Suchergebnisse - "A. Yu. Goryainova"

  • Treffer 1 - 11 von 11
Treffer weiter einschränken
  1. 1
  2. 2
  3. 3

    Quelle: Siberian journal of oncology; Том 23, № 6 (2024); 107-117 ; Сибирский онкологический журнал; Том 23, № 6 (2024); 107-117 ; 2312-3168 ; 1814-4861

    Dateibeschreibung: application/pdf

    Relation: https://www.siboncoj.ru/jour/article/view/3353/1297; Howlader N., Altekruse S.F., Li C.I., Chen V.W., Clarke C.A., Ries L.A., Cronin K.A. US incidence of breast cancer subtypes defined by joint hormone receptor and HER2 status. J Natl Cancer Inst. 2014; 106(5). doi:10.1093/jnci/dju055.; Mollon L., Aguilar A., Anderson E., Dean J., Davis L., Warholak T., Aizer A.A., Platt E., Bardiya A., Tang D. A systematic literature review of the prevalence of PIK3CA mutations and mutation hotspots in HR+/HER2- metastatic breast cancer. Cancer Res. 2018; 78(s13): 1207.; Соколова Т.Н., Алексахина С.Н., Янус Г.А., Султанбаев А.В., Меньшиков К.В., Лысенко А.Н., Зуков Р.А., Зюзюкина А.В., Мурунова Ю.Н., Россоха Е.И., Бахарев С.Ю., Басова Е.А., Касмынина Т.А., Шумская И.С., Бакшун Я.И., Мусаева Х.С., Хасанова А.И., Дмитриев В.Н., Болиева М.Б., Гадзаова К.Х., Петренко О.Л., Максимов Д.А., Владимиров В.И., Гольдберг В.Е., Попова Н.О., Кибишева М.В., Хамгоков З.М., Васильев А.Е., Иевлева А.Г., Имянитов Е.Н. Частота и спектр мутаций PIK3CA при гормонозависимом HER2-отрицательном распространенном раке молочной железы у российских пациенток. Современная онкология. 2021; 23(1): 61–67. doi:10.26442/18151434.2021.1.; André F., Ciruelos E., Rubovszky G., Campone M., Loibl S., Rugo H.S., Iwata H., Conte P., Mayer I.A., Kaufman B., Yamashita T., Lu Y.S., Inoue K., Takahashi M., Pápai Z., Longin A.S., Mills D., Wilke C., Hirawat S., Juric D.; SOLAR-1 Study Group. Alpelisib for PIK3CA-Mutated, Hormone Receptor-Positive Advanced Breast Cancer. N Engl J Med. 2019; 380(20): 1929–40. doi:10.1056/NEJMoa1813904.; André F., Ciruelos E.M., Juric D., Loibl S., Campone M., Mayer I.A., Rubovszky G., Yamashita T., Kaufman B., Lu Y.S., Inoue K., Pápai Z., Takahashi M., Ghaznawi F., Mills D., Kaper M., Miller M., Conte P.F., Iwata H., Rugo H.S. Alpelisib plus fulvestrant for PIK3CA-mutated, hormone receptor-positive, human epidermal growth factor receptor-2-negative advanced breast cancer: final overall survival results from SOLAR-1. Ann Oncol. 2021; 32(2): 208–17. doi:10.1016/j.annonc.2020.11.011.; Rugo H.S., Lerebours F., Ciruelos E., Drullinsky P., Ruiz-Borrego M., Neven P., Park Y.H., Prat A., Bachelot T., Juric D., Turner N., Sophos N., Zarate J.P., Arce C., Shen Y.M., Turner S., Kanakamedala H., Hsu W.C., Chia S. Alpelisib plus fulvestrant in PIK3CA-mutated, hormone receptor-positive advanced breast cancer after a CDK4/6 inhibitor (BYLieve): one cohort of a phase 2, multicentre, open-label, non-comparative study. Lancet Oncol. 2021; 22(4): 489–98. doi:10.1016/S1470-2045(21)00034-6. Erratum in: Lancet Oncol. 2021; 22(5). doi:10.1016/S1470-2045-(21)00194-7.; Инструкция по применению лекарственного препарата. Пикрэй (алпелисиб). Министерство здравоохранения Российской Федерации. [Internet]. URL: https://cdn.pharm-portal.ru/69jxs7cjr4n4gdc2acy5y4x8/instructions/%D0%9B%D0%9F-006279/InstrImg_2020_9_3_1460585/%D0%9B%D0%9F-006279[2020]_0.pdf. [cited 2024 Dec 05].; Rugo H.S., André F., Yamashita T., Cerda H., Toledano I., Stemmer S.M., Jurado J.C., Juric D., Mayer I., Ciruelos E.M., Iwata H., Conte P., Campone M., Wilke C., Mills D., Lteif A., Miller M., Gaudenzi F., Loibl S. Time course and management of key adverse events during the randomized phase III SOLAR-1 study of PI3K inhibitor alpelisib plus fulvestrant in patients with HR-positive advanced breast cancer. Ann Oncol. 2020; 31(8): 1001–10. doi:10.1016/j.annonc.2020.05.001.; Мазурина Н.В., Артамонова Е.В., Белоярцева М.Ф., Волкова Е.И., Ганьшина И.П., Трошина Е.А., Тюляндин С.А., Чубенко В.А. Консенсус по профилактике и коррекции гипергликемии у пациентов, получающих терапию препаратом алпелисиб. Современная онкология. 2020; 22(4): 56–59. doi:10.26442/18151434.2020.4.200566.; Филоненко Д.А., Ибрагимова Т.М., Польшина Н.И., Белогурова А.В., Хатькова Е.И., Арутюнян Э.А., Волкова Е.И., Жукова Л.Г. Таргетная терапия люминального HER2-негативного метастатического рака молочной железы c мутацией PIK3CA: комбинация алпелисиба с фулвестрантом в реальной клинической практике. Медицинский совет. 2021; (20): 75–82. doi:10.21518/2079-701X-2021-20-75-82.; Filonenko D., Zhukova L. Prophylactic use of metformin in patients on alpelisib treatment. J Clin Oncol. 2022; 40(s16). doi:10.1200/JCO.2022.40.16_suppl.e13040.; Шливко И.Л., Гаранина О.Е., Артамонова Е.В., Ганьшина И.П., Жукова Л.Г., Королева И.А., Миченко А.В., Семиглазова Т.Ю., Филоненко Д.А. Консенсус по профилактике и коррекции сыпи у пациентов, получающих терапию препаратом алпелисиб. Современная онкология 2021; 23(4): 572–76. doi:10.26442/18151434.2021.4.201275.; Chia S., Neven P., Ciruelos E.M., Lerebours F., Ruiz-Borrego M., Drullinsky P., Prat A., Park Y.H., Juric D., Turner N.C., Chattar Y., Patino H., Akdere M., Rugo H. Alpelisib + endocrine therapy in patients with PIK3CA-mutated, hormone receptor-positive, human epidermal growth factor receptor 2-negative, advanced breast cancer: Analysis of all 3 cohorts of the BYLieve study. J Clin Oncol. 2023; 41(s16). doi:10.1200/JCO.2023.41.16_suppl.1078.; Borrego M.R., Tolosa P., Blanch S., Fernández A., Urriticoechea A., Blancas I., Saura C., Rojas B., Bermejo B., Ponce J., Gión M., Llabres E., Galve E., Cueva J.F., López A., Alonso-Romero J.L., González-Santiago S., De Dueñas E.M., Peralta F.G., Ciruelos E., Pérez-García J.M., Llombart-Cussac A., Cortés J. Metformin (MET) for the prevention of alpelisib (ALP)-related hyperglycemia (HG) in PIK3CA-mutated, hormone receptor-positive (HR[+]) HER2-negative (HER2[-]) advanced breast cancer (ABC): The METALLICA study. SABCS. 2023; 83(5s). doi:10.1158/1538-7445.SABCS22-PD8-02.; Rugo H., Gennari A., Chia S., Juric D., Vasan N., Küemmel Sh., Neven P., Lerebours F., Ruíz-Borrego M., Razavi P., Singh J., Chattar Y., Akdere M., Ciruelos E. Effect of Alpelisib Dose Modification for AE Management on Progression-Free Survival and Treatment Duration in SOLAR-1 and BYLieve Clinical Trials. SABCS. 2023.; Chia S., Ruiz-Borrego M., Drullinsky P., Juric D., Bachelot T., Rugo H.S., Ciruelos E., Lerebours F., Prat A., Akdere M., Arce C., Gu E., Turner N.C. Impact of Duration of Prior Cyclin-Dependent Kinase 4/6 Inhibitor Therapy on Alpelisib Benefit in Patients With Hormone Receptor-Positive (HR+), Human Epidermal Growth Factor Receptor-2-Negative (HER2-), PIK3CA-Mutated Advanced Breast Cancer (ABC) From BYLieve. ASCO. 2021; 39(s15). https://doi.org/10.1200/JCO.2021.39.15_sup-pl.1060.; https://www.siboncoj.ru/jour/article/view/3353

  4. 4

    Quelle: Cancer Urology; Том 20, № 2 (2024); 74-86 ; Онкоурология; Том 20, № 2 (2024); 74-86 ; 1996-1812 ; 1726-9776

