Suchergebnisse - "Brain segmentation"
-
1
Autoren: et al.
Quelle: Computers in Biology and Medicine. 195
Schlagwörter: 46 Information and Computing Sciences (for-2020), 4611 Machine Learning (for-2020), Basic Behavioral and Social Science (rcdc), Dementia (rcdc), Behavioral and Social Science (rcdc), Neurodegenerative (rcdc), Alzheimer's Disease (rcdc), Alzheimer's Disease including Alzheimer's Disease Related Dementias (AD/ADRD) (rcdc), Biomedical Imaging (rcdc), Brain Disorders (rcdc), Aging (rcdc), Neurosciences (rcdc), Acquired Cognitive Impairment (rcdc), Bioengineering (rcdc), Neurological (hrcs-hc), Animals (mesh), Magnetic Resonance Imaging (mesh), Brain (mesh), Rats (mesh), Mice (mesh), Imaging, Three-Dimensional (mesh), Neural Networks, Computer (mesh), Disease Models, Animal (mesh), Male (mesh), Alzheimer Disease (mesh), Brain (mesh), Animals (mesh), Mice (mesh), Rats (mesh), Alzheimer Disease (mesh), Disease Models, Animal (mesh), Imaging, Three-Dimensional (mesh), Magnetic Resonance Imaging (mesh), Male (mesh), Neural Networks, Computer (mesh), Brain segmentation, Convolutional neural network, Magnetic resonance imaging, Preclinical models, Transfer learning, Animals (mesh), Magnetic Resonance Imaging (mesh), Brain (mesh), Rats (mesh), Mice (mesh), Imaging, Three-Dimensional (mesh), Neural Networks, Computer (mesh), Disease Models, Animal (mesh), Male (mesh), Alzheimer Disease (mesh), 08 Information and Computing Sciences (for), 09 Engineering (for), 11 Medical and Health Sciences (for), Biomedical Engineering (science-metrix), 3102 Bioinformatics and computational biology (for-2020), 4203 Health services and systems (for-2020), 4601 Applied computing (for-2020)
Zugangs-URL: https://escholarship.org/uc/item/6jd7f9zt
-
2
Autoren: et al.
Quelle: Magn Reson Med
Magnetic resonance in medicine 94(1), 134-149 (2025). doi:10.1002/mrm.30453Schlagwörter: Male, Adult, methods [Image Interpretation, Computer-Assisted], multi‐parameter mapping, Signal-To-Noise Ratio, Sensitivity and Specificity, UHF‐MRI, methods [Magnetic Resonance Imaging], methods [Image Processing, Computer-Assisted], Image Interpretation, Computer-Assisted, Image Processing, Computer-Assisted, Humans, ddc:610, diagnostic imaging [Brain], neuroimaging, Brain, Reproducibility of Results, Image Enhancement, Imaging Methodology, Magnetic Resonance Imaging, brain segmentation, multi‐contrast, Female, methods [Image Enhancement], anatomy & histology [Brain], synthetic MPRAGE, Algorithms
-
3
Autoren: et al.
Quelle: IEEE Access, Vol 13, Pp 75847-75860 (2025)
-
4
Autoren: et al.
Quelle: BMC Medical Imaging, Vol 25, Iss 1, Pp 1-8 (2025)
Schlagwörter: Cerebral arteriovenous malformation, Radiation-induced change, Stereotactic radiosurgery, Deep learning, Brain segmentation, Medical technology, R855-855.5
Dateibeschreibung: electronic resource
Relation: https://doaj.org/toc/1471-2342
-
5
Autoren: et al.
Quelle: Front Aging Neurosci
Frontiers in Aging Neuroscience, Vol 17 (2025) -
6
Autoren: et al.
Quelle: BMC Medical Imaging, Vol 25, Iss 1, Pp 1-8 (2025)
Schlagwörter: Meningioma, Brain edema, Gamma knife radiosurgery, Deep learning, Brain segmentation, Medical technology, R855-855.5
Dateibeschreibung: electronic resource
Relation: https://doaj.org/toc/1471-2342
-
7
Autoren: et al.
Quelle: Alzheimers & Dementia. 20(1):629-640
Schlagwörter: Neurology, Neurologi, brain segmentation, cognition, CSF biomarkers, CT, deep learning, dementia, plasma biomarkers, fluid neurofilament light, cerebrospinal-fluid, alzheimers-disease, brain atrophy, imaging biomarkers, mri, plasma, index, segmentation, Neurosciences & Neurology
Zugangs-URL: https://gup.ub.gu.se/publication/331915
-
8
Autoren: et al.
Quelle: Scientific Reports, Vol 14, Iss 1, Pp 1-13 (2024)
Schlagwörter: MRI, Brain segmentation, Tissue classification, Tumor identification, Machine learning, Intuitionistic –FCM, Medicine, Science
Dateibeschreibung: electronic resource
Relation: https://doaj.org/toc/2045-2322
-
9
Autoren: et al.
Quelle: Diagnostics, Vol 15, Iss 17, p 2206 (2025)
Schlagwörter: enlarged subarachnoid space, preterm infants, brain segmentation, Medicine (General), R5-920
Dateibeschreibung: electronic resource
-
10
Autoren: et al.
