Výsledky vyhledávání - "淡江大學資訊管理學系"
-
1
Autoři: a další
Přispěvatelé: a další
Relation: 陳育聖,2021,資安威脅與強化資安的探索性研究 ,東吳大學 企業管理學系碩士論文\r\n楊昇原,2019,資安威脅對企業使用資安防護硬體意圖的影響,淡江大學資訊管理學系碩士在職專班碩士論文\r\n王振漢,2018,國軍雲端資料中心資訊安全評估指標的研究,國防大學資訊管理學系研究所碩士論文\r\n秦宗輝,2017,資安威脅對 使用者持續使用資安防護軟體意圖的影響,淡江大學資訊管理學系碩士在職專班碩士論文\r\n林世彬,2017,企業導入雲端人工智慧平台的資訊安全評估研究,國立交通大學管理學院科技管理學程研究所碩士論文\r\n易,2013,蒙古組織資訊安全評估個案探討,中國文化大學資訊管理學系研究所碩士論文資訊安全評估\r\n陳妏綺,2012,資訊安全評估、資訊素養與資訊倫理的關聯性研究 -以台灣銀行業為例,大同大學事業經營學系研究所碩士論文\r\n張益誠,2009,採用資料包絡分析與資料探勘方法的資訊安全評估研究-醫院的個案研究,國立東華大學網路與多媒體科技研究所碩士論文\r\n廖金城,2006,電子製造業資訊安全評估機制的研究,世新大學資訊管理學研究所碩士論文\r\n張詠翔,2004,結合BS7799與資訊安全藍圖建構資訊安全評估機制的研究,銘傳大學資訊管理學系研究所碩士論文\r\n王玉婷,2004,動態探索系統的分析應用與實作,靜宜大學資訊管理學系研究所碩士論文\r\n行政院國家資通安全研究所,https://www.nics.nat.gov.tw/\r\n數位發展部資通安全署,https://moda.gov.tw/ACS/; G0110932108; https://nccur.lib.nccu.edu.tw//handle/140.119/146967; https://nccur.lib.nccu.edu.tw/bitstream/140.119/146967/1/index.html
-
2
Autoři: a další
Přispěvatelé: a další
Témata: 軟體定義網路, SDN, OpenFlow, OpenvSwitch
Popis souboru: 144 bytes; text/html
Relation: [1].Ali Hussein; Imad H. Elhajj; Ali Chehab; Ayman Kayssi: SDN Security Plane: An Architecture for Resilient Security Services,pp.54-59,2016 [2].K. Greene, "Software-defined networking," Technology review - the 10 emerging technologies of 2009, March 2009. [3].Mininet, http://mininet.org/overview/ [4].N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson, J.Rexford, S. Shenker, and J. Turner, “Openflow: enabling innovation in campusnetworks,” SIGCOMM Comput. Commun. Rev., 38(2):pp.69–74, 2008. [5].OpenFlow White Paper, http://archive.openflow.org/documents/openflowwp-latest.pdf [6].OpenFlow, https://www.opennetworking.org/sdn-resources/openflow [7].Open vSwitch, http://openvswitch.org/ [8].Ryu, https://osrg.github.io/ryu/ [9].Ryu, https://kknews.cc/zh-tw/tech/malr56.html [10].SDN Definition: https://www.opennetworking.org/sdn-resources/sdn-definition [11].Seungwon Shin; Lei Xu; Sungmin Hong; Guofei Gu: Enhancing Network Security through Software Defined Networking(SDN),pp.1–9,2016 [12].Snort, https://www.snort.org/ [13].邱文中, 民 105, 利用軟體定義網路(SDN)搭配資訊案全監控中心(SOC)自動化阻擋惡意活動, 淡江大學資訊管理學系碩士論文 [14].黃翊宸, 民103, 運用軟體定義網路消弭網路攻擊初期災害, 淡江大學資訊管理學系碩士論文 [15].蔡順昶, 民103, 在軟體定義的網路下實作具擴充性之服務佈建, 中山大學資訊工程學系碩士論文; https://tkuir.lib.tku.edu.tw/dspace/handle/987654321/114521; https://tkuir.lib.tku.edu.tw/dspace/bitstream/987654321/114521/1/index.html
-
3
Autoři: a další
Přispěvatelé: a další
Témata: 軟體定義網路, 服務品質, HTTP即時串流, 自適性串流, Software-Defined Networking, Quality of Service, HTTP Live Streaming, Adaptive Bitrate Streaming, SDN, QoS, HLS
Popis souboru: 144 bytes; text/html
Relation: 1.丘文中,2016,《利用軟體定義網路(SDN)搭配資訊安全監控中心(SOC)自動化阻擋惡意活動》,淡江大學資訊管理學系碩士論文。 2.宋俊霖,2015,《應用軟體定義網路建構伺服器叢集負載平衡》,淡江大學資訊管理學系碩士論文。 3.洪徹易,2012,《基於HTTP Live Streaming 技術之實況廣播暨VOD 系統》,國立清華大學資訊工程學系碩士論文。 4.侯坤良、黃靜慧、王木良,2015,《動態自適性HTTP串流架構下媒體服務平台之研究》,第十四屆離島資訊技術與應用研討會,349~354頁。 5.詹智傑,2013,《自適應性串流架構下之視訊影像品質最佳化設計與實作》,台北科技大學資訊工程所碩士論文。 6.賴冠豪,2016,《具備QoS功能之軟體定義後端網路測試場域》,電腦與通訊期刊,第167期:54~61頁。 7.About HTTP Live Streaming https://developer.apple.com/library/content/referencelibrary/GettingStarted/AboutHTTPLiveStreaming/about/about.html, accessed 2017/05/20. 8.Abuteir, R. M., Fladenmuller, A., & Fourmaux, O. 2016, "SDN based architecture to improve video streaming in home networks", In Advanced Information Networking and Applications (AINA), 2016 IEEE 30th International Conference on. IEEE, pp. 220-226. 9.Adaptive bitrate streaming WiKi https://en.wikipedia.org/wiki/Adaptive_bitrate_streaming, accessed 2017/05/20. 10.Apple HLS HTTP Streaming Architecture https://developer.apple.com/library/content/documentation/NetworkingInternet/Conceptual/StreamingMediaGuide/HTTPStreamingArchitecture/HTTPStreamingArchitecture.html, accessed 2017/05/20. 11.Big Buck Bunny video https://peach.blender.org/download/, accessed 2017/05/20. 12.Big Buck Bunny WiKi https://zh.wikipedia.org/wiki/Big_Buck_Bunny, accessed 2017/05/20. 13.Cisco Visual Networking Index: Global Mobile Data Traffic Forecast Update, 2016–2021 White Paper http://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/mobile-white-paper-c11-520862.html/, accessed 2017/05/20. 14.HTTP live streaming, IETF Internet- Draft, version 22 https://tools.ietf.org/html/draft-pantos-http-live-streaming-22, accessed 2017/05/20. 15.HLS.JS player of dailymotion https://github.com/dailymotion/hls.js/, accessed 2017/05/20. 16.Lai, C. F., Hwang, R. H., Chao, H. C., Hassan, M. M., & Alamri, A. 2015, "A buffer-aware HTTP live streaming approach for SDN-enabled 5G wireless networks", IEEE Network, vol. 29, no. 1, pp. 49-55. 17.NGINX-RTMP module https://github.com/arut/nginx-rtmp-module, accessed 2017/05/20. 18.McKeown, N., Anderson, T., Balakrishnan, H., Parulkar, G., Peterson, L., Rexford, J., . & Turner, J. 2008, "OpenFlow: enabling innovation in campus networks", ACM SIGCOMM Computer Communication Review, vol. 38, no. 2, pp. 69-74. 19.ONF,2012,OpenFlow Switch Specification 1.3.0 https://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-specifications/openflow/openflow-spec-v1.3.0.pdf , accessed 2017/05/20. 20.ONOS Wiki https://wiki.onosproject.org/display/ONOS/Wiki+Home, accessed 2017/05/20. 