA, Cobamides, Mechanistic Target of Rapamycin Complex 1/metabolism, Sirtuins/history, EGCG, Standards inclusifs, Egg Shell/cytology, Elastin/agonists, Mechanistic Target of Rapamycin Complex 1/deficiency, Metformin/isolation & purification, Quercetin/urine, Resveratrol/standards, Egg Proteins/history, Collagen/analysis, Peptides/chemistry, Egg Proteins/urine, Spermidine/classification, Receptors, AMPA/immunology, Ceramides/pharmacokinetics, Kinetin/physiology, Polyphenols/physiology, Cyclic AMP, Sirtuins, Peptides/standards, Suppléments longévité, Curcumin/pharmacokinetics, Biomarqueurs, Elastin/urine, MTOR Inhibitors/classification, Ceramides/physiology, Kinetin/pharmacokinetics, Metformin/immunology, IA dédiée à la recherche en longévité, Metformin/urine, Egg Proteins/pharmacokinetics, Collagen/physiology, Sirtuins/ultrastructure, NAD⁺ (nicotinamide adenine dinucleotide), Elastin/poisoning, Next-Gen Longevity AI, mTOR, Sex, Resveratrol/economics, Ceramides/history, Gouvernance IA, Egg Shell/embryology, Collagen/poisoning, Curcumin, Coenzyme Q10 (CoQ10, Ubiquinone), Elastin/genetics, Sirtuins/standards, Élastine, Quercetin/agonists, Receptors, AMPA/deficiency, Metformin/chemistry, NR, Mechanistic Target of Rapamycin Complex 2, Mechanistic Target of Rapamycin Complex 1, Collagen/biosynthesis, Cosmétiques anti-âge, Vieillissement, Peptides, Cyclic, Cyclic AMP/history, Polyphenols/pharmacokinetics, Curcumin/toxicity, Ceramides/metabolism, CycloneDX SBOM, Sirtuins/toxicity, Kinetin/metabolism, Quercetin/classification, Mechanistic Target of Rapamycin Complex 1/pharmacology, Receptors, AMPA, Normes éthiques, Curcumin/adverse effects, Kinetin/chemistry, Mechanistic Target of Rapamycin Complex 2/classification, Collagen/agonists, Collagen Diseases, Quercetin/standards, Polyphenols/toxicity, Spermidine/metabolism, MTOR Inhibitors/cerebrospinal fluid, Ceramides/standards, EthicChain, Curcumin/classification, Quercetin/analysis, Spermidine/pharmacology, Curcumin/poisoning, Metformin/antagonists & inhibitors, MTOR Inhibitors/economics, Kinetin/poisoning, Egg Proteins/pharmacology, Curcumin/chemistry, Sirtuines

  5. 5

    Source: Witoslawska, A, Meessen, J M T A, Hilvo, M, Jylhä, A, Zannad, F, Cerrato, M, Rossignol, P, Novelli, D, Duarte, K, Targher, G, Latini, R, Girerd, N & Laaksonen, R 2025, 'Ceramide and phosphatidylcholine lipids-based risk score predicts major cardiovascular outcomes in patients with heart failure', European Journal of Clinical Investigation, vol. 55, no. 3, e14359, pp. e14359. https://doi.org/10.1111/eci.14359

    Relation: info:eu-repo/semantics/altIdentifier/pmid/39578928; info:eu-repo/semantics/altIdentifier/pissn/0014-2972; info:eu-repo/semantics/altIdentifier/eissn/1365-2362

  6. 6
  7. 7

    Source: ISSN: 0022-3042.

