Výsledky vyhľadávania - "Bi-level distributed programming"
-
1
Autori: Chi-Bin Cheng
Zdroj: European Journal of Operational Research. 211:601-611
-
2
Autori:
Zdroj: International Journal of Revenue Management. 5:234
-
3
Autori:
Thesis Advisors:
Popis súboru: 70
-
4
Autori: a ďalší
Prispievatelia: a ďalší
Predmety: 逆向拍賣, 分散式雙層規劃, 模糊理論, 遺傳演算法, Reverse Auction, Bi-level Distributed Programming, Fuzzy Logic, Genetic Algorithm
Popis súboru: 143 bytes; text/html
Relation: 1.林豐澤,〈演化式計算下篇:基因演算法以及三種應用實例〉,智慧科技與應用統計學報,第3卷,第1期,頁29 - 56,2005年。 2.林則孟,《生產計劃與管理》,華泰文化事業股份有限公司,2006。 3.邱瑞廷,《以模糊理論建構可動態調整之一對多協商策略模式》,碩士論文,私立南台科技大學資訊管理所,2004。 4.謝昭熠,《拍賣制度之研究》,碩士論文,中山大學企業管理研究所,1992。 5.陳宏謀,〈遺傳基因演算法求取PID 控制器之參數的最佳解並與Wang法比較〉。 6.曾榮淙,《應用模糊多目標規劃求解逆向拍賣問題》,碩士論文,國立虎尾科技大學工業工程與管理研究所,2007。 7.蘇木春、張孝德,《機器學習:類神經網路、模糊系統以及基因演算法則》,全華圖書,2004。 8.王如芬,《電子商務中議價代理人讓步策略之研究》,碩士論文,國立中山大學資訊管理研究所,2000。 9.American Production and Inventory Control Society. APICS Dictionary, 2004. 10.Bellman, R. E., and Zadeh, L. A., “Decision making in a fuzzy environment,” Management Science, vol.17, no.4, pp.141-614, 1970. 11.Bichler, M. and Kalagnanam, J., “Configurable offers and winner determination in multi-attribute auctions,” European Journal of Operational Research, vol.160, no.2, pp.380-394, 2005. 12.Bichler, M., Kaukal, M., and Segev, A., “Multi-attribute auctions for electronic procurement,” in: Proceedings of the First IBM IAC Workshop on Internet Based Negotiation Technologies, Yorktown Heights, NY, 1999. 13.Branco, F.,“The design of multidimensional auctions,” Rand Journal of Economics, vol.28, no.1, pp.63-81, 1997. 14.Cakravastia, A., Toha, I.S., and Nakamura, N., “A two-stage model for the design of supply chain networks,” International Journal of Production Economics, vol.80, no.3, pp.231-248, 2001. 15.Chan, C.C.H., Cheng, C. B. and Huang, S.-W., “Formulating Ordering Policies In A Supply Chain By Genetic Algorithm,” International Journal of Modeling and Simulation, vol.26, no.2, pp.129-136, 2006. 16.Che, Y.-K., “Design competition through multidimensional auctions,” Rand Journal of Economics, vol.24, no.4, pp. 668-680, 1993. 17.Cheng, C. B., “Reverse Auction with Negotiation by Bi-level Distributed Programming,” Submitted to Applied mathematics and Computation, 2009. 18.Cheng, C. B., “Solving a sealed-bid reverse auction problem by multiple-criterion decision-making methods,” Computers & Mathematics with Applications archive, vol.56, iss.12, 2008. 19.Cheng, C.-B., Syau, Y.-R. and Tzeng, R.-T., “Solving a seal-bid reverse auction by fuzzy multiple objective programming,” Proceedings of 2008 Information Processing and Management of Uncertainty in Knowledge-Based Systems, Malaga, Spain, pp.22-27, Jun. 2008. 20.Emiliani, M. L., “Regulating B2B online reverse auctions through voluntary codes of conduct,” Industrial Marketing Management, vol.34, no.5, pp.526-534, 2005. 21.Fogarty, D. W., J. H. Blackstone, Jr. and T. R. Hoffmann., Production and Inventory Management, South-Western, 1991. 