21.OpenFlow Version Roadmap http://speed.cis.nctu.edu.tw/~ydlin/miscpub/indep_frank.pdf, accessed 2017/05/20. 22.Open vSwitch http://openvswitch.org/, accessed 2017/05/20. 23.Quality of Service (QoS) of Open vSwitch http://docs.openvswitch.org/en/latest/faq/qos/, accessed 2017/05/20. 24.SDN Architecture https://www.sdxcentral.com/resources/sdn/inside-sdn-architecture/, accessed 2017/05/20. 25.Smooth Streaming http://www.iis.net/downloads/microsoft/smooth-streaming, accessed 2017/05/20. 26.Sodagar, I. 2011, "The mpeg-dash standard for multimedia streaming over the internet", IEEE MultiMedia,vol. 18, no. 4, pp. 62-67. 27.YouTube Live encoder settings, bitrates, and resolutions https://support.google.com/youtube/answer/2853702?hl=en, accessed 2017/05/20. 28.Yu, T. F., Wang, K., & Hsu, Y. H. 2015, "Adaptive routing for video streaming with QoS support over SDN networks", In Information Networking (ICOIN), 2015 International Conference on. IEEE, pp. 318-323.; https://tkuir.lib.tku.edu.tw/dspace/handle/987654321/114489; https://tkuir.lib.tku.edu.tw/dspace/bitstream/987654321/114489/1/index.html
-
4
Autoři: a další
Přispěvatelé: a další
Popis souboru: 144 bytes; text/html
Relation: 一、中文文獻 [1] 白明弘、吳鑑城、簡盈妮等,〈基於詞語分佈均勻度的核心詞彙選擇〉。中文計算語言學期刊,第21卷第2期,頁1-17,2016年12月。 [2] 劉建偉、胡衛平,〈中學生物理問題解決能力的發展研究〉,內蒙古師範大學學報 (教育科學版),第8卷,頁127-130,2007年8月。 [3] 朱嫣嵐、閔錦、周雅倩等,〈基於Hownet的詞彙語義傾向計算〉,中文資訊學報,第20卷,第1期,頁16-22,2006年7月。 [4] 呂珮瑜,《中文情緒詞庫的建造與標記》,碩士論文,臺灣大學語言研究所,2015。 [5] 李政儒、游基鑫、陳信希,〈廣義知網詞彙意見極性的預測〉,中文計算語言學期刊,第17卷,第4期,頁33-47,2012年6月。 [6] 杜冬,《基於改進的so-pmi演算法詞語傾向性分析研究》,碩士論文,重慶郵電大學, 2013。 [7] 邱鴻達,《意見探勘在中文電影評論之應用》,碩士論文,交通大學資訊工程研究所,2011。 [8] 柯智虔,《犬關節膝蓋骨脫臼防止植體與其手術工具之設計製造及分析》,碩士論文,中興大學機械工程學系所,2008。 [9] 洪鵬翔,《中文新聞自動群聚》,碩士論文,清華大學資訊工程學系,2000。 [10] 趙浩、孔立、李運倫,〈高血壓肝火上炎證診斷量表的信度及效度的檢驗〉,環球中醫藥,第7卷,第9期,頁678-681,2014年9月。 [11] 張莉萍,〈對應於歐洲共同架構的華語詞彙量〉,華語文教學研究,第9卷,第2期,頁77-96,2012年6月。 [12] 陳柏翰,《基於中文語法規則的意見單元抽取方法之研究》,碩士論文,淡江大學資訊管理學系,2013。 [13] 陳嘉玫、楊佳蕙、賴穀鑫,〈基於結構相似度之惡意程式原始碼分類研究〉,電子商務學報,第15卷,第4期,頁519-539,2013年12月。 [14] 陳聰宜,《新聞事件偵測與追蹤結合時間區間之分群分類演算法評比》,碩士論文,雲林科技大學資訊管理學系,2012。 [15] 曾五一、黃炳藝,〈調查問卷的可信度和有效度分析〉,2005年統計與資訊理論壇,頁11-15,2005。 [16] 游和正、黃挺豪、陳信希,〈領域相關詞彙極性分析及檔情緒分類之研究〉,中文計算語言學期刊,第17卷,第4期,頁33-47,2012年12月。 [17] 黃純敏、陳聰宜、詹雅築,〈新聞事件偵測與追蹤之分群分類演算法研究〉,資訊科技國際期刊,第8卷,第1期,頁70-18,2014年6月。 [18] 黃群弼,《中文繁簡等義詞自動辨識之研究》,碩士論文,政治大學資訊科學系,2008。 [19] 〈結巴中文斷詞〉,網址:https://speakerdeck.com/fukuball/jieba-jie-ba-zhong-wen-duan-ci,上網日期:2017年1月20日。 [20] 楊盛帆,《以整合式規則來做網路論壇上的3c產品口碑分析》,碩士論文,元智大學資訊管理學系,2009。 [21] 楊懿麗,〈國內各級英語教學的詞彙量問題〉,國立編譯館館刊,第34卷,第3期,頁35-44,2006年9月。 [22] 董振東、董強、郝長伶,〈知網的理論發現〉,中文資訊學報,第21卷,第4期,頁3-9,2007年7月。 [23] 謝靜婷,《半自動建立中文 WordNet 之研究》,碩士論文,清華大學資訊工程學系,2008。 [24] 簡之文,《部落格文章情感分析之研究》,碩士論文,淡江大學資訊管理學系,2012。 二、英文文獻 [25] Bergroth, L., Hakonen, H., and Raita, T., “A survey of longest common subsequence algorithms,” String Processing and Information Retrieval, Seventh International Symposium, Curuna, pp. 39-48, 2000. [26] Brill, E, “Some advances in transformation-based part of speech tagging,” Proceedings of the twelfth national conference on Artificial intelligence (vol. 1) (AAAI ''94). American Association for Artificial Intelligence, Menlo Park, CA, USA, pp. 722-727, 1994. [27] C. C. Chang and C. J. Lin, LIBSVM : a library for support vector machines, Software available at http://www.csie.ntu.edu.tw/~cjlin/libsvm, accessed 2017/01/02 [28] Church, K. W., and Hanks, P., “Word association norms, mutual information and lexicography,” Computational linguistics, vol. 16, no. 1, pp. 22-29, March, 1990. [29] Damerau, F. J., “A technique for computer detection and correction of spelling errors,” Communications of the ACM, vol. 7, no. 3, pp. 171-176, March, 1964. [30] de Marneffe, M. C., Manning, C. D., and Potts, C., “Was it good? it was provocative. learning the meaning of scalar adjectives,” Proceedings of the 48th Annual Meeting of the Association for Computational Linguistics, Uppsala, Sweden, pp. 167-176, July, 2010. [31] Ding, X., Liu, B., and Yu, P. S., “A holistic lexicon-based approach to opinion mining,” Proceedings of the 2008 international conference on web search and data mining, Palo Alto, California, USA, pp. 231-240, July, 2008. [32] Dos Santos, C. N., and Gatti, M., “Deep Convolutional Neural Networks for Sentiment Analysis of Short Texts”, COLING, pp. 69-78, 2014. [33] Haldar, R., and Mukhopadhyay, D., Levenshtein distance technique in dictionary lookup methods, Master’s thesis , Cornell University, 2011. [34] Hall, M., Frank, E., Holmes, G., and Pfahringer, B.et al. “The WEKA data mining software: an update,” ACM SIGKDD explorations newsletter, vol. 11, no. 1, pp. 10-18, June, 2009. [35] Hamming, R. W. , “Error detecting and error correcting codes,” Bell Labs Technical Journal, vol. 29, no. 2, pp. 147-160, April, 1950. [36] Hatzivassiloglou, V., and McKeown, K. R., “Predicting the semantic orientation of adjectives,” Proceedings of the eighth conference on European chapter of the Association for Computational Linguistics, Madrid, Spain, pp. 174-181, July, 1997. [37] Hu, M., and Liu, B. , “Mining and summarizing customer reviews,” Proceedings of the tenth ACM SIGKDD international conference on