  8. 8

    Source: Obstetrics, Gynecology and Reproduction; Online First ; Акушерство, Гинекология и Репродукция; Online First ; 2500-3194 ; 2313-7347

    File Description: application/pdf

    Relation: https://www.gynecology.su/jour/article/view/2609/1406; Петров И.А., Дмитриева М.Л., Тихоновская О.А. и др. Тканевые и молекулярные основы фолликулогенеза. Механизмы раннего фолликулярного роста. Проблемы репродукции. 2017;23(5):33–41. https://doi.org/10.17116/repro201723533-41.; Pors S.E., Harðardóttir L., Olesen H.Ø. et al. Effect of sphingosine-1-phosphate on activation of dormant follicles in murine and human ovarian tissue. Mol Hum Reprod. 2020;26(5):301–11. https://doi.org/10.1093/molehr/gaaa022.; Zhang Y., Yan Z., Qin Q. et al. Transcriptome landscape of human folliculogenesis reveals oocyte and granulosa cell interactions. Mol Cell. 2018;72(6):1021–1034.e4. https://doi.org/10.1016/j.molcel.2018.10.029.; Hernández-Coronado C.G., Guzmán A., Castillo-Juárez H. et al. Sphingosine-1-phosphate (S1P) in ovarian physiology and disease. Ann Endocrinol (Paris). 2019;80(5–6):263–72. https://doi.org/10.1016/j.ando.2019.06.003.; Pitman M., Oehler M.K., Pitson S.M. Sphingolipids as multifaceted mediators in ovarian cancer. Cell Signal. 2021;81:109949. https://doi.org/10.1016/j.cellsig.2021.109949.; Quinville B.M., Deschenes N.M., Ryckman A.E., Walia J.S. A comprehensive review: sphingolipid metabolism and implications of disruption in sphingolipid homeostasis. Int J Mol Sci. 2021;22(11):5793. https://doi.org/10.3390/ijms22115793.; Sukocheva O., Wadham C., Holmes A. et al. Estrogen transactivates EGFR via the sphingosine 1-phosphate receptor Edg-3: the role of sphingosine kinase-1. J Cell Biol. 2006;173(2):301–10. https://doi.org/10.1083/jcb.200506033.; Chou C.H., Chen M.J. The effect of steroid hormones on ovarian follicle development. Vitam Horm. 2018;107:155–75. https://doi.org/10.1016/bs.vh.2018.01.013.; Zeleznik O.A., Clish C.B., Kraft P. et al. Circulating lysophosphatidylcholines, phosphatidylcholines, ceramides, and sphingomyelins and ovarian cancer risk: a 23-year prospective study. J Natl Cancer Inst. 2020;112(6):628–36. https://doi.org/10.1093/jnci/djz195.; Janneh A.H., Ogretmen B. Targeting sphingolipid metabolism as a therapeutic strategy in cancer treatment. Cancers (Basel). 2022;14(9):2183. https://doi.org/10.3390/cancers14092183.; Gomez-Larrauri A., Das Adhikari U., Aramburu-Nuñez M. et al. Ceramide metabolism enzymes-therapeutic targets against cancer. Medicina (Kaunas). 2021;57(7):729. https://doi.org/10.3390/medicina57070729.; Companioni O., Mir C., Garcia-Mayea Y., LLeonart M.E. Targeting sphingolipids for cancer therapy. Front Oncol. 2021;11:745092. https://doi.org/10.3389/fonc.2021.745092.; Yuan Y., Jia G., Wu C. et al. Structures of signaling complexes of lipid receptors S1PR1 and S1PR5 reveal mechanisms of activation and drug recognition. Cell Res. 2021;31(12):1263–74. https://doi.org/10.1038/s41422-021-00566-x.; Lucki N.C., Sewer M.B. The interplay between bioactive sphingolipids and steroid hormones. Steroids. 2010;75(6):390–9. https://doi.org/10.1016/j.steroids.2010.01.020.; Roth Z. Symposium review: reduction in oocyte developmental competence by stress is associated with alterations in mitochondrial function. J Dairy Sci. 2018;101(4):3642–54. https://doi.org/10.3168/jds.2017-13389.; Протопопов В.А., Секунов А.В., Панов А.В., Брындина И.Г. Взаимосвязь сфинголипидных механизмов с окислительным стрессом и изменениями митохондрий при функциональной разгрузке постуральных мышц. Acta Biomedica Scientifica. 