22.Hiigins, P., Patrick, L. R. and Tierney, L., Manufacturing Planning and Control:Beyond MRPII, London: Chapman and Hall, 1996. 23.Kalakota R. and Whinston, A.B., Electronic Commerce: A Manager Guide. New York: Addison-Wesley, 1997. 24.Kern, G., M. and Ebsary, J. C., “Master Production Rescheduling Policy in Capacity-Constrained Just-In-Time Make-To-Stock Environment,” Decision Sciences, vol.27, no.2, pp.365-387, 1996. 25.Kosiur, D. R., Understanding Electronic Commerce, 1997. 26.Liang, T., and Hwang, J., “A Framework for Applying Intelligent Agents to Support Electronic Commerce,” Decision Support Systems, vol.28, no.4, pp. 305-317, 2000. 27.Pramanik, S. & T. K. Roy., “Fuzzy goal programming approach to multilevel programming problems,” European Journal of Operational Research, vol.176, no.2, pp.1151-1166, 2007. 28.Shayan, N. and Fallah, H., “A new approach to finite scheduling,” International Journal of Production Research, vol. 37, no 8, pp. 1903-1915, 1999. 29.Shih, H.-S., Y.-J. Lai and E. S. Lee., “Fuzzy approach for multi-level programming problems,” Computers and Operations Research, vol.23, no.1, pp.73-91, 1996. 30.Smart, A. & A. Harrison., “Reverse Auctions as a support mechanism in flexible supply chains,” International Journal of Logistics: Research and Applications, vol.5, no.3, pp.275-284, 2002. 31.Smeltzer, L.R. and Carr, A.S., “Electronic reverse auctions: Promises, risks and conditions for success,” Industrial Marketing Management, vol. 32, no.6, pp. 481-488, 2003. 32.Stalk, J., “Time: The next source of competitive advantage,” Harvard Business Review, vol.66, no.4, pp. 41-51, 1988. 33.Stevenson, William J., Operations Management, New York: McGraw-Hill, 2005. 34.Strader, S., “Characteristics of electronic markets,” Decision Support System, vol.21, no.3, pp. 185-198, 1997. 35.Teich, J.E., Wallenius, H., Wallenius, J. and Koppius, O.R., “Emerging multiple issue e-auctions,” European Journal of Operational Research, vol.159, iss.1, pp. 1-16, 2004. 36.Tully, S., “Going, going, gone! The B2B tool that really is changing the world,” Fortune, vol.141, no.6,pp. 132-145, 2000. 37.Turban, E., McLean, E.R. and J.C. Wetherbe., Information Technology for Management: Making Connections for Strategic Advantage, New York: John Wiley and Sons, 1999a. 38.Turban, E., J. Lee, J.K. Lee, D. King, and H.M Chung , Electronic Commerce: A Managerial Perspective, New Jersey: Prentice Hall, 1999b. 39.Zadeh L. A., “Fuzzy sets”, Inform. Control, vol.8, pp. 338-353, 1965.; https://tkuir.lib.tku.edu.tw/dspace/handle/987654321/52146; https://tkuir.lib.tku.edu.tw/dspace/bitstream/987654321/52146/1/index.html
-
5
-
6
Autori: Cheng, Chi-Bin
Relation: http://www.sciencedirect.com/science/article/pii/S0377-2217(11)00045-2
Dostupnosť: http://www.sciencedirect.com/science/article/pii/S0377-2217(11)00045-2
-
7
Autori:
Zdroj: Journal of Intelligent & Fuzzy Systems. 2015, Vol. 29 Issue 2, p803-815. 13p.
