Výsledky vyhledávání - "Binary code vulnerability detection"
-
1
Autoři: a další
Zdroj: 2025 IEEE 6th International Seminar on Artificial Intelligence, Networking and Information Technology (AINIT). :59-64
-
2
Autoři: a další
Zdroj: 2025 2nd International Conference on Algorithms, Software Engineering and Network Security (ASENS). :194-199
-
3
Autoři:
Zdroj: IEEE Access, Vol 11, Pp 63904-63915 (2023)
Témata: embeddings from language models, feature fusion, instruction level sequence features, Electrical engineering. Electronics. Nuclear engineering, Binary code vulnerability detection, word level sequence features, TK1-9971
Přístupová URL adresa: https://doaj.org/article/878e2d69e04d4b2c8b9a931011935d29
-
4
Autoři:
Zdroj: 2023 IEEE Symposium on Computers and Communications (ISCC). :373-379
-
5
Autoři: a další
Zdroj: Proceedings of the 2019 2nd International Conference on Algorithms, Computing and Artificial Intelligence. :160-165
-
6
Autoři: Marwan Ali Albahar
Zdroj: IEEE Access, Vol 8, Pp 14999-15006 (2020)
Témata: new regularization technique, time delay neural network, 0202 electrical engineering, electronic engineering, information engineering, deep learning, NDSS18 binary dataset, Electrical engineering. Electronics. Nuclear engineering, 02 engineering and technology, Binary code vulnerability detection, TK1-9971
-
7
Autoři: a další
Zdroj: ACM International Conference Proceeding Series; 12/20/2019, p160-165, 6p
-
8
-
9
Autoři: a další
Zdroj: Scientific Reports; 8/1/2025, Vol. 15 Issue 1, p1-17, 17p
-
10
Autoři: a další
Zdroj: Proceedings of the 33rd ACM International Conference on Information and Knowledge Management. :1215-1225
Témata: FOS: Computer and information sciences, Computer Science - Machine Learning, Computer Science - Cryptography and Security, Artificial Intelligence (cs.AI), Computer Science - Artificial Intelligence, Cryptography and Security (cs.CR), Machine Learning (cs.LG)
Přístupová URL adresa: http://arxiv.org/abs/2404.08562
-
11
Autoři:
Zdroj: International Journal of Information Security; Oct2024, Vol. 23 Issue 5, p3135-3151, 17p
-
12
Autoři:
Zdroj: Computers & Security. Dec2023, Vol. 135, pN.PAG-N.PAG. 1p.
-
13
-
14
Autoři: a další
Zdroj: ACM Transactions on Privacy & Security; Aug2023, Vol. 26 Issue 3, p1-25, 25p
-
15
Autoři: a další
Zdroj: Applied Sciences (2076-3417); Feb2023, Vol. 13 Issue 4, p2271, 17p
-
16
Autoři:
Zdroj: Empirical Software Engineering; Jan2022, Vol. 27 Issue 1, p1-39, 39p
-
17
Autoři:
Zdroj: Security & Communication Networks; 9/30/2020, p1-16, 16p
-
18
Autoři:
Zdroj: Lecture Notes in Computer Science ISBN: 9783030783747
-
19
Autoři: a další
Přispěvatelé: a další
Zdroj: Le, T, Nguyen, T V, Le, T, Phung, D, Montague, P, De Vel, O & Qu, L 2019, Maximal divergence sequential auto-encoder for binary software vulnerability detection*. in A Rush (ed.), International Conference on Learning Representations 2019. International Conference on Learning Representations (ICLR), La Jolla CA USA, International Conference on Learning Representations 2019, New Orleans, Louisiana, United States of America, 6/05/19. < https://openreview.net/pdf?id=ByloIiCqYQ >
Popis souboru: application/pdf
Relation: urn:ISBN:9783800743629
-
20
Autoři: a další
Zdroj: 2013 IEEE 37th Annual Computer Software & Applications Conference Workshops; 2013, p95-100, 6p
Nájsť tento článok vo Web of Science
Full Text Finder