2024;9(2):228–42. https://doi.org/10.29413/ABS.2024-9.2.23.; Kujjo L.L., Perez G.I. Ceramide and mitochondrial function in aging oocytes: joggling a new hypothesis and old players. Reproduction. 2012;143(1):1–10. https://doi.org/10.1530/REP-11-0350.; Zigdon H., Kogot-Levin A., Park J.W. et al. Ablation of ceramide synthase 2 causes chronic oxidative stress due to disruption of the mitochondrial respiratory chain. J Biol Chem. 2013;288(7):4947–56. https://doi.org/10.1074/jbc.M112.402719.; Arora A.S., Jones B.J., Patel T.C. et al. Ceramide induces hepatocyte cell death through disruption of mitochondrial function in the rat. Hepatology. 1997;25(4):958–63. https://doi.org/10.1002/hep.510250428.; Malott K.F., Luderer U. Toxicant effects on mammalian oocyte mitochondria†. Biol Reprod. 2021;104(4):784–93. https://doi.org/10.1093/biolre/ioab002.; Kasapoğlu I., Seli E. Mitochondrial dysfunction and ovarian aging. Endocrinology. 2020;161(2):bqaa001. https://doi.org/10.1210/endocr/bqaa001.; Smits M.A.J., Schomakers B.V., van Weeghel M. et al. Human ovarian aging is characterized by oxidative damage and mitochondrial dysfunction. Hum Reprod. 2023;38(11):2208–20. https://doi.org/10.1093/humrep/dead177.; Lee S., Kang H.G., Jeong P.S. et al. Heat stress impairs oocyte maturation through ceramide-mediated apoptosis in pigs. Sci Total Environ. 2021;755(Pt 1):144144. https://doi.org/10.1016/j.scitotenv.2020.144144.; Hernández-Coronado C.G., Guzmán A., Espinosa-Cervantes R. et al. Sphingosine-1-phosphate and ceramide are associated with health and atresia of bovine ovarian antral follicles. Animal. 2015;9(2):308–12. https://doi.org/10.1017/S1751731114002341.; Kujjo L.L., Acton B.M., Perkins G.A. et al. Ceramide and its transport protein (CERT) contribute to deterioration of mitochondrial structure and function in aging oocytes. Mech Ageing Dev. 2013;134(1–2):43–52. https://doi.org/10.1016/j.mad.2012.12.001.; Morita Y., Tilly J.L. Oocyte apoptosis: like sand through an hourglass. Dev Biol. 1999;213(1):1–17. https://doi.org/10.1006/dbio.1999.9344.; Hernández-Coronado C.G., Guzmán A., Rodríguez A. et al. Sphingosine-1-phosphate, regulated by FSH and VEGF, stimulates granulosa cell proliferation. Gen Comp Endocrinol. 2016;236:1–8. https://doi.org/10.1016/j.ygcen.2016.06.029.; Hao X., Zhang M. Roles of sphingosine-1-phosphate in follicle development and oocyte maturation. Anim Res One Health. 2024;2(3):314–22. https://doi.org/10.1002/aro2.53.; Park J.Y., Su Y.Q., Ariga M. et al. EGF-like growth factors as mediators of LH action in the ovulatory follicle. Science. 2004;303(5658):682–4. https://doi.org/10.1126/science.1092463.; Yamanaka M., Shegogue D., Pei H. et al. Sphingosine kinase 1 (SPHK1) is induced by transforming growth factor-beta and mediates TIMP-1 up-regulation. J Biol Chem. 2004;279(52):53994–4001. https://doi.org/10.1074/jbc.M410144200.; Squecco R., Sassoli C., Nuti F. et al. Sphingosine 1-phosphate induces myoblast differentiation through Cx43 protein expression: a role for a gap junction-dependent and -independent function. Mol Biol Cell. 2006;17(11):4896–910. https://doi.org/10.1091/mbc.e06-03-0243.; Giepmans B.N., Verlaan I., Hengeveld T. et al. Gap junction protein connexin-43 interacts directly with microtubules. Curr Biol. 2001;11(17):1364–8. https://doi.org/10.1016/s0960-9822(01)00424-9.; Hao X., Wang Y., Kong N. et al. Growth factor-mobilized intracellular calcium of cumulus cells decreases natriuretic peptide receptor 2 affinity for natriuretic peptide type C and induces oocyte meiotic resumption in the mouse. Biol Reprod. 