-
8
Autori: a ďalší
Zdroj: Scientia Iranica. Transaction E, Industrial Engineering; May/Jun2024, Vol. 31 Issue 11, p805-824, 20p
Predmety: SUPPLY chains, NONLINEAR programming, PARTICLE swarm optimization, PRODUCTION planning, REQUESTS for quotations, BARGAINING power, MATHEMATICAL models, SUPPLIERS, SIMULATED annealing
-
9
Autori: a ďalší
Zdroj: Sustainability (2071-1050); Dec2022, Vol. 14 Issue 24, p16879, 23p
-
10
Autori: a ďalší
Zdroj: Management Decision; 2021, Vol. 59 Issue 10, p2496-2527, 32p
-
11
Autori:
Zdroj: Journal of Project Management, Vol 3, Iss 2, Pp 105-120 (2018)
Predmety: Bi-level distributed program-ming problem, Project client, Project contractors, Leader-follower interaction, Management. Industrial management, HD28-70, Business, HF5001-6182
Popis súboru: electronic resource
Relation: http://www.growingscience.com/jpm/Vol3/jpm_2018_3.pdf; https://doaj.org/toc/2371-8366; https://doaj.org/toc/2371-8374
Prístupová URL adresa: https://doaj.org/article/f2b58f4b45184a379f2eb826a3fdd206
-
12
Autori:
Zdroj: Operational Research; Sep2020, Vol. 20 Issue 3, p1437-1460, 24p
-
13
Autori:
Zdroj: IET Generation, Transmission & Distribution (Wiley-Blackwell); Sep2019, Vol. 13 Issue 17, p4099-4113, 15p
-
14
Autori:
Zdroj: Granular Computing; Dec2018, Vol. 3 Issue 4, p275-283, 9p
-
15
Autori:
Zdroj: Asia Pacific Journal of Marketing & Logistics; 2018, Vol. 30 Issue 5, p1162-1182, 21p
-
16
Autori:
Zdroj: Kybernetes; 2019, Vol. 48 Issue 3, p385-406, 22p
Predmety: SUSTAINABILITY, RISK assessment, MATHEMATICAL models
-
17
Autori: a ďalší
Zdroj: Asia-Pacific Journal of Operational Research; Dec2017, Vol. 34 Issue 6, p-1, 17p
-
18
Autori:
Zdroj: Journal of Intelligent & Fuzzy Systems; 2015, Vol. 28 Issue 1, p217-224, 8p
-
19
Autori:
Zdroj: International Journal of Systems Science; Sep2013, Vol. 44 Issue 9, p1587-1601, 15p
-
20
Autori: a ďalší
Prispievatelia: a ďalší
Predmety: 多專案排程, 多模式資源限制排程問題, 兩階層分散式規劃, 組合拍賣, 模糊規劃, Multi-project scheduling, Multi-mode resource-constrained project scheduling problem, Bi-level decentralized programming, Combinatorial auction, Fuzzy programming
Relation: 參考文獻 [1] 王嘉男, & 朱彥貞. (2014). 專案管理. 科學發展, (494), 64-70. [2] 吳忠倫. (2009). 以粒子群優化法求解多模資源受限的專案排程問題. 國立勤益科技大學. 電子工程系, 碩士, 98. [3] 吳鴻君. (2011). 台灣電視廣告市場之組合拍賣機制設計. 淡江大學資訊管理學系碩士班學位論文, 1-86. [4] 李曉蘋. (2002). 公營汽車客運業者面臨破產因應對策之研究.逢甲大學. 交通工程與管理學系, 碩士, 91. [5] 張亦寬. (2003). 以雙層次數學規劃建構旅客需求導向之票價設計模式-以台灣高鐵為例. 成功大學. 交通管理學系, 碩士, 92 [6] 陳柏宇. (2011). 台灣廢印表機回收費率制定問題之探討─ 兩階層規劃之 Kkt 條件與直覺模糊趨近法之比較. 淡江大學管理科學研究所碩士班學位論文, 1-90. [7] 許珀銜. (2011). 應用兩階層規劃於提升台灣廢主機回收率之研究. 淡江大學管理科學研究所碩士班學位論文 , 1-85. [8] 詹蕙珍(2004)。模糊多目標非線性規劃在有限資源多專案排程問題之應用. 屏東科技大學. 工業管理系, 碩士, 79. [9] 廖慧凱(2006). 道路災害搶修與緊急物流配送問題之探討. 國立中央大學. 土木工程學系, 碩士, 95 [10] 蔡登茂. (1996). 有限資源專案排程問題之文獻回顧研究. 正修學報, (9), 57-74. [11] 鄭有原. (2005). 考慮資源型態之營建有限資源多專案排程模式. 雲林科技大學. 營建工程系碩士班, 碩士, 106. [12] 謝穎欣. (2005). 應用田口方法於基因演算法輸入參數設計--以求解多模式專案排程下資源撫平為例. 國立中央大學. 工業管理研究所, 碩士, 77. [13] Alcaraz, J., Maroto, C., & Ruiz, R. (2003). Solving the multi-mode resource-constrained project scheduling problem with genetic algorithms. Journal of the Operational Research Society, 54(6), 614-626. [14] Anandalingam, G. (1988). A mathematical programming model of decentralized multi-level systems. Journal of the Operational Research Society, 1021-1033. [15] Bard, J. F. (1983). Coordination of a multidivisional organization through two levels of management. Omega, 11(5), 457-468. [16] Bard, J. F., Plummer, J., & Claude Sourie, J. (2000). A bilevel programming approach to determining tax credits for biofuel production. European Journal of Operational Research, 120(1), 30-46. [17] Bellman, R. E., & Zadeh, L. A. (1970). Decision-making in a fuzzy environment. Management Science, 17(4), B-141-B-164. [18] Ben-Ayed, O., Boyce, D. E., & Blair III, C. E. (1988). A general bilevel linear programming formulation of the network design problem. Transportation Research Part B: Methodological, 22(4), 311-318. [19] Beşikci, U., Bilge, U., & Ulusoy, G. (2013). Resource dedication problem