Search Results - "ACM: I.: Computing Methodologies/I.1: SYMBOLIC AND ALGEBRAIC MANIPULATION"
-
1
Authors: et al.
Contributors: et al.
Source: ACM Transactions on Design Automation of Electronic Systems. 22:1-25
Subject Terms: ACM: F.: Theory of Computation/F.1: COMPUTATION BY ABSTRACT DEVICES/F.1.1: Models of Computation, [INFO.INFO-PL]Computer Science [cs]/Programming Languages [cs.PL], Scheduling, Latency, Dataflow graphs, 0202 electrical engineering, electronic engineering, information engineering, Symbolic analysis, 02 engineering and technology, Throughput, ACM: I.: Computing Methodologies/I.1: SYMBOLIC AND ALGEBRAIC MANIPULATION, [INFO.INFO-PL] Computer Science [cs]/Programming Languages [cs.PL]
-
2
Authors: et al.
Contributors: et al.
Source: https://inria.hal.science/hal-03479643 ; [Research Report] RR-9438, Sobonne Université, IMJ - PRG, Inria Paris; Inria Lille - Nord Europe; Laboratoire d'Analyse des Signaux et Processus Industriels. 2021, pp.57.
Subject Terms: Vibration analysis, Polynomial systems, Rank factorization problem, Centrohermitian matrix, Module theory, Homological algebra, Demodulation problems, Gearbox fault detection/surveillance, Analyse vibratoire, Détection et surveillance des défauts d'engrenages, Problèmes de démodulation, Algèbre homologique, Théorie des modules, Matrice centrohermitiennes, Factorisation relative au rang, Systèmes polynomiaux, ACM: I.: Computing Methodologies/I.1: SYMBOLIC AND ALGEBRAIC MANIPULATION, [INFO.INFO-SC]Computer Science [cs]/Symbolic Computation [cs.SC], [INFO.INFO-TS]Computer Science [cs]/Signal and Image Processing, [MATH.MATH-AC]Mathematics [math]/Commutative Algebra [math.AC], [MATH.MATH-AG]Mathematics [math]/Algebraic Geometry [math.AG]
-
3
Authors: et al.
Contributors: et al.
Source: ISSN: 0747-7171.
Subject Terms: Section in invariant theory, Symmetry, Polynomial systems, Rational invariants, ACM: I.: Computing Methodologies/I.1: SYMBOLIC AND ALGEBRAIC MANIPULATION, [INFO.INFO-SC]Computer Science [cs]/Symbolic Computation [cs.SC], [MATH.MATH-GR]Mathematics [math]/Group Theory [math.GR], [MATH.MATH-AC]Mathematics [math]/Commutative Algebra [math.AC], [MATH.MATH-AG]Mathematics [math]/Algebraic Geometry [math.AG]
-
4
Authors: et al.
Contributors: et al.
Source: https://hal.science/hal-04223439 ; ACM; ACM, 2023, 979-8-4007-0039-2. ⟨10.1145/3597066⟩.
-
5
Authors: et al.
Contributors: et al.
Source: ISSN: 0022-2526.
Subject Terms: Hankel Matrices, Cubatures, Gaussian Quadrature, ACM: I.: Computing Methodologies/I.1: SYMBOLIC AND ALGEBRAIC MANIPULATION, ACM: G.: Mathematics of Computing/G.1: NUMERICAL ANALYSIS, ACM: G.: Mathematics of Computing/G.1: NUMERICAL ANALYSIS/G.1.4: Quadrature and Numerical Differentiation, [INFO.INFO-SC]Computer Science [cs]/Symbolic Computation [cs.SC], [MATH.MATH-NA]Mathematics [math]/Numerical Analysis [math.NA]
-
6
Authors: et al.
Contributors: et al.
Source: CONICET Digital (CONICET)
Consejo Nacional de Investigaciones Científicas y TécnicasSubject Terms: [INFO.INFO-SC]Computer Science [cs]/Symbolic Computation [cs.SC], Computer Science - Symbolic Computation, FOS: Computer and information sciences, Polynomial optimization, DEGREE OF VARIETIES, [INFO.INFO-SC] Computer Science [cs]/Symbolic Computation [cs.SC], ACM: I.: Computing Methodologies/I.1: SYMBOLIC AND ALGEBRAIC MANIPULATION/I.1.2: Algorithms/I.1.2.0: Algebraic algorithms, ACM: I.: Computing Methodologies/I.1: SYMBOLIC AND ALGEBRAIC MANIPULATION/I.1.2: Algorithms, POLYNOMIAL OPTIMIZATION, INTRINSIC COMPLEXITY, Symbolic Computation (cs.SC), 01 natural sciences, Intrinsic complexity, 0101 mathematics, ACM: I.: Computing Methodologies/I.1: SYMBOLIC AND ALGEBRAIC MANIPULATION
File Description: application/pdf
Access URL: http://arxiv.org/abs/1304.5214
https://notablesdelaciencia.conicet.gov.ar/handle/11336/84333
https://ri.conicet.gov.ar/handle/11336/84333
http://www2.mathematik.hu-berlin.de/publ/pre/2013/P-13-07.pdf
https://dblp.uni-trier.de/db/journals/corr/corr1304.html#abs-1304-5214
https://www.sciencedirect.com/science/article/pii/S0885064X1400020X
https://hal.archives-ouvertes.fr/hal-00815123
http://hdl.handle.net/11336/84333 -
7
Authors: et al.