2016;95(2):45. https://doi.org/10.1095/biolreprod.116.140137.; Yuan F., Hao X., Cui Y. et al. SphK-produced S1P in somatic cells is indispensable for LH-EGFR signaling-induced mouse oocyte maturation. Cell Death Dis. 2022;13(11):963. https://doi.org/10.1038/s41419-022-05415-2.; Mostafa S., Nader N., Machaca K. Lipid signaling during gamete maturation. Front Cell Dev Biol. 2022;10:814876. https://doi.org/10.3389/fcell.2022.814876.; Birbes H., El Bawab S., Hannun Y.A., Obeid L.M. Selective hydrolysis of a mitochondrial pool of sphingomyelin induces apoptosis. FASEB J. 2001;15(14):2669–79. https://doi.org/10.1096/fj.01-0539com.; Hernández-Corbacho M.J., Salama M.F., Canals D. et al. Sphingolipids in mitochondria. Biochim Biophys Acta Mol Cell Biol Lipids. 2017;1862(1):56–68. https://doi.org/10.1016/j.bbalip.2016.09.019.; Ueda N. Ceramide-induced apoptosis in renal tubular cells: a role of mitochondria and sphingosine-1-phoshate. Int J Mol Sci. 2015;16(3):5076–124. https://doi.org/10.3390/ijms16035076.; Fisher-Wellman K.H., Hagen J.T., Neufer P.D. et al. On the nature of ceramide-mitochondria interactions – dissection using comprehensive mitochondrial phenotyping. Cell Signal. 2021;78:109838. https://doi.org/10.1016/j.cellsig.2020.109838.; Eliyahu E., Shtraizent N., Martinuzzi K. et al. Acid ceramidase improves the quality of oocytes and embryos and the outcome of in vitro fertilization. FASEB J. 2010;24(4):1229–38. https://doi.org/10.1096/fj.09-145508.; Santiquet N.W., Greene A.F, Becker J. et al. A pre-in vitro maturation medium containing cumulus oocyte complex ligand-receptor signaling molecules maintains meiotic arrest, supports the cumulus oocyte complex and improves oocyte developmental competence. Mol Hum Reprod. 2017;23(9):594–606. https://doi.org/10.1093/molehr/gax032.; Eliyahu E., Shtraizent N., Shalgi R., Schuchman E.H. Construction of conditional acid ceramidase knockout mice and in vivo effects on oocyte development and fertility. Cell Physiol Biochem. 2012;30(3):735–48. https://doi.org/10.1159/000341453.; Morita Y., Perez G.I., Paris F. et al. Oocyte apoptosis is suppressed by disruption of the acid sphingomyelinase gene or by sphingosine-1-phosphate therapy. Nat Med. 2000;6(10):1109–14. https://doi.org/10.1038/80442.; Coll O., Morales A., Fernández-Checa J.C., Garcia-Ruiz C. Neutral sphingomyelinase-induced ceramide triggers germinal vesicle breakdown and oxidant-dependent apoptosis in Xenopus laevis oocytes. J Lipid Res. 2007;48(9):1924–35. https://doi.org/10.1194/jlr.M700069-JLR200.; Yuan F., Wang Z., Sun Y. et al. Sgpl1 deletion elevates S1P levels, contributing to NPR2 inactivity and p21 expression that block germ cell development. Cell Death Dis. 2021;12(6):574. https://doi.org/10.1038/s41419-021-03848-9.; Morita Y., Tilly J.L. Sphingolipid regulation of female gonadal cell apoptosis. Ann N Y Acad Sci. 2000;905:209–20. https://doi.org/10.1111/j.1749-6632.2000.tb06551.x.; Knapp P., Chomicz K., Świderska M. et al. Unique roles of sphingolipids in selected malignant and nonmalignant lesions of female reproductive system. Biomed Res Int. 2019;2019:4376583. https://doi.org/10.1155/2019/4376583.; Kreitzburg K.M., van Waardenburg R.C.A.M., Yoon K.J. Sphingolipid metabolism and drug resistance in ovarian cancer. Cancer Drug Resist. 2018;1:181–97. https://doi.org/10.20517/cdr.2018.06.; Rutherford T., Brown W.D., Sapi E. et al. Absence of estrogen receptor-beta expression in metastatic ovarian cancer. Obstet Gynecol. 