Knowledge discovery and data mining , Seattle, WA, USA, pp. 168-177, August, 2004. [38] Kamps, J., Marx, M., and Mokken, R. J. et al., “Using WordNet to Measure Semantic Orientations of Adjectives,” LREC , vol. 4, pp. 1115-1118, January, 2004. [39] Kim, S. M., and Hovy, E. , “Determining the sentiment of opinions,” Proceedings of the 20th international conference on Computational Linguistics , Geneva, Switzerland, pp. 1367, August, 2004. [40] Kobayashi, N., Inui, K., and Matsumoto, Y., “Opinion mining from web documents: Extraction and structurization,” Information and Media Technologies, vol. 2, no. 1, pp. 326-337, March, 2007. [41] Ku, L. W., and Chen, H. H., “Mining opinions from the Web: Beyond relevance retrieval,” Journal of the American Society for Information Science and Technology, vol. 58, no. 12, pp. 1838-1850, August, 2007. [42] Levenshtein, V. I., “Binary codes capable of correcting deletions, insertions, and reversals,” Soviet physics doklady, vol. 10, No. 8, pp. 707-710, February, 1966. [43] Liu, B. , “Sentiment analysis and subjectivity,” Handbook of Natural Language Processing, Second Edition , pp. 627-666, Chapman and Hall/CRC, 2010. [44] Liu, B., “Sentiment analysis and opinion mining,” Synthesis lectures on human language technologies, vol. 5, no. 1, pp. 1-167, May, 2012. [45] Myers, R., Wison, R. C., and Hancock, E. R. , “Bayesian graph edit distance,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 22, no. 6, pp. 628-635, June, 2000. [46] Nunamaker Jr, J. F., Chen, M., and Purdin, T. D., “Systems development in information systems research,” Journal of management information systems, vol. 7, no. 3, pp. 89-106, 1990. [47] Pang, B., Lee, L., and Vaithyanathan, S., “Thumbs up?: sentiment classification using machine learning techniques,”, Proceedings of the ACL-02 conference on Empirical methods in natural language processing-Volume 10 , PA, USA, pp. 79-86, 2002. [48] Park, S., and Kim, Y., “Building thesaurus lexicon using dictionary-based approach for sentiment classification,”, Software Engineering Research, Management and Applications (SERA), 2016 IEEE 14th International Conference , Towson, MD, USA, pp. 39-44, June, 2016. [49] Peng, W., and Park, D. H., “Generate adjective sentiment dictionary for social media sentiment analysis using constrained nonnegative matrix factorization,”, Fifth International AAAI Conference on Weblogs and Social Media, Barcelona, Catalonia, Spain , July, 2011. [50] Rane, S., and Sun, W., “Privacy preserving string comparisons based on Levenshtein distance,” Information Forensics and Security (WIFS), 2010 IEEE International Workshop, Seattle, WA, USA, pp. 1-6, December, 2010. [51] Rao, D., and Ravichandran, D., “Semi-supervised polarity lexicon induction,” Proceedings of the 12th Conference of the European Chapter of the Association for Computational Linguistics , Stroudsburg, PA, USA, pp. 675-682, March, 2009. [52] Salton, G., and Buckley, C., “Term-weighting approaches in automatic text retrieval,” Information processing and management, vol.24, no. 5, pp. 513-523, 1998. [53] Shelke, N. M., Deshpande, S., and Thakre, V. , “Survey of techniques for opinion mining,” International Journal of Computer Applications, vol. 57, no. 13, November, 2012. [54] Tang, D., Wei, F., Qin, B., Zhou, M., and Liu, T. , “Building Large-Scale Twitter-Specific Sentiment Lexicon: A Representation Learning Approach,” COLING , pp. 172-182, 2014. [55] Turney, P. D., “Thumbs up or thumbs down?: semantic orientation applied to unsupervised classification of reviews,” Proceedings of the 40th annual meeting on association for computational linguistics , pp. 417-424, July, 2002. [56] Turney, P. D., and Littman, M. L. , “Measuring praise and criticism: Inference of semantic orientation from association,” ACM Transactions on Information Systems (TOIS), vol. 21, no. 4, pp. 315-346, September, 2003. [57] Wiebe, J. M., Bruce, R. F., and O''Hara, T. P., “Development and use of a gold-standard data set for subjectivity classifications,”, Proceedings of the 37th annual meeting of the Association for Computational Linguistics on Computational Linguistics , Stroudsburg, PA, USA, pp. 246-253, June, 1999. [58] Wilson, T., Wiebe, J., and Hwa, R., “Just how mad are you? Finding strong and weak opinion clauses,” aaai ,vol. 4, pp. 761-769, July, 2004. [59] Winkler, W. E., “String Comparator Metrics and Enhanced Decision Rules in the Fellegi-Sunter Model of Record Linkage,” Proceedings of the Section on Survey Research, pp.354-359, 1990. [60] Witten, I. H., Frank, E., and Hall, M. A. et al., Data Mining: Practical machine learning tools and techniques, Morgan Kaufmann, 2016. [61] Wu, H. H., Tsai, A. C. R., and Tsai, R. T. H. et al., “Building a Graded Chinese Sentiment Dictionary Based on Commonsense Knowledge for Sentiment Analysis of Song Lyrics,” J. Inf. Sci. Eng., vol. 29, no. 4, pp. 647-662 , July, 2013. [62] Zhuang, L., Jing, F., and Zhu, X. Y. , “Movie review mining and summarization,” Proceedings of the 15th ACM international conference on Information and knowledge management , New York, NY, USA, pp. 43-50, November, 2006.; https://tkuir.lib.tku.edu.tw/dspace/handle/987654321/114477; https://tkuir.lib.tku.edu.tw/dspace/bitstream/987654321/114477/1/index.html