    Dateibeschreibung: application/pdf

    Relation: https://oncourology.abvpress.ru/oncur/article/view/1762/1547; Tannock I.F., de Wit R., Berry W.R. et al. Docetaxel plus prednisone or mitoxantrone plus prednisone for advanced prostate cancer. N Engl J Med 2004;351(15):1502–12. DOI:10.1056/NEJMoa040720; Pezaro C., Omlin A., Lorente D. et al. Visceral disease in castration-resistant prostate cancer. Eur Urol 2014;65(2):270–3. DOI:10.1016/j.eururo.2013.10.055; Smith H.S. Painful osseous metastases. Pain Physician 2011;14(4):E373–403.; Coleman R.E. Clinical features of metastatic bone disease and risk of skeletal morbidity. Clin Cancer Res 2006;12(20 Pt 2):6243s–9s. DOI:10.1158/1078-0432.CCR-06-0931; Tait C., Moore D., Hodgson C. et al. Quantification of skeletal metastases in castrate-resistant prostate cancer predicts progressionfree and overall survival. BJU Int 2014;114(6b):E70–3. DOI:10.1111/bju.12717; Riihimäki M., Thomsen H., Brandt A. et al. What do prostate cancer patients die of? Oncologist 2011;16(2):175–81. DOI:10.1634/theoncologist.2010-0338; Cornford P., Bellmunt J., Bolla M. et al. EAU-ESTRO-SIOG guidelines on prostate cancer. Part II: treatment of relapsing, metastatic, and castration-resistant prostate cancer. Eur Urol 2017;71(4):630–42. DOI:10.1016/j.eururo.2016.08.002; Parker C., Nilsson S., Heinrich D. et al. Alpha emitter radium-223 and survival in metastatic prostate cancer. N Engl J Med 2013;369(3):213–23. DOI:10.1056/NEJMoa1213755; Sartor O., Coleman R., Nilsson S. et al. Effect of radium-223 dichloride on symptomatic skeletal events in patients with castration-resistant prostate cancer and bone metastases: results from a phase 3, double-blind, randomised trial. Lancet Oncol 2014;15(7):738–46. DOI:10.1016/S1470-2045(14)70183-4; Hoskin P., Sartor O., O’Sullivan J.M. et al. Efficacy and safety of radium-223 dichloride in patients with castration-resistant prostate cancer and symptomatic bone metastases, with or without previous docetaxel use: a prespecified subgroup analysis from the randomised, double-blind, phase 3 ALSYMPCA trial. Lancet Oncol 2014; 15(12):1397–406. DOI:10.1016/S1470-2045(14)70474-7; Nilsson S., Cislo P., Sartor O. et al. Patient-reported quality-of-life analysis of radium-223 dichloride from the phase III ALSYMPCA study. Ann Oncol 2016;27(5):868–74. DOI:10.1093/annonc/mdw065; Parker C., Finkelstein S.E., Michalski J.M. et al. Efficacy and safety of radium-223 dichloride in symptomatic castration-resistant prostate cancer patients with or without baseline opioid use from the phase 3 ALSYMPCA trial. Eur Urol 2016;70(5):875–83. DOI:10.1016/j.eururo.2016.06.002; Николаева Е.А., Тарачкова Е.В., Шейх Ж.В. и др. Обзор методов визуализации для оценки ответа на лечение метастазов в костях при раке предстательной железы и молочной железы. Кремлевская медицина. Клинический вестник 2022;3:107–14. DOI:10.26269/tvby-7e26; Helyar V., Mohan H.K., Barwick T. et al. The added value of multislice SPECT/CT in patients with equivocal bony metastasis from carcinoma of the prostate. Eur J Nucl Med Mol Imaging 2010;37(4):706–13. DOI:10.1007/s00259-009-1334-3; Vogelzang N.J., Coleman R.E., Michalski J.M. et al. Hematologic safety of radium-223 dichloride: baseline prognostic factors associated with myelosuppression in the ALSYMPCA trial. Clin Genitourin Cancer 2017;15(1):42–52.e8. DOI:10.1016/j.clgc.2016.07.027; Etchebehere E.C., Araujo J.C., Fox P.S. et al. Prognostic factors in patients treated with 223Ra: the role of skeletal tumor burden on baseline 18F-fluoride PET/CT in predicting overall survival. J Nucl Med 2015;56(8):1177–84. DOI:10.2967/jnumed.115.158626; Ulmert D., Kaboteh R., Fox J.J. et al. A novel automated platform for quantifying the extent of skeletal tumour involvement in prostate cancer patients using the Bone Scan Index. Eur Urol 2012;62(1): 78–84. DOI:10.1016/j.eururo.2012.01.037; Fosbøl M.Ø., Petersen P.M., Kjaer A., Mortensen J. 223Ra therapy of advanced metastatic castration-resistant prostate cancer: quantitative assessment of skeletal tumor burden for prognostication of clinical outcome and hematologic toxicity. J Nucl Med 2018;59(4):596–602. DOI:10.2967/jnumed.117.195677; Shariftabrizi A., Kothari S., George S. et al. Optimization of radium-223 treatment of castration-resistant prostate cancer based on the burden of skeletal metastasis and clinical parameters. Oncologist 2023;28(3):246–51. DOI:10.1093/oncolo/oyac245; Николаева Е.А., Крылов А.С., Рыжков А.Д. и др. Количественная оценка методом ОФЭКТ/КТ эффективности радионуклидной терапии хлоридом радия-223 костных метастазов при метастатическом кастрационно-резистентном раке предстательной железы. Онкологический журнал: лучевая диагностика, лучевая терапия 2022;5(3):29–42. DOI:10.37174/2587-7593-2022-5-3-29-42; Shore N.D. Radium-223 dichloride for metastatic castrationresistant prostate cancer: the urologist’s perspective. Urology 2015;85(4):717–24. DOI:10.1016/j.urology.2014.11.031; Gillessen S., Omlin A., Attard G. et al. Management of patients with advanced prostate cancer: recommendations of the St Gallen Advanced Prostate Cancer Consensus Conference (APCCC) 2015. Ann Oncol 2015;26(8):1589–604. DOI:10.1093/annonc/mdv257; CTCAE. National Cancer Institute Enterprise Vocabulary Services website. Available at: https://evs.nci.nih.gov/ftp1/CTCAE/About.html (accessed 15 December 2023).; Asselah J., Sperlich C. Post-docetaxel options for further survival benefit in metastatic castration-resistant prostate cancer: questions of choice. Can Urol Assoc J 2013;7(1–2 Suppl 1):S11–7. DOI:10.5489/cuaj.274; Sathianathen N.J., Lamb A., Nair R. et al. Updates of prostate cancer staging: prostate-specific membrane antigen. Investig Clin Urol 2016;57(Suppl 2):S147–54. DOI:10.4111/icu.2016.57.S2.S147; Lowrance W.T., Roth B.J., Kirkby E. et al. Castration-resistant prostate cancer: AUA guideline amendment 2015. J Urol 2016;195(5):1444–52. DOI:10.1016/j.juro.2015.10.086; Parker C., Gillessen S., Heidenreich A., Horwich A. ESMO Guidelines Committee. Cancer of the prostate: ESMO clinical practice guidelines for diagnosis, treatment and follow-up. Ann Oncol 2015;26(Suppl 5):v69–77. DOI:10.1093/annonc/mdv222; Saad F., Chi K.N., Finelli A. et al. The 2015 CUA-CUOG Guidelines for the management of castration-resistant prostate cancer (CRPC). Can Urol Assoc J 2015;9(3–4):90–6. DOI:10.5489/cuaj.2526; Носов Д.А., Волкова М.И., Гладков О.А. и др. Практические рекомендации по лечению рака предстательной железы. Злокачественные опухоли: Практические рекомендации RUSSCO 2021;11(3s2):540–55. DOI:10.18027/2224-5057-2021-11-3s2-33; Smith M., Parker C., Saad F. et al. Addition of radium-223 to abiraterone acetate and prednisone or prednisolone in patients with castration-resistant prostate cancer and bone metastases (ERA 223): a randomised, double-blind, placebo-controlled, phase 3 trial [published correction appears in Lancet Oncol 2019;20(10):e559]. Lancet Oncol 2019;20(3):408–19. DOI:10.1016/S1470-2045(18)30860-X; Choudhury A.D., Kwak L., Cheung A. et al. Randomized phase II study evaluating the addition of pembrolizumab to radium-223 in metastatic castration-resistant prostate cancer. Journal of Clinical Oncology 2021;39(6_suppl):98. DOI:10.1200/JCO.2021.39.6_suppl.98; Sternberg C.N., Saad F., Graff J.N. et al. A randomised phase II trial of three dosing regimens of radium-223 in patients with bone metastatic castration-resistant prostate cancer. Ann Oncol 2020;31(2):257–65. DOI:10.1016/j.annonc.2019.10.025; Carles J., Alonso-Gordoa T., Mellado B. et al. Radium-223 for patients with metastatic castration-resistant prostate cancer with asymptomatic bone metastases progressing on first-line abiraterone acetate or enzalutamide: a single-arm phase II trial. Eur J Cancer 2022;173:317–26. DOI:10.1016/j.ejca.2022.06.057; Marshall C.H., Fu W., Wang H. et al. Randomized phase II trial of sipuleucel-T with or without radium-223 in men with bonemetastatic castration-resistant prostate cancer. Clin Cancer Res 2021;27(6):1623–30. DOI:10.1158/1078-0432.CCR-20-4476; Morris M.J., Loriot Y., Sweeney C.J. et al. Radium-223 in combination with docetaxel in patients with castration-resistant prostate cancer and bone metastases: a phase 1 dose escalation/ randomised phase 2a trial. Eur J Cancer 2019;114:107–16. DOI:10.1016/j.ejca.2019.04.007; Darolutamide with radium-223 or placebo and the effect on radiological Progression-free survival for patients with mCSPC (CARE). ClinicalTrials.gov. ID NCT05771896. Available at: https://clinicaltrials.gov/study/NCT05771896; Kostos L., Buteau J.P., Yeung T. et al. AlphaBet: combination of radium-223 and [177Lu]Lu-PSMA-I&T in men with metastatic castration-resistant prostate cancer (clinical trial protocol). Front Med (Lausanne) 2022;9:1059122. DOI:10.3389/fmed.2022.1059122; Pezaro C.J., Omlin A., Lorente D. et al. Visceral disease in castration-resistant prostate cancer. Eur Urol 2014;65:270–3. DOI:10.1016/j.eururo.2013.10.055; Bosch D., van der Velden K.J.M., Oving I.M. et al. The impact of baseline PSMA PET/CT vs. CT on outcomes of Radium-223 therapy in mCRPC patients. Annals of Oncology 2023;34(Suppl 2): 987–8. DOI:10.1016/j.annonc.2023.09.2771; Carles J., Castellano D., Méndez-Vidal M.J. et al. Circulating tumor Cells as a biomarker of survival and response to Radium-223 therapy: experience in a cohort of patients with metastatic castration-resistant prostate cancer. Clin Genitourin Cancer 2018;16(6):e1133–9. DOI:10.1016/j.clgc.2018.07.013; Iizuka J. Evaluating radium-223 response in metastatic castrationresistant prostate cancer with imaging. Asia Pac J Clin Oncol 2018;14(Suppl 5):16–23. DOI:10.1111/ajco.13058; Scher H.I., Morris M.J., Stadler W.M. et al. Prostate cancer clinical trials working group 3. Trial design and objectives for castrationresistant prostate cancer: updated recommendations from the prostate cancer clinical trials working group 3. J Clin Oncol 2016;34(12):1402–18. DOI:10.1200/JCO.2015.64.2702; https://oncourology.abvpress.ru/oncur/article/view/1762

  5. 5

    Quelle: Meditsinskiy sovet = Medical Council; № 10 (2024); 46-53 ; Медицинский Совет; № 10 (2024); 46-53 ; 2658-5790 ; 2079-701X