2000;96(3):417–21. https://doi.org/10.1016/s0029-7844(00)00917-0.; Jeon S.-Y., Hwang K.-A., Choi K.-C. Effect of steroid hormones, estrogen and progesterone, on epithelial mesenchymal transition in ovarian cancer development. J Steroid Biochem Mol Biol. 2016;158:1–8. https://doi.org/10.1016/j.jsbmb.2016.02.005.; Mungenast F., Thalhammer T. Estrogen biosynthesis and action in ovarian cancer. Front Endocrinol (Lausanne). 2014;5:192. https://doi.org/10.3389/fendo.2014.00192.; Giaccari C., Antonouli S., Anifandis G. et al. An update on physiopathological roles of Akt in the reprodAKTive mammalian ovary. Life (Basel). 2024;14(6):722. https://doi.org/10.3390/life14060722.; Yang Y., Lang P., Zhang X. et al. Molecular characterization of extracellular vesicles derived from follicular fluid of women with and without PCOS: integrating analysis of differential miRNAs and proteins reveals vital molecules involving in PCOS. J Assist Reprod Genet. 2023;40(3):537–52. https://doi.org/10.1007/s10815-023-02724-z.; Liu L., Yin T.L., Chen Y. et al. Follicular dynamics of glycerophospholipid and sphingolipid metabolisms in polycystic ovary syndrome patients. J Steroid Biochem Mol Biol. 2019;185:142–9. https://doi.org/10.1016/j.jsbmb.2018.08.008.; Shi Y., Zhao H., Shi Y. et al. Genome-wide association study identifies eight new risk loci for polycystic ovary syndrome. Nat Genet. 2012;44(9):1020–5. https://doi.org/10.1038/ng.2384.; Parasar P., Ozcan P., Terry K.L. Endometriosis: epidemiology, diagnosis and clinical management. Curr Obstet Gynecol Rep. 2017;6(1):34–41. https://doi.org/10.1007/s13669-017-0187-1.; Lee Y.H., Tan C.W., Venkatratnam A. et al. Dysregulated sphingolipid metabolism in endometriosis. J Clin Endocrinol Metab. 2014;99(10):E1913–21. https://doi.org/10.1210/jc.2014-1340.; Zhang Q., Duan J., Liu X., Guo S.W. Platelets drive smooth muscle metaplasia and fibrogenesis in endometriosis through epithelial-mesenchymal transition and fibroblast-to-myofibroblast transdifferentiation. Mol Cell Endocrinol. 2016;428:1–16. https://doi.org/10.1016/j.mce.2016.03.015.; Bernacchioni C., Capezzuoli T., Vannuzzi V. et al. Sphingosine 1-phosphate receptors are dysregulated in endometriosis: possible implication in transforming growth factor β-induced fibrosis. Fertil Steril. 2021;115(2):501–11. https://doi.org/10.1016/j.fertnstert.2020.08.012.; Turathum B., Gao E.M., Grataitong K. et al. Dysregulated sphingolipid metabolism and autophagy in granulosa cells of women with endometriosis. Front Endocrinol (Lausanne). 2022;13:906570. https://doi.org/10.3389/fendo.2022.906570.; Itami N., Shirasuna K., Kuwayama T., Iwata H. Palmitic acid induces ceramide accumulation, mitochondrial protein hyperacetylation, and mitochondrial dysfunction in porcine oocytes. Biol Reprod. 2018;98(5):644–53. https://doi.org/10.1093/biolre/ioy023.; Fucho R., Casals N., Serra D., Herrero L. Ceramides and mitochondrial fatty acid oxidation in obesity. FASEB J. 2017;31(4):1263–72. https://doi.org/10.1096/fj.201601156R.; Torretta E., Barbacini P., Al-Daghri N.M., Gelfi C. Sphingolipids in obesity and correlated co-morbidities: the contribution of gender, age and environment. Int J Mol Sci. 2019;20(23):5901. https://doi.org/10.3390/ijms20235901.; Samad F., Hester K.D., Yang G. et al. Altered adipose and plasma sphingolipid metabolism in obesity: a potential mechanism for cardiovascular and metabolic risk. Diabetes. 2006;55(9):2579–87. https://doi.org/10.2337/db06-0330.; Shibahara H., Ishiguro A., Inoue Y. et al. Mechanism of palmitic acid-induced deterioration of in vitro development of porcine oocytes and granulosa cells. Theriogenology. 