-
5
Autoři: a další
Přispěvatelé: a další
Témata: 影片尋取, Video Retrieval, R-Tree, STR
Popis souboru: 144 bytes; text/html
Relation: [1] 董明峰. "一個影片尋取之空間索引結構."淡江大學資訊管理學系碩士班學位論文(2007). [2] 邱于真. "根據物件移動之影片空間相似尋取."淡江大學資訊管理學系碩士班學位論文(2013): 1-59. [3] M. Flickner, H. Sawhney, W. Niblack, J. Ashley, Q. Huang, B. Dom, M. Gorkani, J. Hafner, D. Lee, D. Petkovic, D. Streele and P. Yanker,“Query by Image and Video Content: The QBIC System,” IEEEComputer Magazine, Vol. 28, No. 9, pp.23-32, 1995. [4] S.K. Chang, Q.Y. Shi, and C.W. Yan, “Iconic indexing by 2-D strings,” IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. PAMI-9, No. 3, pp. 413-428, 1987. [5] E. Jungert, “Extended Symbolic Projection Used in A Knowledge Structure for Spatial Reasoning”, The 4th BPRA Conference on Pattern Recognition, Springer-Verlag, pp. 343-351, 1988. [6] S. K. Chang, E. Jungert, Y. Li, “Representation and Retrieval of Symbolic Pictures using Generalized 2D string”, Visual Communications and Image Processing IV, Philadelphia, pp. 1360 - 1372, 1989. [7] F.J. Hsu, S.Y. Lee, and B.S. Lin, “Video data indexing by 2D C-trees,” Journal of Visual Languages & Computing, Vol. 9, No. 4, pp. 375-397, 1998. [8] Y.K. Chan, and C.C. Chang, “Spatial similarity retrieval in video databases,” Journal of Visual Communication and Image Representation, Vol. 12, No. 2, pp. 107–122, 2001. [9] A.J.T. Lee, and H.P. Chiu, “2D Z-string: a new spatial knowledge representation for image databases,” Pattern Recognition Letters, Vol. 24, No. 16, pp. 3015–3026, 2003. [10] A.J.T. Lee, H.P. Chiu, and P. Yu, “3D C-string: a new spatio-temporal knowledge representation for video database systems,” Pattern Recognition, Vol. 35, No. 11, pp. 2521–2537, 2002. [11] A.J.T. Lee, H.P. Chiu, and P. Yu, “Similarity retrieval of videos by using 3D C-string knowledge representation,” Journal of Visual Communication and Image Representation, Vol. 16, No.6, pp. 749–773, 2005. [12] A.J.T. Lee, P. Yu, H.P. Chiu, and R.W. Hong, “3D Z-string: A new knowledge structure to represent spatio-temporal relations between objects in a video,” Pattern Recognition Letters, Vol. 26, No. 16, pp. 2500–2508, 2005. [13] S.Y. Lee, and F.J. Hsu, “2D C-String: a new spatial knowledge representation for image database systems,” Pattern Recognition, Vol. 23, No. 10, pp. 1077-1087, 1990. [14] D. Zhong, H.J. Zhang and S.F. Chang,“Clustering Methods for Video Browsing and Annotation,”SPIE Conference on Storage and Retrieval for Still Image and Video Databases IV, Vol. 2670, pp.239-246.1996 [15] H.J. Zhang, J.Y.A. Wang and Y. Altunbasak,“Content-Based Video Retrieval and Compression: A Unified Solution,”International Conference on Image Processing(ICIP), Vol.1, pp.13-16, 1997. [16] C.C. Liu, and A.L.P. Chen, “3D-list: a data structure for efficient video query processing,” IEEE Transactions on Knowledge and Data Engineering, Vol. 14, No. 1, pp. 106–122, 2002. [17] K. Shearer, S. Venkatesh, and D. Kieronska, “Spatial indexing for video databases,” Journal of Visual Communication and Image Representation, Vol. 7, No. 4, pp. 325–335, 1997. [18] T. Arndt and S.K. Chang, “Image Sequence Compression by Iconic Indexing,” IEEE Workshop on Visual Languages, pp.177-182, 1989. [19] Hanjalic, “Adaptive Extraction of Highlights from A Sport Video Based on Excitement Modeling”, IEEE Transactions on Multimedia, vol. 7, no. 6, pp. 1114 – 1122, 2005. [20] H. T. Shen, J. Shao, Z. Huang, X. Zhou, “Effective and Efficient Query Processing for Video Subsequence Identification”, IEEE Transactions on Knowledge and Data Engineering, vol. 21, no. 3, pp. 321 – 334, 2008. [21] Francois Pitie, Sid-Ahmed Berrani, Anil Kokaram, Rozenn Dahyot, " Offline multiple object tracking using candidate selection and the viterbi algorithm, " IEEE Int. Conf. on Image Processing ICIP 2005, Vol 3, pp. 109-112, Sept. 2005. [22] F. J. Hsu and S. Y. Lee, “Spatial Reasoning and Similarity Retrieval of Images Using 2D C-String Knowledge Representation,” Pattern Recognition, Vol. 25, No. 3, pp. 305-318, March 1992. [23] F.J. Hsu, S.Y. Lee, B.S. and Lin, “Video data indexing by 2D C-trees,” Journal of Visual Languages & Computing, Vol. 9, No. 4, pp. 375-397, 1998. [24] Y. Manolopoulos, A. Nanopoulos, A. N. Papadopoulos, Y. Theodoridis “R-trees: Theory and Applications”, Springer, ISBN: 9781852339777, 2006. [25] T. Brinkhoff, H. P. Kriegel, B. Seeger, “Efficient Processing of Spatial Joins Using R-trees”, Proceedings of the ACM SIGMOD international conference on management of data, New York, pp. 237-246, 1993. [26] S.T. Leutenegger, M.A. Lopez, and J.M. Edgington, “STR: A Simple and Efficient Algorithm for R-Tree Packing,” The 13th International Conference on Data Engineering, Vol. 7, Iss. 11, pp.497-506, 1997. [27] N. Beckman, H. P. Kriegel, “The R* tree: An efficient and robust access method for points and rectangles”, Proc. ACM SIGMOD, pp.322-331, 1990. [28] S. Y. Lee, M. K. Shan, W. P. Yang, “Similarity Retrieval of Iconic Image Database”, Pattern Recognition, vol. 22, no. 6, pp. 675–682, 1989. [29] S.K. Chang, Q.Y. Shi, and C.W. Yan, “Iconic indexing by 2-D strings,” IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. PAMI-9, No. 3, pp. 413-428, 1987.; https://tkuir.lib.tku.edu.tw/dspace/handle/987654321/111168; https://tkuir.lib.tku.edu.tw/dspace/bitstream/987654321/111168/1/index.html