    Dateibeschreibung: application/pdf

    Relation: https://www.med-sovet.pro/jour/article/view/8393/7383; Lin NU, Claus E, Sohl J, Razzak AR, Arnaout A, Winer EP. Sites of distant recurrence and clinical outcomes in patients with metastatic triplenegative breast cancer: high incidence of central nervous system metastases. Cancer. 2008;113(10):2638–2645. https://doi.org/10.1002/cncr.23930.; Arvold ND, Oh KS, Niemierko A, Taghian AG, Lin NU, Abi-Raad RF et al. Brain metastases after breast-conserving therapy and systemic therapy: incidence and characteristics by biologic subtype. Breast Cancer Res Treat. 2012;136(1):153–160. https://doi.org/10.1007/s10549-012-2243-x.; Kennecke H, Yerushalmi R, Woods R, Cheang MC, Voduc D, Speers CH, Nielsen TO, Gelmon K. Metastatic behavior of breast cancer subtypes. J Clin Oncol. 2010;28(20):3271–3277. https://doi.org/10.1200/JCO.2009.25.9820.; Pestalozzi BC, Holmes E, de Azambuja E, Metzger-Filho O, Hogge L, Scullion M et al. CNS relapses in patients with HER2-positive early breast cancer who have and have not received adjuvant trastuzumab: a retrospective substudy of the HERA trial (BIG 1-01). Lancet Oncol. 2013;14(3):244–248. https://doi.org/10.1016/S1470-2045(13)70017-2.; DeSantis C, Jemal A, Ward E. Disparities in breast cancer prognostic factors by race, insurance status, and education. Cancer Causes Control. 2010;21(9):1445–1450. https://doi.org/10.1007/s10552-010-9572-z.; Lobbezoo DJ, van Kampen RJ, Voogd AC, Dercksen MW, van den Berkmortel F, Smilde TJ et al. Prognosis of metastatic breast cancer subtypes: the hormone receptor/HER2-positive subtype is associated with the most favorable outcome. Breast Cancer Res Treat. 2013;141(3):507–514. https://doi.org/10.1007/s10549-013-2711-y.; Tripathy D, Brufsky A, Cobleigh M, Jahanzeb M, Kaufman PA, Mason G et al. De Novo Versus Recurrent HER2-Positive Metastatic Breast Cancer: Patient Characteristics, Treatment, and Survival from the SystHERs Registry. Oncologist. 2020;25(2):e214-e222. https://doi.org/10.1634/theoncologist.2019-0446.; Chen X, Wang J, Fan Y, Luo Y, Zhang P, Li Q et al. Primary Trastuzumab Resistance After (Neo)adjuvant Trastuzumab-containing Treatment for Patients With HER2-positive Breast Cancer in Real-world Practice. Clin Breast Cancer. 2021;21(3):191–198. https://doi.org/10.1016/j.clbc.2020.09.003.; Slamon DJ, Leyland-Jones B, Shak S, Fuchs H, Paton V, Bajamonde A et al. Use of chemotherapy plus a monoclonal antibody against HER2 for metastatic breast cancer that overexpresses HER2. N Engl J Med. 2001;344(11):783–792. https://doi.org/10.1056/NEJM200103153441101.; Cameron D, Casey M, Oliva C, Newstat B, Imwalle B, Geyer CE. Lapatinib plus capecitabine in women with HER-2-positive advanced breast cancer: final survival analysis of a phase III randomized trial. Oncologist. 2010;15(9):924–934. https://doi.org/10.1634/theoncologist.2009-0181.; Verma S, Miles D, Gianni L, Krop IE, Welslau M, Baselga J et al.; EMILIA Study Group. Trastuzumab emtansine for HER2-positive advanced breast cancer. N Engl J Med. 2012;367(19):1783–1791. https://doi.org/10.1056/NEJMoa1209124.; Blackwell KL, Burstein HJ, Storniolo AM, Rugo H, Sledge G, Koehler M et al. Randomized study of Lapatinib alone or in combination with trastuzumab in women with ErbB2-positive, trastuzumab-refractory metastatic breast cancer. J Clin Oncol. 2010;28(7):1124–1130. https://doi.org/10.1200/JCO.2008.21.4437.; Ibragimova KIE, Geurts SME, Croes S, Erdkamp F, Heijns JB, Tol J et al. Survival before and after the introduction of pertuzumab and T-DM1 in HER2-positive advanced breast cancer, a study of the SONABRE Registry. Breast Cancer Res Treat. 2021;188(2):571–581. https://doi.org/10.1007/s10549-021-06178-8.; Diaby V, Adunlin G, Ali AA, Zeichner SB, de Lima Lopes G, Kohn CG, Montero AJ. Cost-effectiveness analysis of 1st through 3rd line sequential targeted therapy in HER2-positive metastatic breast cancer in the United States. Breast Cancer Res Treat. 2016;160(1):187–196. https://doi.org/10.1007/s10549-016-3978-6.; Mendes D, Alves C, Afonso N, Cardoso F, Passos-Coelho JL, Costa L et al. The benefit of HER2-targeted therapies on overall survival of patients with metastatic HER2-positive breast cancer – a systematic review. Breast Cancer Res. 2015;17:140. https://doi.org/10.1186/s13058-015-0648-2.; Trail PA, Dubowchik GM, Lowinger TB. Antibody drug conjugates for treatment of breast cancer: Novel targets and diverse approaches in ADC design. Pharmacol Ther. 2018;181:126–142. https://doi.org/10.1016/j.pharmthera.2017.07.013.; Ogitani Y, Aida T, Hagihara K, Yamaguchi J, Ishii C, Harada N et al. DS-8201a, A Novel HER2-Targeting ADC with a Novel DNA Topoisomerase I Inhibitor, Demonstrates a Promising Antitumor Efficacy with Differentiation from T-DM1. Clin Cancer Res. 2016;22(20):5097–5108. https://doi.org/10.1158/1078-0432.CCR-15-2822.; Ku GY, Ilson DH. Chemotherapeutic options for gastroesophageal junction tumors. Semin Radiat Oncol. 2013;23(1):24–30. https://doi.org/10.1016/j.semradonc.2012.09.003.; Stintzing S. Management of colorectal cancer. F1000Prime Rep. 2014;6:108. https://doi.org/10.12703/P6-108.; Sudo K, Yamada Y. Advancing pharmacological treatment options for advanced gastric cancer. Expert Opin Pharmacother. 2015;16(15):2293–2305. https://doi.org/10.1517/14656566.2015.1080238.; Pommier Y. Topoisomerase I inhibitors: camptothecins and beyond. Nat Rev Cancer. 2006;6(10):789–802. https://doi.org/10.1038/nrc1977.; Nakada T, Sugihara K, Jikoh T, Abe Y, Agatsuma T. The Latest Research and Development into the Antibody-Drug Conjugate, [fam-] Trastuzumab Deruxtecan (DS-8201a), for HER2 Cancer Therapy. Chem Pharm Bull (Tokyo). 2019;67(3):173–185. https://doi.org/10.1248/cpb.c18-00744.; Ogitani Y, Hagihara K, Oitate M, Naito H, Agatsuma T. Bystander killing effect of DS-8201a, a novel anti-human epidermal growth factor receptor 2 antibody-drug conjugate, in tumors with human epidermal growth factor receptor 2 heterogeneity. Cancer Sci. 2016;107(7):1039–1046. https://doi.org/10.1111/cas.12966.; Yin O, Iwata H, Lin CC, Tamura K, Watanabe J, Wada R et al. ExposureResponse Relationships in Patients With HER2-Positive Metastatic Breast Cancer and Other Solid Tumors Treated With Trastuzumab Deruxtecan. Clin Pharmacol Ther. 2021;110(4):986–996. https://doi.org/10.1002/cpt.2291.; Tamura K, Tsurutani J, Takahashi S, Iwata H, Krop IE, Redfern C et al. Trastuzumab deruxtecan (DS-8201a) in patients with advanced HER2positive breast cancer previously treated with trastuzumab emtansine: a dose-expansion, phase 1 study. Lancet Oncol. 2019;20(6):816–826. https://doi.org/10.1016/S1470-2045(19)30097-X.; Modi S, Saura C, Yamashita T, Park YH, Kim SB, Tamura K et al.; DESTINYBreast01 Investigators. Trastuzumab Deruxtecan in Previously Treated HER2-Positive Breast Cancer. N Engl J Med. 2020;382(7):610–621. https://doi.org/10.1056/NEJMoa1914510.; Saura C, Modi S, Krop I, Park YH, Kim S, Tamura K et al. 279P – Trastuzumab deruxtecan (T-DXd) in patients with HER2-positive metastatic breast cancer (MBC): Updated survival results from a phase II trial (DESTINY-Breast01). Ann Oncol. 2021;32(Suppl. 5):S485–S486. https://doi.org/10.1016/j.annonc.2021.08.562.; Hamilton E, Hurvitz SA, Im SA, Iwata H, Curigliano G, Kim SB et al. Trastuzumab deruxtecan (T-DXd) vs trastuzumab emtansine (T-DM1) in patients (pts) with HER2+ metastatic breast cancer (mBC): Updated survival results of DESTINY-Breast03. J Clin Oncol. 2024;42(16 Suppl):1025. https://doi.org/10.1200/JCO.2024.42.16_suppl.1025.; Hurvitz SA, Hegg R, Chung WP, Wei-Pang, Im SA, Jacot W et al. Abstract GS2-02: GS2-02 Trastuzumab deruxtecan versus trastuzumab emtansine in patients with HER2-positive metastatic breast cancer: Updated survival results of the randomized, phase 3 study DESTINY-Breast03. Cancer Res. 2023;83(5 Suppl):GS2-02. https://doi.org/10.1158/1538-7445.SABCS22-GS2-02.; Cortés J, Kim SB, Chung WP, Im SA, Park YH, Hegg R et al.; DESTINYBreast03 Trial Investigators. Trastuzumab Deruxtecan versus Trastuzumab Emtansine for Breast Cancer. N Engl J Med. 2022;386(12):1143–1154. https://doi.org/10.1056/NEJMoa2115022.; Nguyen A, Nguyen A, Dada OT, Desai PD, Ricci JC, Godbole NB et al. Leptomeningeal Metastasis: A Review of the Pathophysiology, Diagnostic Methodology, and Therapeutic Landscape. Curr Oncol. 2023;30(6):5906–5931. https://doi.org/10.3390/curroncol30060442.; Le Rhun E, Preusser M, van den Bent M, Andratschke N, Weller M. How we treat patients with leptomeningeal metastases. ESMO Open. 2019;4(Suppl. 2):e000507. https://doi.org/10.1136/esmoopen-2019-000507.; de Bernardi A, Bachelot T, Larrouquère L. Long-term response to sequential anti-HER2 therapies including trastuzumab-deruxtecan in a patient with HER2-positive metastatic breast cancer with leptomeningeal metastases: a case report and review of the literature. Front Oncol. 2024;13:1210873. https://doi.org/10.3389/fonc.2023.1210873.; Bachelot T, Romieu G, Campone M, Diéras V, Cropet C, Dalenc F et al. Lapatinib plus capecitabine in patients with previously untreated brain metastases from HER2-positive metastatic breast cancer (LANDSCAPE): a single-group phase 2 study. Lancet Oncol. 2013;14(1):64–71. https://doi.org/10.1016/S1470-2045(12)70432-1.; Sutherland S, Ashley S, Miles D, Chan S, Wardley A, Davidson N et al. Treatment of HER2-positive metastatic breast cancer with lapatinib and capecitabine in the lapatinib expanded access programme, including efficacy in brain metastases--the UK experience. Br J Cancer. 2010;102(6):995–1002. https://doi.org/10.1038/sj.bjc.6605586.; Wilcox JA, Li MJ, Boire AA. Leptomeningeal Metastases: New Opportunities in the Modern Era. Neurotherapeutics. 2022;19(6):1782–1798. https://doi.org/10.1007/s13311-022-01261-4.

  6. 6

    Weitere Verfasser: A. I. Stukan A. Yu. Goryainova M. M. Grigoryan et al.

    Quelle: Cancer Urology; Том 19, № 1 (2023); 85-101 ; Онкоурология; Том 19, № 1 (2023); 85-101 ; 1996-1812 ; 1726-9776