2020;141:54–61. https://doi.org/10.1016/j.theriogenology.2019.09.006.; Levi A.J., Raynault M.F., Bergh P.A. et al. Reproductive outcome in patients with diminished ovarian reserve. Fertil Steril. 2001;76(4):666–9. https://doi.org/10.1016/s0015-0282(01)02017-9.; Timur B., Aldemir O., İnan N. et al. Clinical significance of serum and follicular fluid ceramide levels in women with low ovarian reserve. Turk J Obstet Gynecol. 2022;19(3):207–14. https://doi.org/10.4274/tjod.galenos.2022.05760.; Alizadeh J., da Silva Rosa S.C., Weng X. et al. Ceramides and ceramide synthases in cancer: Focus on apoptosis and autophagy. Eur J Cell Biol. 2023;102(3):151337. https://doi.org/10.1016/j.ejcb.2023.151337.; Nakahara T., Iwase A., Nakamura T. et al. Sphingosine-1-phosphate inhibits H2O2-induced granulosa cell apoptosis via the PI3K/Akt signaling pathway. Fertil Steril. 2012;98(4):1001–8.e1. https://doi.org/10.1016/j.fertnstert.2012.06.008.; Valtetsiotis K., Valsamakis G., Charmandari E., Vlahos N.F. Metabolic mechanisms and potential therapeutic targets for prevention of ovarian aging: data from up-to-date experimental studies. Int J Mol Sci. 2023;24(12):9828. https://doi.org/10.3390/ijms24129828.; Li F., Turan V., Lierman S. et al. Sphingosine-1-phosphate prevents chemotherapy-induced human primordial follicle death. Hum Reprod. 2014;29(1):107–13. https://doi.org/10.1093/humrep/det391.; Pascuali N., Scotti L., Di Pietro M. et al. Ceramide-1-phosphate has protective properties against cyclophosphamide-induced ovarian damage in a mice model of premature ovarian failure. Hum Reprod. 2018;33(5):844–59. https://doi.org/10.1093/humrep/dey045.; Абусуева З.А., Мухтарова М.М., Хашаева Т.Х. и др. Компаративная оценка провоспалительных цитокинов у женщин с диагностированными наследственными тромбофилиями различного генеза и их ассоциация с ранними и поздними эмбриональными потерями. Проблемы репродукции. 2022;28(3):10–7. https://doi.org/10.17116/repro20222803110.; Cianci A., Calogero A.E., Palumbo M.A. et al. Relationship between tumour necrosis factor alpha and sex steroid concentrations in the follicular fluid of women with immunological infertility. Hum Reprod. 1996;11(2):265–8. https://doi.org/10.1093/humrep/11.2.265.; Banaras S., Paracha R.Z., Nisar M. et al. System level modeling and analysis of TNF-α mediated sphingolipid signaling pathway in neurological disorders for the prediction of therapeutic targets. Front Physiol. 2022;13:872421. https://doi.org/10.3389/fphys.2022.872421.; Sukocheva O.A., Neganova M.E., Aleksandrova Y/ et al. Signaling controversy and future therapeutical perspectives of targeting sphingolipid network in cancer immune editing and resistance to tumor necrosis factor-α immunotherapy. Cell Commun Signal. 2024;22(1):251. https://doi.org/10.1186/s12964-024-01626-6.; Kolesnick R. The therapeutic potential of modulating the ceramide/sphingomyelin pathway. J Clin Invest. 2002;110(1):3–8. https://doi.org/10.1172/JCI16127.; Di Paolo A., Vignini A., Alia S. et al. Pathogenic role of the sphingosine 1-phosphate (S1P) pathway in common gynecologic disorders (GDs): a possible novel therapeutic target. Int J Mol Sci. 2022;23(21):13538. https://doi.org/10.3390/ijms232113538.; Коваль О.М., Хачанова Н.В., Журавлева М.В. и др. Безопасность воспроизведенного финголимода. Безопасность и риск фармакотерапии. 2018;6(1):23–31. https://doi.org/10.30895/2312-7821-2018-6-1-23-31.; https://www.gynecology.su/jour/article/view/2609