in a multi-project environment. Flexible Services and Manufacturing Journal, 25(1-2), 206-229. [20] Boctor, F. F. (1993). Heuristics for scheduling projects with resource restrictions and several resource-duration modes. The International Journal of Production Research, 31(11), 2547-2558. [21] Bouleimen, K., & Lecocq, H. (2003). A new efficient simulated annealing algorithm for the resource-constrained project scheduling problem and its multiple mode version. European Journal of Operational Research, 149(2), 268-281. [22] Brucker, P., Drexl, A., Mohring, R., Neumann, K., & Pesch, E. (1999). Resource-constrained project scheduling: Notation, classification, models, and methods. European Journal of Operational Research, 112(1), 3-41. [23] Candler, W., and Norton, R. (1977). Multilevel Programming. Tech. Rep. 20. World Bank Development Research Center, Washington D.C. [24] Chain, C., & Goldratt, E. M. (1997). North river press. Great Barrington, MA, USA, [25] Cheng, C. (2011). Reverse auction with buyer–supplier negotiation using bi-level distributed programming. European Journal of Operational Research, 211(3), 601-611. [26] Cheng, C., Lai, Y., & Chan, K. (2011). Solving a reverse auction problem by bi-level distributed programming and genetic algorithm. International Journal of Revenue Management, 5(2), 234-260. [27] Cleland, D. I.、Ireland, L. R.、Ireland, L.(2000)。Project manager''s portable handbook McGraw Hill. [28] De Vries, S., & Vohra, R. V. (2003). Combinatorial auctions: A survey. INFORMS Journal on Computing, 15(3), 284-309. [29] Gido, J., & Clements, J. P. (2008). Successful project management South-Western College Publishing. [30] Goldratt, E. M.(1997)。Critical chain North River Pr. [31] Goncalves, J. F., Mendes, J. J., & Resende, M. G. (2008). A genetic algorithm for the resource constrained multi-project scheduling problem. European Journal of Operational Research, 189(3), 1171-1190. [32] Hannan, E. L. (1981). Linear programming with multiple fuzzy goals. Fuzzy Sets and Systems, 6(3), 235-248. [33] Hans, E. W., Herroelen, W., Leus, R., & Wullink, G. (2007). A hierarchical approach to multi-project planning under uncertainty. Omega, 35(5), 563-577. [34] Hartmann, S. (2001). Project scheduling with multiple modes: A genetic algorithm. Annals of Operations Research, 102(1-4), 111-135. [35] Jozefowska, J., Mika, M., Rożycki, R., Waligora, G., & Węglarz, J. (2001). Simulated annealing for multi-mode resource-constrained project scheduling. Annals of Operations Research, 102(1-4), 137-155. [36] Kalashnikov, V., Dempe, S., Perez-Valdes, G., and Kalashnykova, N. (2011). Natural gas cash-out problem: solution with bilevel programming tools. The Clute Institute International Academic Conferences. Retrieved 2011-05-30, from http://www.cluteonline.com/conferences/index.php/IAC/2011NO/paper/view/338. [37] Kelley, J. E. (1963). The critical-path method: Resources planning and scheduling. Industrial Scheduling, 13, 347-365. [38] Khatibi, V., & Montazer, G. A. (2009). Intuitionistic fuzzy set vs. fuzzy set application in medical pattern recognition. Artificial Intelligence in Medicine, 47(1), 43-52. [39] Kim, S., & Leachman, R. C. (1993). Multi-project scheduling with explicit lateness costs. IIE Transactions, 25(2), 34-44. [40] Kolisch, R., & Padman, R. (2001). An integrated survey of deterministic project scheduling. Omega, 29(3), 249-272. [41] Kolisch, R., & Sprecher, A. (1996). PSPLIB—A project scheduling problem library. European Journal of Operational Research, 96, 205-216. [42] Kolisch, R., Sprecher, A., & Drexl, A. (1995). Characterization and generation of a general class of resource-constrained project scheduling problems. Management Science, 41(10), 1693-1703. [43] Kurtulus, I. S., & Narula, S. C. (1985). Multi-project scheduling: Analysis of project performance. IIE Transactions, 17(1), 58-66. [44] Lai, Y. (1996). Hierarchical optimization: A satisfactory solution. Fuzzy Sets and Systems, 77(3), 