    Dateibeschreibung: application/pdf

    Relation: https://oncourology.abvpress.ru/oncur/article/view/1695/1442; Sung H., Ferlay J., Siegel R.L. et al. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J Clin 2021;71(3):209—49. DOI:10.3322/caac.21660; Sartor O., de Bono J.S. Metastatic prostate cancer. N Engl J Med 2018;378(17):1653-4. DOI:10.1056/NEJMra1803343; Beer T.M., Armstrong A.J., Rathkopf D.E. et al. Enzalutamide in metastatic prostate cancer before chemotherapy. N Engl J Med 2014;371(5):424-33. DOI:10.1056/NEJMoa1405095; Scher H.I., Fizazi K., Saad F. et al. Increased survival with enzalutamide in prostate cancer after chemotherapy. N Engl J Med 2012;367(13):1187-97. DOI:10.1056/NEJMoa1207506; Conteduca V., Wetterskog D., Sharabiani M.T.A. et al. Androgen receptor gene status in plasma DNA associates with worse outcome on enzalutamide or abiraterone for castration-resistant prostate cancer: a multi-institution correlative biomarker study. Ann Oncol 2017;28(7):1508-16. DOI:10.1093/annonc/mdx155; Antonarakis E.S., Lu C., Wang H. et al. AR-V7 and resistance to enzalutamide and abiraterone in prostate cancer. N Engl J Med 2014;371(11):1028-38. DOI:10.1056/NEJMoa1315815; Armstrong A.J., Halabi S., Luo J. et al. Prospective multicenter validation of androgen receptor splice variant 7 and hormone therapy resistance in high-risk castration-resistant prostate cancer: the prophecy study. J Clin Oncol 2019;37(13):1120-9. DOI:10.1200/JCO.18.01731; Liu C., Lou W., Zhu Y. et al. Intracrine androgens and AKR1C3 activation confer resistance to enzalutamide in prostate cancer. Cancer Res 2015;75(7):1413-22. DOI:10.1158/0008-5472.CAN-14-3080; Crona D.J., Whang Y.E. Androgen receptor-dependent and -independent mechanisms involved in prostate cancer therapy resistance. Cancers 2017;9(6):67. DOI:10.3390/cancers9060067; Guedes L.B., Morais C.L., Almutairi F. et al. Analytic valida of RNA in situ hybridization (RISH) for AR and AR-V7 exp ression in human prostate cancer. Clin Cancer Res 2016;22(18):4651-63. DOI:10.1158/1078-0432.CCR-16-0205; Salma B.S., Varadha B.V., Hannelore V.H. et al. Novel insights in cell cycle dysregulation during prostate cancer progression. Endocr Relat Cancer 2021;28(6):R141-55. DOI:10.1530/ERC-20-0517; Mcnair C., Urbanuccia A., Comstock C.E. et al. Cell cycle-coupled expansion of AR activity promotes cancer progression. Oncogene 2017;36(12):1655-68. DOI:10.1038/onc.2016.334; Schiewer M.J., Augello M.A., Knudsen K.E. The AR dependent cell cycle: mechanisms and cancer relevance. Mol Cell Endocrinol 2012;352(1-2):34-45. DOI:10.1016/j.mce.2011.06.033; Gordon V., Bhadel S., Wunderlich W. et al. CDK9 regulates AR promoter selectivity and cell growth through serine 81 phosphorylation. Mol Endocrinol 2010;24(12):2267-80. DOI:10.1210/me.2010-0238; Chen S., Gulla S., Cai C., Balk S.P. Androgen receptor serine 81 phosphorylation mediates chromatin binding and transcriptional activation. J Biol Chem 2012;287(11):8571-83. DOI:10.1074/jbc.m111.325290; Koryakina Y., Knudsen K.E., Gloeli D. Cell-cycle-dependent regulation of androgen receptor function. Endocr Relat Cancer 2015;22(2):249-64. DOI:10.1530/ERC-14-0549; Cancer Genome Atlas Research Network. The molecular taxonomy of primary prostate. Cancer Cell 2015;163(4):1011-25. DOI:10.1158/1538-7445.am2016-133; Ren S., Wei G.H., Liu D. et al. Wholegenome and transcriptome sequencing of prostate cancer identify new genetic alterations driving disease progression. Eur Urol 2018;73(3):322-39. DOI:10.21236/ada613308; Fraser M., Sabelnykova V.Y., Yamaguchi T.N. et al. Genomic hallmarks of localized, non-indolent prostate cancer. Nature 2017;541(7637):359-64. DOI:10.1016/j.juro.2017.09.039; Bangma C.H., Roobol M.J. Defining and predicting indolent and low risk prostate cancer. Crit Rev Oncol Hematol 2012;83(2):235-41. DOI:10.1016/j.critrevonc.2011.10.003; Irshad S., Bansal M., Castillo-Martin M. et al. A molecular signature predictive of indolent prostate cancer. Sci Transl Med 2013;5(202):202ra122. DOI:10.1126/scitranslmed.3006408; Kamoun A., Cancel-Tassin G., Fromont G. et al. Comprehensive molecular classification of localized prostate adenocarcinoma reveals a tumour subtype predictive of non-aggressive disease. Ann Oncol 2018;29(8):1814-21. DOI:10.1093/annonc/mdy224; Bancroft E.K., Page E.C., Castro E. et al. Targeted prostate cancer screening in BRCA1 and BRCA2 mutation carriers: results from the initial screening round of the Impact study. Eur Urol 2014;66(3):489-99. DOI:10.1126/scitranslmed.3006408; Zhang W., Van Gent D.C., Incrocci L. et al. Role of the DNA damage response in prostate cancer formation, progression and treatment. Prostate Cancer Prostatic Dis 2020;23(1):24-37. DOI:10.1038/s41391-019-0153-2; Hussain M., Fizazi K., Saad F. et al. Enzalutamide in men with nonmetastatic, castration-resistant prostate cancer. N Engl J Med 2018;378(26):2465-74. DOI:10.1056/NEJMoa1800536; Edwards J., Krishna N.S., Grigor K.M., Bartlett J.M.S. Androgen receptor gene amplification and protein expression in hormone refractory prostate cancer. Br J Cancer 2003;89(3):552-6. DOI:10.1038/sj.bjc.6601127; Romanel A., Gasi Tandefelt D., Conteduca V. et al. Plasma AR and abiraterone-resistant prostate cancer. Sci Transl Med 2015;7(312):re10. DOI:10.1126/scitranslmed.aac9511; Tucci M., Zichi C., Buttigliero C. et al. Enzalutamide-resistant castration-resistant prostate cancer: challenges and solutions. Onco Targets Ther 2018;11:7353-68. DOI:10.2147/OTT.S153764; Teply B.A., Wang H., Luber B. et al. Bipolar androgen therapy in men with metastatic castration-resistant prostate cancer after progression on enzalutamide: an open-label, phase 2, multicohort study. Lancet Oncol 2018;19(1):76-86. DOI:10.1016/S1470-2045(17)30906-3; Joseph J.D., Lu N., Qian J. et al. A clinically relevant androgen receptor mutation confers resistance to second-generation antiandrogens enzalutamide and ARN-509. Cancer Discov 2013;3(9):1020-9. DOI:10.1158/2159-8290.CD-13-0226; Balbas M.D., Evans M.J., Hosfield D.J. et al. Overcoming mutation-based resistance to antiandrogens with rational drug design. Elife 2013;2:e00499. DOI:10.7554/elife.00499; Lallous N., Volik S.V., Awrey S. et al. Functional analysis of androgen receptor mutations that confer anti-androgen resistance identified in circulating cell-free DNA from prostate cancer patients. Genome Biol 2016;17(1):10. DOI:10.1186/s13059-015-0864-1; Hu R., Dunn T.A., Wei S. et al. Ligand-independent androgen receptor variants derived from splicing of cryptic exons signify hormone-refractory prostate cancer. Cancer Res 2009;69(1):16-22. DOI:10.1158/0008-5472.CAN-08-2764; Zhang X., Morrissey C., Sun S. et al. Androgen receptor variants occur frequently in castration resistant prostate cancer metastases. PLoS One 2011;6(11):e27970. DOI:10.1371/journal.pone.0027970; Ware K.E., Garcia-Blanco M.A., Armstrong A.J., Dehm S.M. Biologic and clinical significance of androgen receptor variants in castration resistant prostate cancer. Endocr Relat Cancer 2014;21(4):T87-103. DOI:10.1530/erc-13-0470; Hu R., Lu C., Mostaghel E.A. et al. Distinct transcriptional programs mediated by the ligand-dependent full-length androgen receptor and its splice variants in castration-resistant prostate cancer. Cancer Res 2012;72(14):3457-62. DOI:10.1158/0008-5472.CAN-11-3892; Sq T., Kwan E., Fettke H. AR-V7 and AR-V9 expression is not predictive of response to AR-axis targeting agents in metastatic castration-resistant prostate cancer. Cancer Res 2018;78(13):2593. DOI:10.1158/1538-7445.am2018-2593; Miller W.L., Auchus R.J. The molecular biology, biochemistry, and physiology of human steroidogenesis and its disorders. Endocr Rev 2011;32(1):81-151. DOI:10.1210/er.2010-0013; Cai C., Balk S.P. Intratumoral androgen biosynthesis in prostate cancer pathogenesis and response to therapy. Endocr Relat Cancer 2011;18(5):R175-82. DOI:10.1530/ERC-10-0339; Galletti G., Leach B.I., Lam L., Tagawa S.T. Mechanisms of resistance to systemic therapy in metastatic castration-resistant prostate cancer. Cancer Treat Rev 2017;57:16-27. DOI:10.1016/j.ctrv.2017.04.008; Stanbrough M., Bubley G.J., Ross K. et al. Increased expression of genes converting adrenal androgens to testosterone in androgen-independent prostate cancer. Cancer Res 2006;66(5):2815-25. DOI:10.1158/0008-5472.CAN-05-4000; Puhr M., Hoefer J., Eigentler A. et al. The glucocorticoid receptor is a key player for prostate cancer cell survival and a target for improved antiandrogen therapy. Clin Cancer Res 2018;24(4):927-38. DOI:10.1158/1078-0432.ccr-17-0989; Arora V.K., Schenkein E., Murali R. et al. Glucocorticoid receptor confers resistance to antiandrogens by bypassing androgen receptor blockade. Cell 2013;155(6):1309-22. DOI:10.1016/j.cell.2013.11.012; Venkitaraman R., Lorente D., Murthy V. et al. A randomised phase 2 trial of dexamethasone versus prednisolone in castration-resistant prostate cancer. Eur Urol 2015;67(4):673-9. DOI:10.1016/j.eururo.2014.10.004; Akamatsu S., Inoue T., Ogawa O., Gleave M.E. Clinical and mo-lecular features of treatment-related neuroendocrine prostate cancer. Int J Urol 2018;25(4):345-51. DOI:10.1111/iju.13526; Flechon A., Pouessel D., Ferlay C. et al. Phase II study of carboplatin and etoposide in patients with anaplastic progressive metastatic castration-resistant prostate cancer (mCRPC) with or without neuroendocrine differentiation: results of the French Genito-Urinary Tumor Group (GETUG) P01 trial. Ann Oncol 2011;22(11):2476-81. DOI:10.1093/annonc/mdr004; Culine S., El Demery M., Lamy P.J. et al. Docetaxel and cisplatin in patients with metastatic androgen independent prostate cancer and circulating neuroendocrine markers. J Urol 2007;178(3 Pt 1): 844-8. DOI:10.1016/j.juro.2007.05.044; McKay R.R., Kwak L., Crowdis J.P. Phase II multicenter study of enzalutamide in metastatic castration-resistant prostate cancer to identify mechanisms driving resistance. Clin Cancer Res 2021;27(13):3610-9. DOI:10.1158/1078-0432.CCR-20-4616; Hanahan D., Weinberg R.A. Hallmarks of cancer: the next generation. Cell 2011;144(5):646-74. DOI:10.1016/j.cell.2011.02.013; Ceccaldi R., Rondinelli B., D'Andrea A.D. Repair pathway choices and consequences at the double-strand break. Trends Cell Biol 2015;26(1):52-64. DOI:10.1016/j.tcb.2015.07.009; Bhattacharjee S., Nandi S. Choices have consequences: The nexus between DNA repair pathways and genomic instability in cancer. Clin Transl 2016;5(1):45. DOI:10.1186/s40169-016-0128-z; Hustedt N., Durocher D. The control of DNA repair by the cell cycle. Nat Cell Biol 2016;19(1):1-9. DOI:10.1038/ncb3452; Jeggo P.A., Pearl L.H., Carr A.M. DNA repair, genome stability and cancer: a historical perspective. Nat Rev Cancer 2016;16(1):35-42. DOI:10.1038/nrc.2015.4; Roos W.P., Thomas A.D., Kaina B. DNA damage and the balance between survival and death in cancer biology. Nat Rev Cancer 2016;16(1):20-33. DOI:10.1038/nrc.2015.2; Schiewer M.J., Knudsen K.E. DNA damage response in prostate cancer. Cold Spring Harb Perspect Med 2019;9(1):a030486. DOI:10.1101/cshperspect.a030486; Robinson D., van Allen E.M., Wu Y.M. et al. Integrative clinical genomics of advanced prostate cancer. Cell 2015;161(5):1215-28. DOI:10.1016/j.cell.2015.05.001; Annala M., Vandekerkhove G., Khalaf D. et al. Circulating tumor DNA genomics correlate with resistance to abiraterone and enzalutamide in prostate cancer. Cancer Discov 2018;8(4):444-57. DOI:10.1158/2159-8290.CD-17-0937; Thangavel C., Boopathi E., Liu Y. et al. RB loss promotes prostate cancer metastasis. Cancer Res 2017;77(4):982-95. DOI:10.1158/0008-5472.CAN-16-1589; Ku S.Y., Rosario S., Wang Y. et al. Rb1 and Trp53 cooperate to suppress prostate cancer lineage plasticity, metastasis, and antiandrogen resistance. Science 2017;355(6320):78-83. DOI:10.1126/science.aah4199; McNair C., Xu K., Mandigo A.C. et al. Differential impact of RB status on E2F1 reprogramming in human cancer. J Clin Invest 2018;128(1):341-58. DOI:10.1172/JCI93566; Abida W., Cyrta J., Heller G. et al. Genomic correlates of clinical outcome in advanced prostate cancer. Proc Natl Acad Sci USA 2019;116(23):11428-36. DOI:10.1073/pnas.1906812116; Annala M., Struss W.J., Warner E.W. et al. Treatment outcomes and tumor loss of heterozygosity in germline DNA repair-deficient prostate cancer. Eur Urol 2017;72(1):34-42. DOI:10.1016/j.eururo.2017.02.023; Chakraborty G., Armenia J., Mazzu Y.Z. et al. Significance of BRCA2 and RB1 co-loss in aggressive prostate cancer progression. Clin Cancer Res 2020;26(8):2047-64. DOI:10.1158/1078-0432.CCR-19-1570.; Матвеев В.Б., Киричек А.А., Филиппова М.Г. и др. Влияние герминальных мутаций в генах BRCA2 и CHEK2 на время до развития кастрационной резистентности у больных метастатическим гормоночувствительным раком предстательной железы. Урология 2019;(5):79-85. DOI:10.18565/urology.2019.5.79-85; Матвеев В.Б., Киричек А.А., Савинкова А.В. и др. Влияние герминальных мутаций в гене CHEK2 на выживаемость до биохимического рецидива и безметастатическую выживаемость после радикального лечения у больных раком. Онкоурология 2018;14(4):53-67. DOI:10.17650/1726-9776-2018-14-4-53-67; https://oncourology.abvpress.ru/oncur/article/view/1695