Contributors: et al.
Source: 9th IFAC Symposium on Intelligent Autonomous Vehicles
https://polytechnique.hal.science/hal-01294825
9th IFAC Symposium on Intelligent Autonomous Vehicles, Jun 2016, Leipzig, GermanySubject Terms: model-free control, flatness-based control, lateral control, autonomous vehicles, wheeled vehicles, intelligent controllers, algebraic estimation, longitudinal control, ACM: I.: Computing Methodologies/I.6: SIMULATION AND MODELING, ACM: I.: Computing Methodologies/I.2: ARTIFICIAL INTELLIGENCE, ACM: I.: Computing Methodologies/I.1: SYMBOLIC AND ALGEBRAIC MANIPULATION, [INFO.INFO-SY]Computer Science [cs]/Systems and Control [cs.SY], [INFO.INFO-AU]Computer Science [cs]/Automatic Control Engineering, [SPI.AUTO]Engineering Sciences [physics]/Automatic, [INFO.INFO-AI]Computer Science [cs]/Artificial Intelligence [cs.AI], [MATH.MATH-OC]Mathematics [math]/Optimization and Control [math.OC]
Relation: info:eu-repo/semantics/altIdentifier/arxiv/1604.02083; ARXIV: 1604.02083
-
8
Authors: et al.
Contributors: et al.
Source: Journal of Symbolic Computation. 44:1608-1625
Subject Terms: [INFO.INFO-SC]Computer Science [cs]/Symbolic Computation [cs.SC], Algebra and Number Theory, [INFO.INFO-SC] Computer Science [cs]/Symbolic Computation [cs.SC], [MATH.MATH-IT]Mathematics [math]/Information Theory [math.IT], 02 engineering and technology, Gröbner bases, 01 natural sciences, Quadratic residue codes, [MATH.MATH-IT] Mathematics [math]/Information Theory [math.IT], Computational Mathematics, Elimination theory, [INFO.INFO-IT]Computer Science [cs]/Information Theory [cs.IT], 0202 electrical engineering, electronic engineering, information engineering, [INFO.INFO-IT] Computer Science [cs]/Information Theory [cs.IT], 0101 mathematics, Cyclic codes, ACM: I.: Computing Methodologies/I.1: SYMBOLIC AND ALGEBRAIC MANIPULATION, F4 algorithm
File Description: application/pdf
Access URL: https://inria.hal.science/inria-00509219v1
https://doi.org/10.1016/j.jsc.2008.02.006
https://inria.hal.science/inria-00509219v1/document
https://hal.inria.fr/inria-00509219
https://hal.inria.fr/inria-00509219/document
https://dialnet.unirioja.es/servlet/articulo?codigo=3057404
https://www.sciencedirect.com/science/article/pii/S0747717108001764
https://dblp.uni-trier.de/db/journals/jsc/jsc44.html#AugotBF09
http://www-polsys.lip6.fr/~jcf/Papers/jsc_ABF09.pdf -
9
Authors: et al.
Contributors: et al.
Source: ISSN: 0004-5411.
Subject Terms: Polynomial system solving, Real algebraic geometry, Connectivity queries, Symbolic computation and algebraic computation, ACM: I.: Computing Methodologies/I.1: SYMBOLIC AND ALGEBRAIC MANIPULATION, ACM: F.: Theory of Computation/F.2: ANALYSIS OF ALGORITHMS AND PROBLEM COMPLEXITY, ACM: G.: Mathematics of Computing, [INFO.INFO-SC]Computer Science [cs]/Symbolic Computation [cs.SC]
Relation: info:eu-repo/semantics/altIdentifier/arxiv/1307.7836v2; ARXIV: 1307.7836v2
-
10
Authors: et al.
Contributors: et al.
Source: https://hal.sorbonne-universite.fr/hal-01766553 ; 2018.