-
6
Autoři: a další
Přispěvatelé: a další
Témata: 推薦系統, 基於內容過濾, 協同過濾, 輿情分析, 電子商務, Recommendation System, Content-based Filtering, Collaborative Filtering, Sentiment analysis, e-commerce
Popis souboru: 144 bytes; text/html
Relation: 中文部分 [1] 李昌雄,《商業自動化與電子商務導論》,台北:松崗電腦圖書資料股份有限公司,1998。 [2] 林祐任、蕭瑞祥,《未來性資訊檢索系統基於網路論壇之研究》,碩士論文,淡江大學資訊管理學系碩士班,2015。 [3 ]林孟希,《中國大陸電子商務宅配供應鏈之研究─以上海市為例》,碩士論文,國立政治大學經營管理碩士學程,2012。 [4] 邵曉薇、郭雨涵,《電子商務導論》,台北:旗標出版股份有限公司出版,2000。 [5] 徐舜基,《整合準則權重於多準則協同過濾推薦之研究》,碩士論文,中國文化大學資訊管理研究所,2010。 [6] 孫瑛澤、陳建良、劉峻杰、劉昭麟、蘇豐文,〈中文短句之情緒分類〉,自然語言與語音處理研討會,暨南大學,2010。 [7] 黃心宜、蕭瑞祥,《基於影響力分析之意見單元評價的研究》,碩士論文,淡江大學資訊管理學系碩士班,2014。 [8] 黃文奇、吳世弘、陳良圃、谷圳,〈中文文字蘊涵系統之特徵分析〉,2011自然語言與語音處理研討會,台北,2011。 [9] 黃華山、任文瑗、洪銘建,《網際網路實務與商業應用》,台北:華立圖書股份有限公司,1999。 [10] 楊盛帆、陸承志,《以整合式規則來做網路論壇上的3C產品口碑分析》,碩士論文,元智大學資訊管理研究所,2009。 英文部分 [11] Basu, C., Hirsh, H., and Cohen, W., July. “Recommendation as classification: Using social and content-based information in recommendation,” In Aaai/iaai, pp. 714-720, 1998. [12] Billsus, Daniel, and Michael J. Pazzani. “Learning Collaborative Information Filters,” Icml, vol. 98, 1998. [13] Cleverdon, C. and Kean, M., “Factors Determining the Performance of Indexing Systems,” In Aslib Cranfield Research Project, Cranfield, England, 1968. [14] Goldberg, D., Nichols, D., Oki, B. M., and Terry, D., “Using collaborative filtering to weave an information tapestry,” Communications of the ACM, pp 61-70, 1992. [15] Hu, M., and Liu, B., August. “Mining and summarizing customer reviews,” In Proceedings of the tenth ACM SIGKDD international conference on Knowledge discovery and data mining, pp. 168-177, 2004. [16] J. J, C. R, and M. H., “Hybrid Collaborative Filtering Model for improved Recommendation,” IEEE International Conf. on Service Operations and Logistics, and Informatics (SOLI.), pp.142–145, 2013. [17] Kalakota, R, and Whinston, A. B., “Electronic Commerce- A Manager’s Guide”, MA:Addison-Wesley, 1997. [18] Kawai, H., Jatowt, A., Tanaka, K., Kunieda, K., & Yamada, K., “ChronoSeeker: Search engine for future and past events,” In Proceedings of the 4th International Conference on Ubiquitous Information Management and Communication, pp 25, 2010. [19] Liu, B., “Sentiment analysis and subjectivity,” Handbook of Natural Language Processing, 2nd ed. CRC Press, pp 627-666, 2010. [20] M. Zanker and M. Jessenitschnig., “Case‐studies on exploiting explicit customer requirements in recommender systems,” User Modeling and User‐Adapted Interaction, vol. 19, pp 133-136, 2009. [21] Nunamaker Jr, J. F., Chen, M., and Purdin, T. D., “Systems development in information systems research,” Journal of management information systems, pp 89-106, 1990. [22] P. Resnick and H. R. Varian., “Recommender systems,” Communications of the ACM, pp 56-58, 1997. [23] Ricci, F., “Travel recommender systems,” IEEE Intelligent Systems, pp 55-57, 2002. [24] Sarwar, B. M., Karypis, G., Konstan, J. A., and Riedl, J., “Analysis of recommendation algorithms for E-commerce,” In Proceedings of the 2nd ACM Conference on Electronic Commerce (EC’00). pp 285–295, 2000a. [25] Sarwar, B. M., Karypis, G., Konstan, J. A., and Riedl, J., “Application of dimensionality reduction in recommender system–A case study,” In Proceedings of the ACM WebKDD 2000 Web Mining for E-Commerce Workshop, 2000b. [26] Sarwar, B. M., Karypis, G., Konstan, J. A, and Riedl, J., “Item-based collaborative filtering recommendation algorithms,” In Proceedings of the 10th international conference on World Wide Web, pp 285-295, Apr. 2001. [27] Schafer, J. B., Konstan, J., and Riedl, J., “Recommender System Commerce,” Proceedings of the ACM Conference on Electronic Commerce, Nov. 1999. [28] Schafer, J. B., Konstan, J. A., and Riedl, J., “E-commerce recommendation applications,” In Applications of Data Mining to Electronic Commerce, pp 115-153, 2001. [29] Sokolova, M., Japkowicz, N., & Szpakowicz, S., December. “Beyond accuracy, F-score and ROC: a family of discriminant measures for performance evaluation,” In Australasian Joint Conference on Artificial Intelligence, pp. 1015-1021, 2006. [30] W. Kim, et al., “Agent based intelligent search framework for product information using ontology mapping,” Journal of Intelligent Information Systems, vol. 30, p. 227-247, 2008. [31] Wang, W., and Benbasat, I., “Recommendation agents for electronic commerce: Effects of explanation facilities on trusting beliefs,” Journal of Management Information Systems, pp 217-246, 2007. [32] Xiao, B., and Benbasat, I., “E-commerce product recommendation agents: Use, characteristics, and impact,” MIS Quarterly, 31(1), pp 137-209, 2007.; https://tkuir.lib.tku.edu.tw/dspace/handle/987654321/111161; https://tkuir.lib.tku.edu.tw/dspace/bitstream/987654321/111161/1/index.html
-
7
Autoři: a další
Přispěvatelé: a další