  9. 9
  10. 10
  11. 11
  12. 12
  13. 13
  14. 14
  15. 15

    Source: Alidjan , F M , Hoedt , S D , Rashid , M , Zee-van Vark , L C V D , Voortman , G J , Dorst-Lagerwerf , K Y , Christoffersen , C , Lafeber , M , Roeters van Lennep , J E , Verhoeven , A J M , Friesema , E C H & Mulder , M T 2025 , ' Triglyceride-rich lipoprotein sphingolipids are altered in primary hypertension : A pilot case-control study ' , Journal of Clinical Lipidology , vol. 19 , no. 3 , pp. 468-476 . https://doi.org/10.1016/j.jacl.2025.03.014

    File Description: application/pdf

  16. 16

    Source: Shoghli, M, Sinisalo, J, Lokki, A I, Lääperi, M, Lokki, M L, Hilvo, M, Jylhä, A, Tuomilehto, J & Laaksonen, R 2025, 'Exploring the association between ceramide, phosphatidylcholine, and COPD prevalence and incidence : a FINRISK population-based cohort study', BMC Pulmonary Medicine, vol. 25, 470. https://doi.org/10.1186/s12890-025-03884-7

    Relation: info:eu-repo/semantics/altIdentifier/pmid/41094466; info:eu-repo/semantics/altIdentifier/pissn/1471-2466

  17. 17
  18. 18

    Source: International Journal of Molecular Sciences

    Relation: info:eu-repo/grantAgreement/MESTD/inst-2020/200015/RS//; info:eu-repo/grantAgreement/MESTD/inst-2020/200026/RS//; info:eu-repo/grantAgreement/MESTD/inst-2020/200051/RS//; info:eu-repo/grantAgreement/MESTD/inst-2020/200110/RS//; info:eu-repo/grantAgreement/MESTD/inst-2020/200168/RS//; This work was supported by the Organization for the Prohibition of Chemical Weapons (OPCW), under grant numbers L/ICA/ICB-217652/18 and L/ICA/ICB-108/21.; https://cherry.chem.bg.ac.rs/handle/123456789/7323; http://cherry.chem.bg.ac.rs/bitstream/id/38236/plasma_and_serum.pdf

  19. 19
  20. 20