Subject Terms: ACM: I.: Computing Methodologies/I.2: ARTIFICIAL INTELLIGENCE/I.2.3: Deduction and Theorem Proving/I.2.3.8: Uncertainty, ``fuzzy,' and probabilistic reasoning, ACM: I.: Computing Methodologies/I.1: SYMBOLIC AND ALGEBRAIC MANIPULATION, ACM: F.: Theory of Computation/F.2: ANALYSIS OF ALGORITHMS AND PROBLEM COMPLEXITY/F.2.1: Numerical Algorithms and Problems/F.2.1.3: Computations on polynomials, [INFO.INFO-SC]Computer Science [cs]/Symbolic Computation [cs.SC], [INFO.INFO-AI]Computer Science [cs]/Artificial Intelligence [cs.AI]
-
11
Authors: et al.
Contributors: et al.
Source: ISSN: 0302-9743 ; Lecture Notes in Computer Science ; https://hal.science/hal-01295738 ; Lecture Notes in Computer Science, 2016, Reachability Problems (RP 2016), 9899, pp.119-133. ⟨10.1007/978-3-319-45994-3_9⟩.
Subject Terms: reachability, state-dependent control, compositional synthesis, distributed control, control synthesis, ACM: I.: Computing Methodologies/I.1: SYMBOLIC AND ALGEBRAIC MANIPULATION, ACM: G.: Mathematics of Computing/G.1: NUMERICAL ANALYSIS/G.1.7: Ordinary Differential Equations, ACM: F.: Theory of Computation/F.4: MATHEMATICAL LOGIC AND FORMAL LANGUAGES, [INFO.INFO-SY]Computer Science [cs]/Systems and Control [cs.SY]
Relation: info:eu-repo/semantics/altIdentifier/arxiv/1604.01745; info:eu-repo/grantAgreement//601148/EU/Collective Adaptive System SynThesIs with Non-zero-sum Games/CASSTING; ARXIV: 1604.01745
-
12
Authors: et al.
Contributors: et al.
Source: ISSAC 2013 - 38th International Symposium on Symbolic and Algebraic Computation ; https://inria.hal.science/hal-00922718 ; ISSAC 2013 - 38th International Symposium on Symbolic and Algebraic Computation, Jun 2013, Boston, United States. pp.5-6, ⟨10.1145/2465506.2465928⟩
Subject Terms: effective real algebraic geometry, real roots, polynomial system solving, ACM: I.: Computing Methodologies/I.1: SYMBOLIC AND ALGEBRAIC MANIPULATION, [INFO.INFO-SC]Computer Science [cs]/Symbolic Computation [cs.SC]
Subject Geographic: Boston, United States
Time: Boston, United States
-
13
Authors: et al.
Contributors: et al.
Source: ISSAC 2013 - International Symposium on Symbolic and Algebraic Computation ; https://inria.hal.science/hal-00815174 ; ISSAC 2013 - International Symposium on Symbolic and Algebraic Computation, Jun 2013, Boston, United States
Subject Terms: complexity, effective real algebraic geometry, linear matrix inequality, rational sum of squares, semidefinite programming, convexity, ACM: I.: Computing Methodologies/I.1: SYMBOLIC AND ALGEBRAIC MANIPULATION, ACM: I.: Computing Methodologies/I.1: SYMBOLIC AND ALGEBRAIC MANIPULATION/I.1.2: Algorithms, ACM: I.: Computing Methodologies/I.1: SYMBOLIC AND ALGEBRAIC MANIPULATION/I.1.2: Algorithms/I.1.2.0: Algebraic algorithms, [INFO.INFO-SC]Computer Science [cs]/Symbolic Computation [cs.SC]
Subject Geographic: Boston, United States
Time: Boston, United States
-
14
Authors: et al.
Contributors: et al.
Source: ISSAC 2013 - International Symposium on Symbolic and Algebraic Computation ; https://inria.hal.science/hal-00816214 ; ISSAC 2013 - International Symposium on Symbolic and Algebraic Computation, Jun 2013, Boston, United States. ⟨10.1145/2465506.2465938⟩
Subject Terms: real root refinement, polynomial, real root problem, Boolean complexity, ACM: F.: Theory of Computation/F.2: ANALYSIS OF ALGORITHMS AND PROBLEM COMPLEXITY, ACM: I.: Computing Methodologies/I.1: SYMBOLIC AND ALGEBRAIC MANIPULATION, [INFO.INFO-SC]Computer Science [cs]/Symbolic Computation [cs.SC]
Subject Geographic: Boston, United States
Time: Boston, United States
-
15
Authors: et al.
Contributors: et al.