Témata: 推薦系統, 文字探勘, 意見單元, 行動遊戲, Recommendation Systems, text mining, Comments unit, Mobile Games
Popis souboru: 144 bytes; text/html
Relation: 參考文獻 [1] 凌伊亭. (2013). 口碑對消費者的績效評估之影響-以免費行動遊戲為例. [2] 吳志宏. (2004). 以隱性回饋為基礎的自動化推薦機制. [3] 孫瑛澤, 陳建良, 劉峻杰, 劉昭麟, & 蘇豐文. (2010). 中文短句之情緒分類. [4] 張雅喬. (2015). 利用使用者評論幫助協同過濾的評分預測. 臺灣大學資訊工程學研究所學位論文. [5] 施喬心. (2014). 探討 App 的內外部線索及產品類型對下載意願的影響. [6] 李孟潔. (2009). 利用機器學習作法之中文意見分析. [7] 林祐任. (2015). 未來性資訊檢索系統基於網路論壇之研究. 淡江大學資訊管理學系碩士班學位論文. [8] 楊盛帆. (2009). 以整合式規則來做網路論壇上的 3c 產品口碑分析. [9] 簡之文. (2012). 部落格文章情感分析之研究. 淡江大學資訊管理學系碩士班學位論文. [10] 蘇柏全, 陳正忠, & 楊彥甫. (2015). 遊戲類 App: 下載因素, 下載機率, 市場佔有率, 以及 google 與 apple 平台間掠奪率. Electronic Commerce Studies, 13(1), 113-140. [11] 邱鴻達, & 梁婷. (2010). 意見探勘在中文電影評論之應用, [12] 陳維君. (2013). 網路意見分析與意見調查比較之研究: 以公共議題為例. [13] 黃心宜. (2014). 基於影響力分析之意見單元評價的研究. 淡江大學資訊管理學系碩士班學位論文. [14] 羅健銘. (2001). 協同過濾於網站推薦之研究. 臺北科技大學商業自動化與管理研究所碩士論文. [15] 李宜樺, & 黃純敏. (2006). 改良式階層聚合演算法之研究. 國立雲林科技大學資訊管理系碩士班. [16] 王崇軒. (2011). 探討 Facebook, 網路論壇, 官方討論區不同社群成員在虛擬品牌社群互動關係之比較. [17] 崔懷芝. (2014). 量表信度的測量:Kappa統計量之簡介, 2月, http://biostatdept.cmu.edu.tw/doc/epaper_c/2.pdf [18] Huang, Y. (2015). 以遊戲影片為例探討藉由使用者認知之相似因素改善手機遊戲推薦系統. 臺灣大學資訊工程學研究所學位論文 [19] 殷健翔. (2011). 網路口碑對線上應用程式的購買意圖之影響-以Apple app store 為例. 國立中央大學資訊管理研究所學位論文 [20] 鍾鳴遠. (2014). 以理性行為理論探討使用者對於 App 平台的信任, 網路口碑與品牌忠誠度對於 app 使用意圖之影響. 成功大學工程管理碩士在職專班學位論文 [21] Adomavicius, G., & Tuzhilin, A. (2005). Toward the next generation of recommender systems: A survey of the state-of-the-art and possible extensions. Knowledge and Data Engineering, IEEE Transactions on, 17(6), pp. 734-749. [22] Dhillon, N. (1995). Achieving Effective Personalization and Customization using Collaborative Filtering, [23] Ding, X., Liu, B., & Yu, P. S. (2008). A holistic lexicon-based approach to opinion mining. Paper presented at the Proceedings of the 2008 International Conference on Web Search and Data Mining, pp. 231-240. [24] Hu, M., & Liu, B. (2004). Mining and summarizing customer reviews. Paper presented at the Proceedings of the Tenth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 168-177. [25] Hu, M., & Liu, B. (2004). Mining opinion features in customer reviews. Paper presented at the Aaai, , 4. (4) pp. 755-760. [26] Liu, B., Hu, M., & Cheng, J. (2005). Opinion observer: Analyzing and comparing opinions on the web. Paper presented at the Proceedings of the 14th International Conference on World Wide Web, pp. 342-351. [27] Nunamaker Jr, J. F., Chen, M., & Purdin, T. D. (1990). Systems development in information systems research. Journal of Management Information Systems, 7(3), pp. 89-106. [28] Schafer, J. B., Konstan, J., & Riedl, J. (1999). Recommender systems in e-commerce. Paper presented at the Proceedings of the 1st ACM Conference on Electronic Commerce, pp. 158-166. [29] Wang, J., & Lee, C. (2011). Unsupervised opinion phrase extraction and rating in chinese blog posts. Paper presented at the Privacy, Security, Risk and Trust (PASSAT) and 2011 IEEE Third Inernational Conference on Social Computing (SocialCom), 2011 IEEE Third International Conference on, pp. 820-823. [30] Herlocker, J. L., Konstan, J. A., & Riedl, J. (2000). Explaining collaborative filtering recommendations. In Proceedings of the 2000 ACM conference on Computer supported cooperative work (pp. 241-250). ACM. [31] Delone, W. H., & McLean, E. R. (2003). The DeLone and McLean model of information systems success: A ten-year update. Journal of Management Information Systems, 19(4), pp. 9-30. [32] Herr, P. M., Kardes, F. R., & Kim, J. (1991). Effects of word-of-mouth and product-attribute information on persuasion: An accessibility-diagnosticity perspective. Journal of consumer research, 17(4), 454-462. [33] Hoffman, D. L., & Novak, T. P. (1996). Marketing in hypermedia computer-mediated environments: Conceptual foundations. The Journal of Marketing, 50-68. [34] Gelb, B. D., & Sundaram, S. (2002). Adapting to “word of mouse”. Business Horizons, 45(4), 21-25. [35] Hennig‐Thurau, T., Gwinner, K. P., Walsh, G., & Gremler, D. D. (2004). Electronic word‐of‐mouth via consumer‐opinion platforms: What motivates consumers to articulate themselves on the Internet?. Journal of interactive marketing, 18(1), 38-52. [36] Morinaga, S., Yamanishi, K., Tateishi, K., & Fukushima, T. (2002). Mining product reputations on the web. In Proceedings of the eighth ACM SIGKDD international conference on Knowledge discovery and data mining (pp. 341-349). ACM. [37] Kobayashi, N., Inui, K., Matsumoto, Y., Tateishi, K., & Fukushima, T. (2004). Collecting evaluative expressions for opinion extraction. In International Conference on Natural Language Processing (pp. 596-605). Springer Berlin Heidelberg. [38] Ku, L. W., & Chen, H. H. (2007). Mining opinions from the Web: Beyond relevance retrieval. Journal of the American Society for Information Science and Technology, 58(12), 1838-1850.; https://tkuir.lib.tku.edu.tw/dspace/handle/987654321/111136; https://tkuir.lib.tku.edu.tw/dspace/bitstream/987654321/111136/1/index.html
-
8
Autoři: a další
Přispěvatelé: a další
Témata: 詐騙偵測, 分類樹, 分群, 電子商務, Fraud Detection, Binary Trees, Cluster, e-commerce
Popis souboru: 144 bytes; text/html