321-335. [45] Lawrence, S. R., & Morton, T. E. (1993). Resource-constrained multi-project scheduling with tardy costs: Comparing myopic, bottleneck, and resource pricing heuristics. European Journal of Operational Research, 64(2), 168-187. [46] Leberling, H. (1981). On finding compromise solutions in multicriteria problems using the fuzzy min-operator. Fuzzy Sets and Systems, 6(2), 105-118. [47] Lewis, J. P. (2005). Project planning, scheduling, and control McGraw-Hill. [48] Liberatore, M. J., Pollack-Johnson, B., & Smith, C. A. (2001). Project management in construction: Software use and research directions. Journal of Construction Engineering and Management, 127(2), 101-107. [49] Liberatore, M. J., & Titus, G. J. (1983). The practice of management science in R&D project management. Management Science, , 962-974. [50] Liu, Y., & Hart, S. M. (1994). Characterizing an optimal solution to the linear bilevel programming problem. European Journal of Operational Research, 73(1), 164-166. [51] Lova, A., Maroto, C., & Tormos, P. (2000). A multicriteria heuristic method to improve resource allocation in multiproject scheduling. European Journal of Operational Research, 127(2), 408-424. [52] Lova, A., Tormos, P., Cervantes, M., & Barber, F. (2009). An efficient hybrid genetic algorithm for scheduling projects with resource constraints and multiple execution modes. International Journal of Production Economics, 117(2), 302-316. [53] Merkle, D., Middendorf, M., & Schmeck, H. (2002). Ant colony optimization for resource-constrained project scheduling. Evolutionary Computation, IEEE Transactions on, 6(4), 333-346. [54] Mieritz, L. (2012). Gartner survey shows why projects fail. Retrieved JUNE 10, 2012, from http://thisiswhatgoodlookslike.com/2012/06/10/gartner-survey-shows-why-projects-fail/ [55] Mori, M., & Tseng, C. C. (1997). A genetic algorithm for multi-mode resource constrained project scheduling problem. European Journal of Operational Research, 100(1), 134-141. [56] Payne, J. H. (1995). Management of multiple simultaneous projects: A state-of-the-art review. International Journal of Project Management, 13(3), 163-168. [57] Pekeč, A., & Rothkopf, M. H. (2003). Combinatorial auction design. Management Science, 49(11), 1485-1503. [58] Pritsker, A. A. B., Waiters, L. J., & Wolfe, P. M. (1969). Multiproject scheduling with limited resources: A zero-one programming approach. Management Science, 16(1), 93-108. [59] Rothkopf, M. H., Pekeč, A., & Harstad, R. M. (1998). Computationally manageable combinational auctions. Management Science, 44(8), 1131-1147. [60] Shih, H., Lai, Y., & Stanley Lee, E. (1996). Fuzzy approach for multi-level programming problems. Computers & Operations Research, 23(1), 73-91. [61] Sprecher, A., Hartmann, S., & Drexl, A. (1997). An exact algorithm for project scheduling with multiple modes. Operations-Research-Spektrum, 19(3), 195-203. [62] Talbot, F. B. (1982). Resource-constrained project scheduling with time-resource tradeoffs: The nonpreemptive case. Management Science, 28(10), 1197-1210. [63] TANAKA, H., OKUDA, T., & ASAI, K. (1974). On fuzzy mathematical programming. Journal of Cybernetics, 3(4), 37-46. [64] Tseng, C. (2008). Two heuristic algorithms for a multi-mode resource-constrained multi-project scheduling problem. Journal of Science and Engineering Technology, 4(2), 63-74. [65] Tsubakitani, S., & Deckro, R. F. (1990). A heuristic for multi-project scheduling with limited resources in the housing industry. European Journal of Operational Research, 49(1), 80-91. [66] Wen, U., & Hsu, S. (1991). Linear bi-level programming problems--A review. Journal of the Operational Research Society, 125-133. [67] Werners, B. (1987). An interactive fuzzy programming system. Fuzzy Sets and Systems, 23(1), 131-14 [68] Zimmermann, H. (1978). Fuzzy programming and linear programming with several objective functions. Fuzzy Sets and Systems, 1(1), 45-55.; https://tkuir.lib.tku.edu.tw/dspace/handle/987654321/102367
Full Text Finder
Nájsť tento článok vo Web of Science