  7. 7

    Quelle: Head and Neck Tumors (HNT); Том 12, № 3 (2022); 114-126 ; Опухоли головы и шеи; Том 12, № 3 (2022); 114-126 ; 2411-4634 ; 2222-1468 ; 10.17650/2222-1468-2022-12-3

    Dateibeschreibung: application/pdf

    Relation: https://ogsh.abvpress.ru/jour/article/view/820/547; Pelaez-Prestel H.F., Sanchez-Trincado J.L., Lafuente E.M., Reche P.A. Immune tolerance in the oral mucosa. Int J Mol Sci 2021;22(22):12149. DOI:10.3390/ijms222212149; Silva-Sanchez A., Randall T.D. Anatomical uniqueness of the mucosal immune system (GALT, NALT, iBALT) for the induction and regulation of mucosal immunity and tolerance. Mucosal Vaccines 2020:21–54. DOI:10.1016/b978-0-12-811924-2.00002-x. Available at: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7149644/; Wu R.-Q., Zhang D.F., Tu E. et al. The mucosal immune system in the oral cavity – an orchestra of T cell diversity. Int J of Oral Sci 2014;6(3):125–32. DOI:10.1038/ijos.2014.48; Park J.Y., Chung H., DiPalma D.T. et al. Immune quiescence in the oral mucosa is maintained by a uniquely large population of highly activated Foxp3(+) regulatory T cells. Mucosal Immunol 2018;11(4):1092–102. DOI:10.1038/s41385-018-0027-2; Lee W., Lee G.R. Transcriptional regulation and development of regulatory T cells. Exp Mol Med 2018;50(3):e456. DOI:10.1038/ emm.2017.313; Yadav M., Louvet C., Davini D. et al. Neuropilin-1 distinguishes natural and inducible regulatory T cells among regulatory T cell subsets in vivo. J Exp Med 2012;209:1713–22. DOI:10.1084/jem.20120822; Weiss J.M., Bilate A.M., Gobert M. et al. Neuropilin 1 is expressed on thymus-derived natural regulatory T cells, but not mucosagenerated induced Foxp3+ T reg cells. J Exp Med 2012;209(10):1723–42. DOI:10.1084/jem.20120914; Zhang Y., Guo, J., Jia R. Treg: a promising immunotherapeutic target in oral diseases. Front Immunol 2021;12:2195. DOI:10.3389/ fimmu.2021.667862; Francisconi C.F., Vieira A.E., Biguetti et al. Characterization of the protective role of regulatory T cells in experimental periapical lesion development and their chemoattraction manipulation as a therapeutic tool. J Endod 2016;42(1):120–6. DOI:10.1016/j. joen.2015.09.022; Fonseca V.R., Graca L. Contribution of FoxP3(+) Tfr cells to overall human blood CXCR5(+) T cells. Clin Exp Immunol 2019;195(3):302–4. DOI:10.1111/cei.13245; Dar A.A., Patil R.S., Pradhan et al. Myeloid-derived suppressor cells impede T cell functionality and promote Th17 differentiation in oral squamous cell carcinoma. Cancer Immunol Immunother 2020;69(6):1071–86. DOI:10.1007/s00262-020-02523-w; Pang X., Fan H.Y., Tang Y.L. et al. Myeloid-derived suppressor cells contribute to the malignant progression of oral squamous cell carcinoma. PLoS ONE 2020;15(2):e0229089. DOI:10.1371/journal.pone.0229089; Zhong L.M., Liu Z.G., Zhou X. et al. Expansion of PMN-myeloid derived suppressor cells and their clinical relevance in patients with oral squamous cell carcinoma. Oral Oncol 2019;95:157–63. DOI:10.1016/j.oraloncology.2019.06.004; Shapouri-Moghaddam A., Mohammadian S., Vazini H. et al. A. Macrophage plasticity, polarization, and function in health and disease. J Cell Physiol 2018;233(9):6425–40. DOI:10.1002/jcp.26429; Fridman W.H. From cancer immune surveillance to cancer immunoediting: birth of modern immuno-oncology. J Immunol 2018;201(3):825e826. DOI:10.4049/jimmunol.1800827; Perri F., Ionna F., Scarpati G.D.V. et al. Translational research: a future strategy for managing squamous cell carcinoma of the head and neck? Anticancer Agents Med Chem 2018;18(9):1220e1227. DOI:10.2174/1871520618666180411110036; Butt S.U., Malik L. Role of immunotherapy in bladder cancer: past, present and future. Cancer Chemother Pharmacol 2018;81(4):629e645. DOI:10.1007/s00280-018-3518-7; Scarpati D.V.G., Fusciello C., Perri F. et al. Ipilimumab in the treatment of metastatic melanoma: management of adverse events. Onco Targets Ther 2014;7:203e209. DOI:10.2147/ott.s57335; Marra A., Ferrone C.R., Fusciello C. et al. Translational research in cutaneous melanoma: new therapeutic perspectives. Anticancer Agents Med Chem 2018;18(2):166e181. DOI:10.2174/1871520618666171219115335; Mahoney K.M., Freeman G.J., McDermott D.F. The next immune-checkpoint inhibitors: PD-1/PD-L1 blockade in melanoma. Clin Ther 2015;37(4):764e782. DOI:10.1016/j.clinthera.2015.02.018; Ferri T.F., Ionna F., Carpati G.V.C. et al. Immune response against head and neck cancer: biological mechanisms and implication on therapy. Translational Oncology 2020;13(2):262–74. DOI:10.1016/j.tranon.2019.11.008; Schipmann S., Wermker K., Schulze H.J. et al. Cutaneous and oral squamous cell carcinoma-dual immunosuppression via recruitment of FOXP3C regulatory T cells and endogenous tumour FOXP3 expression? J Craniomaxillofac Surg 2014;42(8):1827–33. DOI: 1016/j.jcms.2014.06.022; Tanaka A., Sakaguchi S. Regulatory T cells in cancer immunotherapy. Cell Res 2017;27(1):109e118. DOI:10.1038/cr.2016.151; Yu J., Zhang H., Sun S. et al. The effects of Tim-3 activation on T-cells in gastric cancer progression. Oncol Lett 2019;17(2):1461–6. DOI:10.3892/ol.2018.9743; Sheng C.C., Han F.Y. Immunoregulation effects of TIM-3 on tumors. Neoplasma 2015;66(2):167e175. DOI:10.4149/neo_2018_180610n385; De la Iglesia J.V., Slebos R.J.C., Martin-Gomez L. et al. Effects of tobacco smoking on the tumor immune microenvironment in head and neck squamous cell carcinoma. Clin Cancer Res 2020;26(6):1474–85. DOI:10.1158/1078-0432.CCR-19-1769; Panek C.A., Ramos M.V., Mejias M.P. et al. Differential expression of the fractalkine chemokine receptor (CX3CR1) in human monocytes during differentiation. Cell Mol Immunol 2015;12(6):669–80. DOI:10.1038/cmi.2014.116; Idel C., Loyal K., Rades D. et al. Smoking-, Alcohol-, and Agerelated alterations of blood monocyte subsets and circulating CD4/CD8 T cells in head and neck cancer. Biology 2022;11(5):658. DOI:10.3390/biology11050658; Barnes T.A., Amir E. HYPE or HOPE: The prognostic value of infiltrating immune cells in cancer. Br J Cancer 2017;117(4): 451–60. DOI:10.1038/bjc.2017.220; Turksma A.W., Bontkes H.J., Van den Heuvel H. et al. Effector memory T-cell frequencies in relation to tumour stage, location and HPV status in HNSCC patients. Oral Dis 2013;19(6):577–84. DOI:10.1111/odi.12037; Le Page A., Dupuis G., Larbi A. et al. Signal transduction changes in CD4(+) and CD8(+) T cell subpopulations with aging. Exp Gerontol 2018;105:128–39. DОI: 10.1016/j.exger.2018.01.005; Jeske S.S., Schuler P.J., Doescher J. et al. Age-related changes in T lymphocytes of patients with head and neck squamous cell carcinoma. Immun Ageing 2020;17:3. DOI:10.1186/s12979-020-0174-7; Desrichard A., Kuo F., Chowell D. et al. Tobacco smokingassociated alterations in the immune microenvironment of squamous cell carcinomas. J Natl Cancer Inst 2018;110(12):1386–92. DOI:10.1093/jnci/djy060; Ferris R.L., Blumenschein G., Fayette J. et al. Nivolumab vs investigator’s choice in recurrent or metastatic squamous cell carcinoma of the head and neck: 2-year long-term survival update of CheckMate 141 with analyses by tumor PD-L1 expression. Oral Oncol 2018;81:45–51. DOI:10.1016/j.oraloncology.2018.04.008; Solomon B., Young R.J., Rischin D. Head and neck squamous cell carcinoma: genomics and emerging biomarkers for immunomodulatory cancer treatments. Semin Cancer Biol 2018;52(2):228–40. DOI:10.1016/j.semcancer.2018.01.008; Smith E.M., Pawlita M., Rubenstein L.M. et al. Risk factors and survival by HPV-16 E6 and E7 antibody statusin human papillomavirus positive head and neck cancer. Int J Cancer 2010;127(1):111–7. DOI:10.1002/ijc.25015; Lang Kuhs K.A., Kreimer A.R., Trivedi S. et al. Human papillo mavirus 16 E6 antibodies are sensitive for human papillomavirus – driven oropharyngeal cancer and are associated with recurrence. Cancer 2017;123(22):4382–90. DOI:10.1002/cncr.30966; Kreimer A.R., Johansson M., Waterboer T. et al. Evaluation of human papillomavirus antibodies and risk of subsequent head and neck cancer. J Clin Oncol 2013;31(21):2708–15. DOI:10.1200/ JCO.2012.47.2738; Wang H., Wang S., Tang Y-J. et al. The double-edged sword – how human papillomaviruses interact with immunity in head and neck cancer. Front Immunol 2019;10:653. DOI:10.3389/fimmu.2019. 