Relation: 1. Chang, J. S., & Chang, W. (2009). An Early Fraud Detection Mechanism for Online Auctions Based on Phased Modeling. Proceeding the 2009 International Workshop on Mobile Systems E-commerce and Agent Technology (MSEAT 2009). December 3-5, Taipei, Taiwan. 2. Chang, W. and J.-S. (2010). A Multiple-Phased Modeling Method to Identify Potential Fraudsters in Online Auctions. Proceedings of the 2nd International Conference on Computer Research and Development (ICCRD 2010). May 7-10, Kuala Lumpur, Malaysia. 3. Chang, W., & Chang, J.-S. (2011). A Novel Two-Stage Phased Modeling Framework for Early Fraud Detection in Online Auctions. Expert System with Applications, vol.38, no.9 , pp. 11244-11260. 4. Chang, W., & Chang, J.-S. (2012). An Effective Early Fraud Detection Method for Online Auctions. Electronic Commerce Research and Application 11 (2012) 346–360. 5. Chau, D. H., & Faloutsos, C. (2005). Fraud Detection in Electronic Auction. Proceedings of European Web Mining Forum (EWMF 2005) at ECML/PKDD 2005. October 3-7. 6. Chau, D.H., Pandit, S., and Faloutsos, C. Detecting fraudulent personalities in networks of online auctioneers. Proceedings of PKDD 2006, pp.103-114. (2006) 7. Chua, C. and Wareham, J., Fighting internet auction fraud: An assessment and proposal, In Computer, volume 37 no.10, pages 31–37.(2004) [19] Wang, J., & Chiu, C. (2005). Detecting Online Auction Inflated-Reputation Behaviors using Social Network Analysis. Proceedings of NAACSOS Conference 2005, June 26-28. 8. Dolan, K. M., Internet Auction Fraud: The Silent Victims, Journal of Economic Crime Management, Winter, Volume 2, Issue 1.(2004) 9. Gavish, B., & Tucci, C. (2008). Reducing Internet Auction Fraud. Communications of the ACM, vo. 51, no. 5 , pp. 89-97. 10. Gregg, D.G. and Scott, J.E., A typology of complaints about eBay sellers, Communications of the ACM, Volume 51, Issue 4.(2008) 11. Pandit, S., Chau, D., Wang, S., & Faloutsos, C. (2007). Netprobe: a fast and scalable system for fraud detection in online auction networks. WWW ''07 Proceedings of the 16th international conference on World Wide Web (pp. 201-210). New York, NY, US: ACM. 12. Pelleg, D., Moore, A., 2000. In: Langley, P. (Ed.), X-Means: Extending k-means with Efficient Estimation of the Number of Clusters. Morgan Kaufmann Publishers, San Francisco, CA, pp. 727–734 13. Tsang, S., et al. (2014), "SPAN: Finding collaborative frauds in online auctions," Knowledge-based systems 71 (2014) 389-408. 14. Wang, J., & Chiu, C. (2008). Detecting OnlineAuction Inflated-Reputation Behaviors using Social Network Analysis. Proceedings of NAACSOS Conference 2005, June 26-28. 15. 王俊程, 邱垂鎮, & 葛煥元. (2005). 以交易記錄的社會網絡結構建立線上拍賣哄抬評價的偵測指標. 資訊管理學報, 12(4), 143-184. 16. 洪儀玶,「具早期預警能力之線上拍賣詐騙偵測」,淡江大學資訊管理學系,碩士論文,民96。 17. 翁豪箴,「考量服務品質之多屬性線上拍賣名聲系統」,淡江大學資訊管理學系,碩士論文,民97。 18. 劉祐宏,「線上拍賣詐騙偵測之屬性挑選與流程設計」,碩士論文,民101。 19. 鄭孝儒,「 線上拍賣潛伏期詐騙者之有效偵測」,淡江大學資訊管理學系,碩士論文,民100。 20. 林敬堯,「 一套有效率的複合式線上拍賣詐騙偵測系統」,淡江大學資訊管理學系,碩士論文,民103。 21. 曾憲雄、蔡秀滿等人,「資料探勘」,旗標出版,民97。 22. Google,「以小搏大是台灣電子商務的機會!」,http://udn.com/news/story/6871/1237187 23. 外貿協會,「全球電子商務市場規模 2016可望突破2兆美元」,http://www.ettoday.net/news/20150428/499255.htm 24. 資策會,「今年電子商務市場將破兆元」,http://www.chinatimes.com/newspapers/20150303000216-260210 25. 刑事局,「警公布網路10大風險賣家!露天拍賣獨占鰲頭」,http://news.ltn.com.tw/news/society/breakingnews/1583183; https://tkuir.lib.tku.edu.tw/dspace/handle/987654321/111148; https://tkuir.lib.tku.edu.tw/dspace/bitstream/987654321/111148/1/index.html
-
9
Autoři: a další
Přispěvatelé: a další
Témata: 異常偵測, 分類樹, 線上購物, 電子商務, Anomaly detection, Decision Trees, Online Shopping, Electronic Commerce
Popis souboru: 144 bytes; text/html
Relation: 參考文獻 1. Aha, D. W. (1991). Instance-based learning algorithms. Machine learning, 6(1), pp. 37-66. 2. Chang, E. a. (2006). Trust and reputation for service-oriented environments: technologies for building business intelligence and consumer confidence. John Wiley & Sons. 3. Chang, J.-S. a.-H. (2009). An Early Fraud Detection Mechanism for Online Auctions Based on Phased Modeling. Pervasive Computing (JCPC), 2009 Joint Conferences on (pp. 743-748). IEEE. 4. Chang, J.-S. a.-H. (2014). Analysis of fraudulent behavior strategies in online auctions for detecting latent fraudsters. Electronic Commerce Research and Applications, 13(2), pp. 79-97. 5. Chang, W.-H. a.-S. (2010). An online auction fraud screening mechanism for choosing trading partners. Education Technology and Computer (ICETC), 2010 2nd International Conference on. 5, pp. V5-56. IEEE. 6. Chang, W.-H. a.-S. (2010). Using clustering techniques to analyze fraudulent behavior changes in online auctions. Networking and Information Technology (ICNIT), 2010 International Conference on (pp. 34-38). IEEE. 7. Chang, W.-H. a.-S. (2012). An effective early fraud detection method for online auctions. Electronic Commerce Research and Applications, 11(4), pp. 346-360. 8. Chau, D. H. (2005). Fraud detection in electronic auction. European Web Mining Forum at ECML/PKDD, (pp. 87-97). 9. Chau, D. H. (2006). Detecting fraudulent personalities in networks of online auctioneers. Knowledge Discovery in Databases: PKDD (pp. 103-114). Springer. 