Weitere Verfasser: et al.
Quelle: Lecture Notes in Computer Science ISBN: 9783031959103
Mehdipour Ghazi, M & Nielsen, M 2025, FAST-AID Brain : Fast and Accurate Segmentation Tool Using Artificial Intelligence Developed for Brain . in J Petersen & V A Dahl (eds), Image Analysis-23rd Scandinavian Conference, SCIA 2025, Proceedings . Springer, Lecture Notes in Computer Science, vol. 15725 LNCS, pp. 161-176, 23rd Scandinavian Conference on Image Analysis, SCIA 2025, Reykjavik, Iceland, 23/06/2025 . https://doi.org/10.1007/978-3-031-95911-0_12
Mehdipour Ghazi, M & Nielsen, M 2022 ' FAST-AID Brain: Fast and Accurate Segmentation Tool using Artificial Intelligence Developed for Brain ' arXiv.org . < https://arxiv.org/abs/2208.14360 >Schlagwörter: FOS: Computer and information sciences, Computer Science - Machine Learning, ICV estimation, Computer Vision and Pattern Recognition (cs.CV), Image and Video Processing (eess.IV), Computer Science - Computer Vision and Pattern Recognition, deep learning, Electrical Engineering and Systems Science - Image and Video Processing, Machine Learning (cs.LG), 03 medical and health sciences, 0302 clinical medicine, FOS: Electrical engineering, electronic engineering, information engineering, MRI data augmentation, Brain segmentation, hierarchical Softmax, weakly supervised learning
Dateibeschreibung: application/pdf
-
11
Autoren: et al.
Schlagwörter: Biomedical and clinical sciences, Neurosciences, Health sciences, Health services and systems, Information and computing sciences, Artificial intelligence, Machine learning, Deep learning, Electron microscopy, Brain segmentation, Connectomics, Neural circuits, Convolutional neural networks, Transformers, Meta-analysis
-
12
Autoren: et al.
Schlagwörter: Artificial Intelligence and Image Processing, Meningioma, Brain edema, Gamma knife radiosurgery, Deep learning, Brain segmentation
-
13
Autoren: et al.
Schlagwörter: Artificial Intelligence and Image Processing, Meningioma, Brain edema, Gamma knife radiosurgery, Deep learning, Brain segmentation
-
14
Autoren: et al.
Schlagwörter: Artificial Intelligence and Image Processing, Meningioma, Brain edema, Gamma knife radiosurgery, Deep learning, Brain segmentation
-
15
Autoren: et al.
Quelle: NeuroImage, Vol 304, Iss , Pp 120934- (2024)
Schlagwörter: Brain segmentation, Rodent MRI, Deep learning, Attention U-Net, Neurosciences. Biological psychiatry. Neuropsychiatry, RC321-571
Dateibeschreibung: electronic resource
-
16
Autoren: et al.
Quelle: Front Neurosci
Frontiers in Neuroscience, Vol 18 (2024)Schlagwörter: normal pressure hydrocephalus, (NPH), FreeSurfer, enlarged ventricles, Neurosciences. Biological psychiatry. Neuropsychiatry, 3. Good health, brain segmentation, 03 medical and health sciences, 0302 clinical medicine, dementia, RC321-571, Neuroscience
-
17
Autoren: et al.
Quelle: Brain Behav
Brain and Behavior, Vol 14, Iss 7, Pp n/a-n/a (2024)Schlagwörter: Male, Adult, Aging, synthetic MRI, Neurosciences. Biological psychiatry. Neuropsychiatry, quantitative MRI, Young Adult, 03 medical and health sciences, Sex Factors, 0302 clinical medicine, Reference Values, Humans, Gray Matter, Aged, Sex Characteristics, aging, Age Factors, Brain, Organ Size, Middle Aged, Magnetic Resonance Imaging, White Matter, brain segmentation, Original Article, Female, RC321-571
-
18
Autoren: et al.
Schlagwörter: Biological Psychology, Biomedical and Clinical Sciences, Neurosciences, Psychology, Biomedical Imaging, Machine Learning and Artificial Intelligence, Networking and Information Technology R&D (NITRD), Bioengineering, Neurological, Generic health relevance, magnetic resonance imaging, brain segmentation, deep learning, convolutional neural network, medical image processing, medical imaging data ground truth, Cognitive Sciences, Biological psychology
Dateibeschreibung: application/pdf
-
19
Autoren: et al.
Weitere Verfasser: et al.
Schlagwörter: [INFO.INFO-AI] Computer Science [cs]/Artificial Intelligence [cs.AI], [INFO.INFO-CV] Computer Science [cs]/Computer Vision and Pattern Recognition [cs.CV], Bias, Synthetic, Validation, Deep neural network, Brain segmentation
Dateibeschreibung: application/pdf
Zugangs-URL: https://hal.science/hal-04608723v1
-
20
Autoren:
Weitere Verfasser:
Schlagwörter: ADNI baza podataka, brain segmentation, FSL, brain MRI, morphometric analysis, MR mozga, Alzheimerova bolest, Alzheimer's disease, morfometrijska analiza, ADNI database, segmentacija mozga
Dateibeschreibung: application/pdf
Full Text Finder
Nájsť tento článok vo Web of Science