00653; King E.V., Ottensmeier C.H., Thomas G.J. The immune response in HPV+ oropharyngeal cancer. Oncoimmunology 2014;3(1):e27254. DOI:10.4161/onci.27254; Partlová S., Boucek J., Kloudová K. et al. Distinct patterns of intratumoral immune cell infiltrates in patients with HPVassociated compared to non-virally induced head and neck squamous cell carcinoma. Oncoimmunology 2015;4(1):e965570. DOI:10.4161/21624011.2014.965570; Solomon B., Young R.J., Bressel M. et al. Prognostic significance of PD-L1+ and CD8+ immune cells in HPV+ oropharyngeal squamous cell carcinoma. Cancer Immunol Res 2018;6(3):295–303. DOI:10.1158/2326-6066.CIR-17-0299; Masterson L., Lechner M., Loewenbein S. et al. CD8+ T cell response to human papillomavirus 16 E7 is able to predict survival outcome in oropharyngeal cancer. Eur J Cancer 2016;67:141–51. DOI:10.1016/j.ejca.2016.08.012; Welters M.J.P, Ma W., Santegoets S.J.A.M. et al. Intratumoral HPV16-Specific T cells constitute a type I-oriented tumor microenvironment to improve survival in HPV16-driven oropharyngeal cancer. Clin Cancer Res 2018;24(3):634–47. DOI:10.1158/1078-0432.CCR-17-2140; Krupar R., Robold K., Gaag D. et al. Immunologic and metabolic characteristics of HPV-negative and HPV-positive head and neck squamous cell carcinomas are strikingly different. Virchows Arch 2014;465(3):299–312. DOI:10.1007/s00428-014-1630-6; Oguejiofor K., Hall J., Slater C. et al. Stromal infiltration of CD8 T cells is associated with improved clinical outcome in HPV-positive oropharyngeal squamous carcinoma. Br J Cancer 2015;113(6):886–93. DOI:10.1038/bjc.2015.277; Lechnera A., Schlößerb H.A., Thelenb M. et al. Tumor-associated B cells and humoral immune response in head and neck squamous cell carcinoma Oncoimmunology 2019;8(3):e1535293. DOI:10.4161/onci.24065; Svensson M.C., Warfvinge C.F., Fristedt R. et al. The integrative clinical impact of tumor-infiltrating T lymphocytes and NK cells in relation to B lymphocyte and plasma cell density in esophageal and gastric denocarcinoma. Oncotarget 2017;8(42):72108–26. DOI:10.18632/oncotarget.v8i42; Mahale P., Sturgis E.M., Tweardy D.J. et al. Association between hepatitis C virus and head and neck cancers. J Natl Cancer Inst 2016;108(8):djw035. DOI:10.1093/jnci/djw035; Heim M.H.,Thimme R. Innate and adaptive immune responses in HCV infections. J Hepatol 2014;61(1 Supple):S14–25. DOI:10.1016/j.jhep.2014.06.035; Irelli A., Sirufo M.M., D’Ugo C. et al. Sex and gender influences on cancer Immunotherapy response. Biomedicines 2020;8(7):232. DOI:10.3390/biomedicines8070232; Ortona E., Pierdominici M., Rider V. Editorial: Sex hormones and gender differences in immune responses. Front Immunol 2019;10:1076. DOI:10.3389/fimmu.2019.01076; Pellegrini P., Contasta I., DelBeato T. et al. Gender-specific cytokine pathways, targets, and biomarkers for the switch from health to adenoma and colorectal cancer. Clin Dev Immunol 2011;819724. DOI:10.1155/2011/819724; Furman D., Hejblum B.P., Simon N. et al. Systems analysis of sex differences reveals an immunosuppressive role for testosterone in the response to influenza vaccination. Proc Natl Acad Sci USA 2014;111(2):869–74. DOI:10.1073/pnas.1321060111; Conforti F., Pala L., Bagnardi V. et al. Cancer immunotherapy efficacy and patients’ sex: a systematic review and meta-analysis. Lancet Oncol 2018;19(6):737–46. DOI:10.1016/s1470-2045(18)30261-4; Garutti P., Montori S., Bazzan E., Tarabbia C. Gender differences in the epidemiology and prevention of human papillomavirus (HPV) and HPV-related diseases. Ital J Gender-Specific Med 2018;4(4):152–61. DOI:10.1723/3091.30836; Mohamad N., Wong S., Hasan W.N.W. et al. The relationship between circulating testosterone and inflammatory cytokines in men. Aging Male 2019;22(2):129–40. DOI:10.1080/13685538.2018.1482487; Pala L., Nezi L., de Pas T. et al. Sex differences in efficacy and toxicity of systemic cancer treatments: role of the microbiome. J Clin Oncol 2019;37(5):439. DOI:10.1200/jco.18.01270; Wagner A.D., Oertelt-Prigione S., Adjei A. et al. Gender medicine and oncology: report and consensus of an ESMO workshop. Ann Oncol 2019;30(12):1914–24. DOI:10.1093/annonc/mdz414; Jäger U., Fridrik M.A., Zeitlinger M. et al. Rituximab serum concentrations during immuno-chemotherapy of follicular lymphoma correlate with patient gender, bone marrow infiltration and clinical response. Haematologica 2012;97(9):1431–8. DOI:10.3324/haematol.2011.059246; Wang S., He Z., Wang X. et al. Can tumor mutational burden determine the most effective treatment for lung cancer patients? Lung Cancer Mana 2020;8(4):LMT21. DOI:10.2217/lmt-2019-0013; Pinto J.A., Vallejos C.S., Raez L.E. et al. Gender and outcomes in non-small cell lung cancer: an old prognostic variable comes back for targeted therapy and immunotherapy? ESMO Open 2018;3(3):e000344. DOI: 1136/esmoopen-2018-000344; Ruggieri A., Malorni W., Ricciardi W. Gender disparity in response to anti-viral vaccines: new clues toward personalized vaccinology Ital J Gender-Specific Med 2016;2(3):93–8. DOI:10.1007/978-3-319-25832-4_1; Conforti F., Pala L., Bagnardi V. et al. Sex-based heterogeneity in response to lung cancer immunotherapy: A systematic review and meta-analysis. J Natl Cancer Inst 2019;111(8):772–81. DOI:10.1093/jnci/djz094; Frasor J., Danes J.M., Komm B. et al. Profiling of estrogen up-and down-regulated gene expression in human breast cancer cells: insights into gene networks and pathways underlying estrogenic control of proliferation and cell phenotype. Endocrinology 2003;144(10):4562–74. DOI:10.1210/en.2003-0567; Tobillo R., De Joya E., Dooley S. et al. Female sex and increased immune marker mRNA gene expression are associated with decreased overall survival in patients with HPV-negative head and neck cancer. Int J Rad Oncol Biol Phys 2021;111:(3S):e238–9. DOI:10.1016/j.ijrobp.2021.07.810; Jeske S.S., Schuler P.I., Doescher J. et al. Age-related changes in T lymphocytes of patients with head and neck squamous cell carcinoma. Immun Ageing 2020;17:3. DOI:10.1186/s12979-020-0174-7; Maggiore R., Zumsteg Z.S., BrintzenhofeSzoc K. et al. The older adult with Locoregionally advanced head and neck squamous cell carcinoma: knowledge gaps and future direction in assessment and treatment. Int J Radiat Oncol Biol Phys 2017;98(4):868–83. DOI:10.1016/j.ijrobp.2017.02.022; Bottazzi B., Riboli E., Mantovani A. Aging, inflammation and cancer. Semin Immunol 2018;40:74–82. DOI:10.1016/j.smim.2018.10.011; Saavedra D., Garcia B., Lage A. T cell subpopulations in healthy elderly and lung Cancer patients: insights from Cuban studies. Front Immunol 2017;8:146. DOI:10.3389/fimmu.2017.00146; Saavedra D., Garcia B., Lorenzo-Luaces P. et al. Biomarkers related to immunosenescence: relationships with therapy and survival in lung cancer patients. Cancer Immunol Immunother 2016;65(1):37–45. DOI:10.1007/s00262-015-1773-6; Constantinidou A., Alifieris C., Trafalis D.T. Targeting programmed cell death −1 (PD-1) and ligand (PD-L1): a new era in cancer active immunotherapy. Pharmacol Ther 2018;194:84–106. DOI:10.1016/j.pharmthera.2018.09.008; Seiwert T.Y., Burtness B., Mehra R. et al. Safety and clinical activity of pembrolizumab for treatment of recurrent or metastatic squamous cell carcinoma of the head and neck (KEYNOTE-012): an open-label, multicentre, phase 1b trial. Lancet Oncol 2016;17(7):956. DOI:10.1016/s1470-2045(16)30066-3; Ferris R.L., Blumenschein G., Fayette J. et al. Nivolumab for recurrent squamous-cell carcinoma of the head and neck. N Engl J Med 2016;375(19):1856–67. DOI:10.1056/nejmoa1602252; Shang B., Liu Y., Jiang S.J., Liu Y. Prognostic value of tumor-infiltrating FoxP3+ regulatory T cells in cancers: a systematic review and meta-analysis. Sci Rep 2015;5:15179. DOI:10.1038/srep15179; Zumsteg Z.S., Cook-Wiens G., Yoshida E. et al. Incidence of Oropharyngeal Cancer among elderly patients in the United States. JAMA Oncol 2016;2(12):1617–23. DOI:10.1001/jamaoncol.2016.1804; https://ogsh.abvpress.ru/jour/article/view/820

  8. 8

    Quelle: Cancer Urology; Том 17, № 3 (2021); 85-94 ; Онкоурология; Том 17, № 3 (2021); 85-94 ; 1996-1812 ; 1726-9776