Source: Preceedings of International Symposium on Symbolic and Algebraic Computation ; ISSAC ; https://inria.hal.science/inria-00482722 ; ISSAC, Jul 2010, Munich, Germany. pp.235-242, ⟨10.1145/1837934.1837980⟩
Subject Terms: Random polynomial, real-root isolation, Bernstein polynomial, expected complexity, separation bound, ACM: F.: Theory of Computation/F.2: ANALYSIS OF ALGORITHMS AND PROBLEM COMPLEXITY, ACM: I.: Computing Methodologies/I.1: SYMBOLIC AND ALGEBRAIC MANIPULATION, [INFO.INFO-SC]Computer Science [cs]/Symbolic Computation [cs.SC]
Relation: info:eu-repo/semantics/altIdentifier/arxiv/1005.2001; ARXIV: 1005.2001
-
16
Authors: et al.
Contributors: et al.
Source: Proceedings of the 2010 International Symposium on Symbolic and Algebraic Computation ; https://inria.hal.science/inria-00393833 ; Proceedings of the 2010 International Symposium on Symbolic and Algebraic Computation, Jul 2010, Munich, Germany. pp.243-250, ⟨10.1145/1837934.1837981⟩
Subject Terms: separation bound, polynomial system, mixed volume, Milne, positive polynomial, ACM: F.: Theory of Computation/F.2: ANALYSIS OF ALGORITHMS AND PROBLEM COMPLEXITY, ACM: I.: Computing Methodologies/I.1: SYMBOLIC AND ALGEBRAIC MANIPULATION, [INFO.INFO-SC]Computer Science [cs]/Symbolic Computation [cs.SC]
Relation: info:eu-repo/semantics/altIdentifier/arxiv/1005.5610; ARXIV: 1005.5610
-
17
Authors: et al.
Contributors: et al.
Source: Proceedings 17th International Conference on Logic for Programs and Automated Reasonning ; Proc. LPAR 2010 ; https://inria.hal.science/inria-00515395 ; Proc. LPAR 2010, Steffen Hölldobler, Oct 2010, Yogyakarta, Indonesia
Subject Terms: Recriture Parametrisation Confluence terminaison, ACM: I.: Computing Methodologies, ACM: I.: Computing Methodologies/I.1: SYMBOLIC AND ALGEBRAIC MANIPULATION, [INFO.INFO-LO]Computer Science [cs]/Logic in Computer Science [cs.LO]
Subject Geographic: Yogyakarta, Indonesia
-
18
Authors: et al.
Contributors: et al.
Source: https://hal.science/hal-01438386 ; [Research Report] LRI - CNRS, University Paris-Sud; ICMC, University of Sao Paulo. 2017, pp.59.
Subject Terms: Operational semantics, K-Framework, Circus, Formal specification, ACM: D.: Software/D.3: PROGRAMMING LANGUAGES, ACM: F.: Theory of Computation/F.3: LOGICS AND MEANINGS OF PROGRAMS, ACM: I.: Computing Methodologies/I.1: SYMBOLIC AND ALGEBRAIC MANIPULATION, [INFO]Computer Science [cs], [INFO.INFO-OH]Computer Science [cs]/Other [cs.OH]
-
19
Authors: et al.
Contributors: et al.
Source: https://hal.science/hal-01536730 ; 2017.
Subject Terms: Automatic differentiation, Matlab, Maple, Gradient, Real Time, Optimization, Diffedge, Parametric sensitivity, Block diagram, Simulink, Hybrid systems, Différenciation automatique, Systèmes hybrides, Schémas block, Sensibilité paramétrique, Optimisation, Temps réel, ACM: D.: Software/D.2: SOFTWARE ENGINEERING, ACM: G.: Mathematics of Computing, ACM: I.: Computing Methodologies/I.1: SYMBOLIC AND ALGEBRAIC MANIPULATION, ACM: I.: Computing Methodologies/I.6: SIMULATION AND MODELING, [MATH.MATH-OC]Mathematics [math]/Optimization and Control [math.OC], [INFO.INFO-MO]Computer Science [cs]/Modeling and Simulation, [INFO.INFO-SY]Computer Science [cs]/Systems and Control [cs.SY], [INFO.INFO-SC]Computer Science [cs]/Symbolic Computation [cs.SC], [INFO.INFO-AU]Computer Science [cs]/Automatic Control Engineering, [INFO.INFO-ES]Computer Science [cs]/Embedded Systems
-
20
Authors: et al.
Contributors: et al.
Source: Symbolic-Numeric Computation ; https://inria.hal.science/inria-00137424 ; Dongming Wang and Lihong Zhi. Symbolic-Numeric Computation, Birkhauser, pp.223--243, 2007, Trends in Mathematics
Subject Terms: ACM: I.: Computing Methodologies/I.1: SYMBOLIC AND ALGEBRAIC MANIPULATION, ACM: G.: Mathematics of Computing/G.1: NUMERICAL ANALYSIS, [INFO.INFO-SC]Computer Science [cs]/Symbolic Computation [cs.SC], [MATH.MATH-AG]Mathematics [math]/Algebraic Geometry [math.AG]
Full Text Finder
Nájsť tento článok vo Web of Science