    Dateibeschreibung: application/pdf

    Relation: https://oncourology.abvpress.ru/oncur/article/view/1519/1301; Shiao S.L., Chu G.C.Y., Chung L.W.K. Regulation of prostate cancer progression by the tumor microenvironment. Cancer Lett 2016;380(1):340—8. DOI:10.1016/j.canlet.2015.12.022.; Filella X., Fojm L. Novel biomarkers for prostate cancer detection and prognosis. Adv Exp Med Biol 2018;1095:15-39. DOI:10.1007/978-3-319-95693-0_2.; Bahmad H.F., Jalloul M., Azar J. et al. Tumor microenvironment in prostate cancer: toward identification of novel molecular biomarkers for diagnosis, prognosis, and therapy development. Front Genet 2021;12:652747. DOI:10.3389/fgene.2021.652747.; Valdman A., Jaraj S.J., Comperat E. et al. Distribution of FOXP3-, CD4- and CD8positive lymphocytic cells in benign and malignant prostate tissue. APMIS 2010;118(5):360—5. DOI:10.1111/j.1600-0463.2010.02604.x.; Strasner A., Karin M. Immune infiltration and prostate cancer. Front Oncol 2015;5:128. DOI:10.3389/fonc.2015.00128.; Jenzer M., KeB P., Nientiedt C. et al. The BRCA2 mutation status shapes the immune phenotype of prostate cancer. Cancer Immunol Immunother 2019;68:1621-33. DOI:10.1007/s00262-019-02393-x.; Bishop J.L., Sio A., Angeles A. et al. PD-L1 is highly expressed in Enzalu-tamide resistant prostate cancer. Oncotarget 2015;6(1):234—42. DOI:10.18632/oncotarget.2703.; Ness N., Andersen S., Valkov A. et al. Infiltration of CD8+ lymphocytes is an independent prognostic factor of biochemical failure-free survival in prostate cancer. Prostate 2014;74(14):1452—61. DOI:10.1002/pros.22862.; Petitprez F., Fossati N., Vano Y. et al. PD-L1 expression and CD8(+) T-cell infiltrate are associated with clinical progression in patients with nodepositive prostate cancer. Eur Urol Focus 2019;5(2):192—6. DOI:10.1016/j.euf.2017.05.013.; Leclerc B.G., Charlebois R., Chouinard G. et al. CD73 expression is an indepen-dent prognostic factor in prostate cancer. Clin Cancer Res 2016;22(1):158—166. DOI:10.1158/1078-0432.CCR-15-1181.; Lundholm M., Hagglof C., Wikberg M.L. et al. Secreted factors from colorectal and prostate cancer cells skew the immune response in opposite directions. Sci Rep 2015;5:15651. DOI:10.1038/srep15651.; Nolan E., Savas P., Policheni A.N. et al. Combined immune checkpoint blockade as a therapeutic strategy for BRCA1-mutated breast cancer. Sci Transl Med 2017;9(393):eaal4922. DOI:10.1126/scitranslmed.aal4922.; Wen W.X., Leong C.O. Association of BRCA1- and BRCA2-deficiency with mutation burden, expression of PD-L1/PD-1, immune infiltrates, and T cell-inflamed signature in breast cancer. PLoS One 2019;14(4):e0215381. DOI:10.1371/journal.pone.02153 8.1.; Strickland K.C., Howitt B.E., Shukla S.A. et al. Association and prognostic significance of BRCA1/2-mutation status with neoantigen load, number of tumor-infiltrating lymphocytes and expression of PD-1/PD-L1 in high grade serous ovarian cancer. Oncotarget 2016;7(12): 13587—98. DOI:10.18632/oncotarget.7277.; Trigos A.S., Pasam A., Banks P.C. et al. The tumor immune microenvironment of germline BRCA1/2 and sporadic prostate cancer. J Clin Oncol 2020; 38(6_suppl):152. DOI:10.1200/JCO.2020.38.6_suppl.152.; Di Pilato M., Kim E.Y., Cadilha B.L. et al. Targeting the CBM complex causes Treg cells to prime tumours for immune checkpoint therapy. Nature 2019; 570(7759):112—6. DOI:10.1038/s41586-019-1215-2.; Karzai F., Madan R.A., Owens H. et al. Combination of PD-L1 and PARP inhibition in an unselected population with metastatic castrate-resistant prostate cancer (mCRPC). J Clin Oncol 2017;35(15_suppl):5026. DOI:10.1200/jco.2017.35.15_suppl.5026.; Chabanon R.M., Pedrero M., Lefebvre C. et al. Mutational landscape and sensitivity to immune checkpoint blockers. Clin Cancer Res 2016;22(17):4309—21. DOI:10.1158/1078-0432.ccr-16-0903.; Li T., Chen Z.J. The cGAS—cGAMP— STING pathway connects DNA damage to inflammation, senescence, and cancer. J Exp Med 2018;215(5):1287—99. DOI:10.1084/jem.20180139.; Chen Q., Sun L., Chen Z.J. Regulation and function of the cGAS—STING pathway of cytosolic DNA sensing. Nat Immunol 2016;17(10):1142—9. DOI:10.1038/ni.3558.; Motwani M., Pesiridis S., Fitzgerald K.A. DNA sensing by the cGAS—STING pathway in health and disease. Nat Rev Genet 2019;20(11):657—74. DOI:10.1038/s41576-019-0151-1.; Kwon J., Bakhoum S.F. The cytosolic DNA-sensing cGAS—STING pathway in cancer. Cancer Discov 2020;10(1):26—39. DOI:10.1158/2159-8290.cd-19-0761.; Parkes E.E., Walker S.M., Taggart L.E. et al. Activation of STING-dependent innate immune signaling by S-phase-specific DNA damage in breast cancer. J Natl Cancer Inst 2016;109(1):djw199. DOI:10.1093/jnci/djw199.; Heijink A.M., Talens F., Jae L.T. et al. BRCA2 deficiency instigates cGAS-mediated inflammatory signaling and confers sensitivity to tumor necrosis factor-alpha-mediated cytotoxicity. Nat Commun 2019;10(1):100. DOI:10.1038/s41467-018-07927-y.; Lee J.M., Cimino-Mathews A., Peer C.J. et al. Safety and clinical activity of the programmed death-ligand 1 inhibitor durvalumab in combination with poly (ADP-ribose) polymerase inhibitor Olaparib or vascular endothelial growth factor receptor 1—3 inhibitor Cediranib in women’s cancers: a dose-escalation, phase I study. J Clin Oncol 2017;35(19):2193—202. DOI:10.1200/jco.2016.72.1340.; Stewart R.A., Pilie P.G., Yap T.A. Development of PARP and immune-checkpoint inhibitor combinations. Cancer Res 2018;78(24):6717—25. DOI:10.1158/0008-5472.can-18-2652.; Konstantinopoulos P.A., Waggoner S., Vidal G.A. et al. Single-arm phases 1 and 2 trial of Niraparib in combination with pembrolizumab in patients with recurrent platinum resistant ovarian carcinoma. JAMA Oncol 2019;5(8):1141—9. DOI:10.1001/jamaoncol.2019.1048.; Shen J., Zhao W., Ju Z. et al. PARPi triggers the STING-dependent immune response and enhances the therapeutic efficacy of immune checkpoint blockade independent of BRCAness. Cancer Res 2019;79(2):311—9. DOI:10.1101/318980.; Sen T., Rodriguez B.L., Chen L. et al. Targeting DNA damage response promotes antitumor immunity through STING-mediated T-cell activation in small cell lung cancer. Cancer Discov 2019;9(5):646—61. DOI:10.1158/2159-8290.cd-18-1020.; Zhang Q., Green M.D., Lang X. et al. Inhibition of ATM increases interferon signaling and sensitizes pancreatic cancer to immune checkpoint blockade therapy. Cancer Res 2019;79(15):3940—51. DOI:10.1158/0008-5472.can-19-0761.; McGrail D.J., Garnett J., Yin J. et al. Proteome instability is a therapeutic vulnerability in mismatch repair-deficient cancer. Cancer Cell 2020;37(3):371—86.e12. DOI:10.1016/j.ccell.2020.01.011.; Zhang J., Shih D.J.H., Lin S.Y. Role of DNA repair defects in predicting-immunotherapy response. Biomark Res 2020;8:23. DOI:10.1186/s40364-020-00202-7.; Marti J.M., Fernandez-Cortes M., Serrano-Saenz S. et al. The multifactorial role of PARP-1 in tumor microenvironment. Cancers 2020;12(3):739. DOI:10.3390/cancers12030739.; Faraoni I., Graziani G. Role of BRCA mutations in cancer treatment with poly(ADP-ribose)polymerase (PARP) inhibitors. Cancers 2018;10:487. DOI:10.3390/cancers10120487.; Szanto M., Brunyanszki A., Kiss B. et al. Poly(ADP-ribose)polymerase-2: emerging transcriptional roles of a DNA-repair protein. Cell Mol Life Sci 2012;69(24):4079—92. DOI:10.1007/s00018-012-1003-8.; Mehrotra P., Riley J.P., Patel R. et al. PARP-14 functions as a transcriptional switch for Stat6-dependent gene activation. J Biol Chem 2011;286(3):1767—76. DOI:10.1074/jbc.m110.157768.; Rosado M.M., Bennici E., Novelli F., Pioli C. Beyond DNA repair, the immunological role of PARP-1 and its siblings. Immunology 2013;139(4):428—37. DOI:10.1111/imm.12099.; Yelamos J., Monreal Y., Saenz L. et al. PARP-2 deficiency effects the survival of CD4+CD8+ double-positive thymocytes. EMBO J 2006;25:4350-60. DOI:10.1038/sj.emboj.7601301.; Sambucci M., Laudisi F., Novelli F. et al. Effects of PARP-1 deficiency on Th1 and Th2 cell differentiation. Sci World J 2013;2013:375024. DOI:10.1155/2013/375024.; Barber G.N. STING: infection, inflammation and cancer. Nat Rev Immunol 2015;15(12):760—70. DOI:10.1038/nri3921.; Mouw K.W., Goldberg M.S., Konstantinopoulos P.A., D’Andrea A.D. DNA damage and repair biomarkers of immunotherapy response. Cancer Discov 2017;7(7):675—93. DOI:10.1158/2159-8290.cd-17-0226.; Ablasser A., Goldeck M., Cavlar T. et al. cGAS produces a 20—50-linked cyclic dinucleotide second messenger that activates STING. Nature 2013;498:380-4. DOI:10.1038/nature12306.; Woo S.R., Fuertes M.B., Corrales L. et al. STING-dependent cytosolic DNA sensing mediates innate immunerecog-nition of immunogenic tumors. Immunity 2014;41:830—42. DOI:10.1016/j.immuni.2014.10.017.; Corrales L., Glickman L.H., McWhirter S.M. et al. Direct activation of STING in the tumor microenvironment leads to potent and sys-temic tumor regression and immunity. Cell Rep 2015;11(7):1018—30. DOI:10.1016/j.celrep.2015.04.031; Muthuswamy R., Berk E., Junecko B.F. et al. NF-kappaB hyperactivation in tumor tissues allows tumor-selective reprogramming of the chemokine microenvironment to enhance the recruitment of cytolytic T effector cells. Cancer Res 2012;2:3735-43. DOI:10.1158/0008-5472.can-11-4136.; Mateo J., Carreira S., Sandhu S. et al. DNA-repair defects and olaparib in metastatic prostate cancer. N Engl J Med 2015;373(18):1697—708 DOI:10.1056/NEJMoa1506859.; Mateo J., Porta N., Bianchini D. et al. Olaparib in patients with metastatic castration-resistant prostate cancer with DNA repair gene aberrations (TOPARP-B): a multicentre, open-label, randomised, phase 2 trial. Lancet Oncol 2020;21(1):162—74. DOI:10.1016/S1470-2045(19)30684-9.; de Bono J., Mateo J., Fizazi K. et al. Olaparib for metastatic castration-resistant prostate cancer. N Engl J Med 2020;382(22):2091 —102. DOI:10.1056/NEJMoa1911440.; Hussain M., Mateo J., Fizazi K. et al. Survival with olaparib in metastatic castration-resistant prostate cancer. N Engl J Med 2020;383(24):2345—57. DOI:10.1056/NEJMoa2022485.; Yu E.Y., Massard C., Retz M. et al. Keynote-365 cohort a: pembrolizumab (pembro) plus olaparib in docetaxel-pretreated patients (pts) with metastatic castrate-resistant prostate cancer (mCRPC). J Clin Oncol 2019;37:145. DOI:10.1200/JCO.2019.37.7_suppl.145.; https://oncourology.abvpress.ru/oncur/article/view/1519

  9. 9

    Quelle: Meditsinskiy sovet = Medical Council; № 20 (2021); 25-34 ; Медицинский Совет; № 20 (2021); 25-34 ; 2658-5790 ; 2079-701X

    Dateibeschreibung: application/pdf

    Relation: https://www.med-sovet.pro/jour/article/view/6576/5960; Baccelli I., Schneeweiss A., Riethdorf S., Stenzinger A., Schillert A., Vogel V. et al. Identification of a population of blood circulating tumor cells from breast cancer patients that initiates metastasis in a xenograft assay. Nat Biotechnol. 2013;31(6):539–544. https://doi.org/10.1038/nbt.2576.; Vanharanta S., Massagué J. Origins of metastatic traits. Cancer Cell. 2013;24(4):410–421. https://doi.org/10.1016/j.ccr.2013.09.007.; Joyce J.A., Pollard J.W. Microenvironmental regulation of metastasis. Nat Rev Cancer. 2009;9(4):239–252. https://doi.org/10.1038/nrc2618.; Kaplan R.N., Riba R.D., Zacharoulis S., Bramley A.H., Vincent L., Costa C. et al. VEGFR1-positive haematopoietic bone marrow progenitors initiate the pre-metastatic niche. Nature. 2005;438(7069):820-827. https://doi.org/10.1038/nature04186.; Law A.M.K., Valdes-Mora F., Gallego-Ortega D. Myeloid-Derived Suppressor Cells as a Therapeutic Target for Cancer. Cells. 2020;9(3):561. https://doi.org/10.3390/cells9030561.; Dranoff G. Cytokines in cancer pathogenesis and cancer therapy. Nat Rev Cancer. 2004;4(1):11-22. https://doi.org/10.1038/nrc1252.; Chen W., Hoffmann AD, Liu H, Liu X. Organotropism: new insights into molecular mechanisms of breast cancer metastasis. NPJ Precis Oncol. 2018;2(1):4. https://doi.org/10.1038/s41698-018-0047-0.; Najmeh S., Cools-Lartigue J., Rayes R., Gowing S., Vourtzoumis P., Bourdeau F. et al. Neutrophil extracellular traps sequester circulating tumor cells via β1-integrin mediated interactions. Int J Cancer. 2017;140(10):2321–2330. https://doi.org/10.1002/ijc.30635.; Wculek S.K., Malanchi I. Neutrophils support lung colonization of metastasis-initiating breast cancer cells. Nature. 2015;528(7582):413– 417. https://doi.org/10.1038/nature16140.; Coffelt S.B. Kersten K., Doornebal C.W., Weiden J., Vrijland K., Hauet C.S. et al. IL-17-producing γδ T cells and neutrophils conspire to promote breast cancer metastasis. Nature. 2015;522(7556):345–348. https://doi.org/10.1038/nature14282.; Clever D., Roychoudhuri R., Constantinides M.G., Askenase M.H., Sukumar M., Klebanoff C.A. et al. Oxygen Sensing by T Cells Establishes an Immunologically Tolerant Metastatic Niche. Cell. 2016;166(5):1117– 1131.e14. https://doi.org/10.1016/j.cell.2016.07.032.; Monteiro A.C., Leal A.C., Gonçalves-Silva T., Mercadante A.C.T., Kestelman F., Chaves S.B. et al. T cells induce pre-metastatic osteolytic disease and help bone metastases establishment in a mouse model of metastatic breast cancer. PLoS ONE. 2013;8(7):e68171. https://doi.org/10.1371/journal.pone.0068171.; Olkhanud P.B., Damdinsuren B., Bodogai M., Gress R.E., Sen R., Wejksza K. et al. Tumor-evoked regulatory B cells promote breast cancer metastasis by converting resting CD4⁺ T cells to T-regulatory cells. Cancer Res. 2011;71(10):3505–3515. https://doi.org/10.1158/0008-5472.CAN-10-4316.; Na Y.R., Yoon Y.N., Son D.I., Seok S.H. Cyclooxygenase-2 inhibition blocks M2 macrophage differentiation and suppresses metastasis in murine breast cancer model. PLoS ONE. 2013;8(5):e63451. https://doi.org/10.1371/journal.pone.0063451.; Bidwell B.N., Slaney C.Y., Withana N.P., Forster S., Cao Y., Loi S. et al. Silencing of Irf7 pathways in breast cancer cells promotes bone metastasis through immune escape. Nat Med. 2012;18(8):1224–1231. https://doi.org/10.1038/nm.2830.; Inoue Y., Itoh Y., Sato K., Kawasaki F., Sumita C., Tanaka T. et al. Regulation of Epithelial-Mesenchymal Transition by E3 Ubiquitin Ligases and Deubiquitinase in Cancer. Curr Cancer Drug Targets. 2016;16(2):110– 118. https://doi.org/10.2174/1568009616666151112122126.; Zhang Z., Li J., Ou Y., Yang G., Deng K., Wang Q. et al. DK4/6 inhibition blocks cancer metastasis through a USP51-ZEB1-dependent deubiquitination mechanism. Signal Transduct Target Ther. 2020;5(1):25. https://doi.org/10.1038/s41392-020-0118-x.; Du X., Song H., Shen N., Hua R., Yang G. The Molecular Basis of UbiquitinConjugating Enzymes (E2s) as a Potential Target for Cancer Therapy. Int J Mol Sci. 2021;22(7):3440. https://doi.org/10.3390/ijms22073440.; Wang W., Wu D., He X., Hu X., Hu C., Shen Z. et al. CCL18-induced HOTAIR upregulation promotes malignant progression in esophageal squamous cell carcinoma through the miR-130a-5p-ZEB1 axis. Cancer Lett. 2019;460:18–28. https://doi.org/10.1016/j.canlet.2019.06.009.; Kim K.S., Jeong D., Sari I.N., Wijaya Y.T., Jun N., Lee S. et al. miR551b Regulates Colorectal Cancer Progression by Targeting the ZEB1 Signaling Axis. Cancers (Basel). 2019;11(5):735. https://doi.org/10.3390/cancers11050735.; Title A.C., Hong S-J., Pires N.D., Hasenöhrl L., Godbersen S., StokarRegenscheit N. et al. Genetic dissection of the miR-200-Zeb1 axis reveals its importance in tumor differentiation and invasion. Nat Commun. 2018;9(1):4671. https://doi.org/10.1038/s41467-018-07130-z.; Chen A., Wong C.S., Liu M.C., House C.M., Sceneay J., Bowtell D.D., Thompson E.W., Möller A. The ubiquitin ligase Siah is a novel regulator of Zeb1 in breast cancer. Oncotarget. 2015;6(2):862–873. https://doi.org/10.18632/oncotarget.2696.; Zhang P., Wei Y., Wang L., Debeb B.G., Yuan Y., Zhang J. et al. ATMmediated stabilization of ZEB1 promotes DNA damage response and radioresistance through CHK1. Nat Cell Biol. 2014;16(9):864–875. https://doi.org/10.1038/ncb3013.; Clague M.J., Urbé S., Komander D. Breaking the chains: deubiquitylating enzyme specificity begets function. Nat Rev Mol Cell Biol. 2019;20(6):338–352. https://doi.org/10.1038/s41580-019-0099-1.; Harris I.S., Endress J.E., Coloff J.L., Selfors L.M., McBrayer S.K., Rosenbluth J.M. et al. Deubiquitinases Maintain Protein Homeostasis and Survival of Cancer Cells upon Glutathione Depletion. Cell Metab. 2019;29(5):1166–1181.e6. https://doi.org/10.1016/j.cmet.2019.01.020.; Zhang Q., Zhang Z.Y., Du H., Li S.Z., Tu R., Jia Y.F. et al. DUB3 deubiquitinates and stabilizes NRF2 in chemotherapy resistance of colorectal cancer. Cell Death Differ. 2019;26(11):2300–2313. https://doi.org/10.1038/s41418-019-0303-z.; Cardoso F., Senkus E., Costa A., Papadopoulos E., Aapro M., André F. et al. 4th ESO-ESMO International Consensus Guidelines for Advanced Breast Cancer (ABC 4). Ann Oncol. 2018;29(8):1634–1657. https://doi.org/10.1093/annonc/mdy192.; Thomssen C., Lüftner D., Untch M., Haidinger R., Würstlein R., Harbeck N. et al. International Consensus Conference for Advanced Breast Cancer, Lisbon 2019: ABC5 Consensus - Assessment by a German Group of Experts. Breast Care (Basel). 2020;15(1):82–95. https://doi.org/10.1159/000505957.; Paluch-Shimon S., Cardoso F., Partridge A.H., Abulkhair O., Azim H.A. Jr., Bianchi-Micheli G. et al. ESO-ESMO 4th International Consensus Guidelines for Breast Cancer in Young Women (BCY4). Ann Oncol. 2020;31(6):674–696. https://doi.org/10.1016/j.annonc.2020.03.284.; Rugo H.S., Rumble R.B., Macrae E., Barton D.L., Connolly H.K., Dickler M.N. et al. Endocrine Therapy for Hormone Receptor-Positive Metastatic Breast Cancer: American Society of Clinical Oncology Guideline. J Clin Oncol. 2016;34(25):3069–3103. https://doi.org/10.1200/ JCO.2016.67.1487.; Sledge G.W. Jr., Toi M., Neven P., Sohn J., Inoue K., Pivot X. et al. MONARCH 2: Abemaciclib in Combination With Fulvestrant in Women With HR+/HER2- Advanced Breast Cancer Who Had Progressed While Receiving Endocrine Therapy. J Clin Oncol. 2017;35(25):2875–2884. https://doi.org/10.1200/JCO.2017.73.7585.; Sledge G.W. Jr., Toi M., Neven P., Sohn J., Inoue K., Pivot X. et al. The Effect of Abemaciclib Plus Fulvestrant on Overall Survival in Hormone Receptor-Positive, ERBB2-Negative Breast Cancer That Progressed on Endocrine Therapy-MONARCH 2: A Randomized Clinical Trial. JAMA Oncol. 2020;6(1):116–124. https://doi.org/10.1001/jamaoncol.2019.4782.; Jiang Z., Hu X., Zhang Q., Sun T., Yin Y., Li H. et al. MONARCHplus: A phase III trial of abemaciclib plus nonsteroidal aromatase inhibitor (NSAI) or fulvestrant (F) for women with HR1/HER2- advanced breast cancer (ABC). Ann Oncol. 2019;30(5 Suppl.):v863. https://doi.org/10.1093/annonc/mdz394.014.; Leo A.D., O’Shaughnessy J., Sledge G.W. Jr., Martin M., Lin Y., Frenzel M. et al. Prognostic characteristics in hormone receptor-positive advanced breast cancer and characterization of abemaciclib efficacy. NPJ Breast Cancer. 2018;4:41. https://doi.org/10.1038/s41523-018-0094-2.; Johnston S.R.D., Harbeck N., Hegg R., Toi M., Martin M., Shao Z.M. et al. Abemaciclib Combined With Endocrine Therapy for the Adjuvant Treatment of HR+, HER2-, Node-Positive, High-Risk, Early Breast Cancer (monarchE). J Clin Oncol. 2020;38(34):3987–3998. https://doi.org/10.1200/JCO.20.02514.; Paluch-Shimon S., Lueck H., Beith J., Tokunaga E., Reyes Contreras J., de Sant’Ana R.O. et al. 153P Adjuvant endocrine therapy combined with abemaciclib in monarchE patients with high-risk early breast cancer: Disease characteristics and endocrine therapy choice by menopausal status. Ann Oncol. 2021;32(5 Suppl.):S427–S428. https://doi.org/10.1016/j.annonc.2021.08.434.

  10. 10
  11. 11

    Quelle: Malignant tumours; Том 9, № 3 (2019); 20-30 ; Злокачественные опухоли; Том 9, № 3 (2019); 20-30 ; 2587-6813 ; 2224-5057

    Dateibeschreibung: application/pdf

    Relation: https://www.malignanttumors.org/jour/article/view/670/461; Von Hoff D.D. et al. Increased Survival in Pancreatic Cancer with nab-Paclitaxel plus Gemcitabine // N. Engl. J. Med. 2013. Vol. 369, № 18. P. 1691-1703.; Tabernero J. et al. Prognostic Factors of Survival in a Randomized Phase III Trial (MPACT) of Weekly nab-Paclitaxel Plus Gemcitabine Versus Gemcitabine Alone in Patients With Metastatic Pancreatic Cancer // The Oncologist. 2015. Vol. 20, № 2. P. 143-150.; https://www.malignanttumors.org/jour/article/view/670