10. Chouchoulas, A. a. (2001). Rough set-aided keyword reduction for text categorization. Applied Artificial Intelligence, 15(9), pp. 843-873. 11. Dash, M. a. (1997). Feature selection for classification. Intelligent Data Analysis, 1(3), pp. 131-156. 12. eBay. (2013). eBay交易安全 網上拍賣自保招數─詐騙賣家的特徵. 擷取自 eBay台灣: http://pages.ebay.com.hk/securitycenter/education/fraud_traits.html 13. Liu, H. a. (1998). Feature extraction, construction and selection: A data mining perspective. Norwell, MA: Kluwer Academic Publishers. 14. Liu, H. a. (1998). Feature selection for knowledge discovery and data mining. Norwell, MA: Kluwer Academic Publishers. 15. Pandit, S. a. (2007). Netprobe: a fast and scalable system for fraud detection in online auction networks. Proceedings of the 16th international conference on World Wide Web (pp. 201-210). ACM. 16. Quinlan, J. R. (2014). C4. 5: programs for machine learning. Elsevier. 17. Michelle, T. M., "Machine Learning", McGrow Hill 1997. 18. Smith, M. G. and L. Bull, “Genetic programming with a genetic algorithm for feature construction and selection,” Genet. Program. Evol. Mach., vol. 6, no. 3, pp. 265–281, Sep. 2005. 19. Kohavi, Ron and John, H.George, "Wrappers for feature subset selection", Artificial Intelligence 97 (1997), pp. 273-324 20. Frank, E. and Witten, I. H. Generating Accurate Rule Sets Without Global Optimization. In Proceedings of the Fifteenth international Conference on Machine Learning (July 24 - 27, 1998), 144-151. 21. Tomasz Kaszuba , Albert Hupa , Adam Wierzbicki. "Advanced Feedback Management for Internet Auction Reputation Systems." IEEE Computer Society, 2010. 22. Ludwig, S.A., Kersten, G.E., and Huang, X., (2006), Towards a Behavioural Agent-Based Assistant for e-Negotiations, in: Proceedings of the Montreal Conference on e-Technologies 23. Pelleg, D., Moore, A., (2000),"X-Means: Extending k-Means with Efficient Estimation of the Number of Clusters", Morgan Kaufmann Publishers,San Francisco, CA, pp. 727–734. 24. Kaszuba, T., Hupa, Al., and Wierzbicki, A. (2010), “Advanced Feedback Management for Internet Auction Reputation Systems, “ IEEE Internet Computing, Sep/Oct 2010, p. 31-37. 25. Wang, J., & Chiu, C. (2005). Detecting OnlineAuction Inflated-Reputation Behaviors using Social Network Analysis. Proceedings of NAACSOS Conference 2005, June 26-28. 26. Gavish, B., & Tucci, C. (2008). Reducing Internet Auction Fraud. Communications of the ACM, vo. 51, no. 5 , pp. 89-97. 27. 沈燕妮. (2015年1月28日). 網購一半是假貨? 淘寶小二舌戰工商總局. 擷取自 每日經濟新聞: http://www.nbd.com.cn/articles/2015-01-28/893867.html 28. 洪聖壹. (2014年11月12日). 淘寶天貓雙11單日破571億人民幣!小米賣出116萬支手機. 擷取自 ETtoday東森新聞雲: http://www.ettoday.net/news/20141112/425024.htm 29. 張昭憲, & 莊秉諺. (2013). 線上拍賣詐騙行為之時序分析, 淡江大學碩士論文, 102年. 30. 張碧暖. (2012). 信用評價制度與網路交易. 中央大學產業經濟研究所學位論文. 31. 淘寶網. (2015年3月31日). 淘寶網台灣:關於我們. 擷取自 淘寶網台灣: http://www.taobao.com/about/?spm=a213z.1224559.2014091600.43.kyJBK7 32. 曾憲雄; 蔡秀滿; 蘇東興; 曾秋蓉; 王慶堯. (2011). 資料探勘Data Mining. 施威銘. 33. 黃文貴. (2014年11月12日). 電子商務最重要的12個關鍵數據 (上). 擷取自 台灣經貿網: http://www.taiwantrade.com.tw/CH/bizsearchdetail/84779/I?keyword0=%E9%9B%BB%E5%AD%90%E5%95%86%E5%8B%99%E6%9C%80%E9%87%8D%E8%A6%81%E7%9A%8412%E5%80%8B%E9%97%9C%E9%8D%B5%E6%95%B8%E6%93%9A%20(%E4%B8%8A)&path=fulltext 34. 樂天市場新聞 (2014年12月29日). 擷取自 台灣樂天市場官網: http://www.rakuten.com.tw/info/release/2014/1229.html 35. 謝宜廷. (2013). 網路市集賣家影響下的評價分數與評論取向. 36. 蘇木春、張孝德. (1997). 機器學習 類神經網路、模糊系統以及基因演算法則. 台北市: 全華科技圖書股份有限公司. 37. 黃淳韋. 考量對手喜好變動之協商支援系統.淡江大學資訊管理學系碩士論文, 2012. 38. 劉祐宏. 線上拍賣詐騙偵測之屬性挑選與流程設計. 淡江大學資訊管理學系碩士論文, 2012. 39. 鄭孝儒. 線上拍賣潛伏期詐騙者之有效偵測. 淡江大學資訊管理學系碩士論文, 2011.; https://tkuir.lib.tku.edu.tw/dspace/handle/987654321/105548; https://tkuir.lib.tku.edu.tw/dspace/bitstream/987654321/105548/1/index.html
-
10
Autoři: a další
Přispěvatelé: a další
Popis souboru: 144 bytes; text/html
Relation: 參考文獻 一、 中文文獻 [1] 行政院法務部,〈個人資料保護法〉,2010,網址:http://law.moj.gov.tw/LawClass/LawAll.aspx?PCode=I0050021,上網日期:2015年3月8日。 [2] 行政院法務部,〈電腦處理個人資料保護法〉,1995,網址:http://law.moj.gov.tw/LawClass/LawOldVer_Vaild.aspx?PCODE=I0050021,上網日期:2015年3月8日。 [3] 行政院經濟部商業司,〈TPIPAS〉,2012,網址: http://www.tpipas.org.tw/index.aspx,上網日期:2015年3月8日。 [4] 李俊賢,〈基於BS 10012建置校園個人資料保護管理-以台中市某國中學務資訊系統為例〉,碩士論文,大葉大學管理學院,2014。 [5] 花俊傑,《初探BS 10012個人資訊管理標準》,網管人,2010年4月14日,網址:http://www.netadmin.com.tw/article_content.aspx?sn=1004140001/,上網日期2015年3月8日。 [6] 張芳全,《統計就是要這樣跑》,心理出版社,2013。 [7] 張書鳴,〈以BS10012為基礎評估組織導入個人資料管理制度之研究〉,碩士論文,淡江大學資訊管理學系,2011。 [8] 行政院教育部,〈內容效度-教育wiki〉,網址:http://content1.edu.tw/wiki/index.php/%E5%85%A7%E5%AE%B9%E6%95%88%E5%BA%A6,上網日期2015年3月8日。 [9] 許家豪,〈綜合證券商個人資訊管理系統符合BS 10012標準之研究〉,碩士論文,世新大學資訊管理學系,2003。 [10] 高啟淵,〈證券商導入個人資料管理系統之研究-以K公司為例〉,碩士論文,大同大學資訊經營學系,2015。 [11] 楊姍姍,〈影響教育機構導入BS 10012認證之關鍵因素〉,碩士論文,中興大學資訊管理學系,2013。 [12] 鄒宛璉,〈以BS 10012為基礎評估大專校院導入個人資訊管理制度之研究〉,碩士論文,淡江大學資訊管理學系, 2011。 [13] 廖珮君,《個資標準夯 金融業偏愛BS 10012》,資管人,2012年2月20日,網址:http://www.informationsecurity.com.tw/article/article_detail.aspx?aid=6621,上網日期:2015年3月8日。 [14] iThome,《戰勝個資法》, iThome電腦報專刊, p. 19,2012年10月。 二、 國外文獻 [15] APEC (Asia-Pacific Economic Cooperation), APEC Privacy Principles, 2003. http://www.apec.org/Groups/Committee-on-Trade-and-Investment/~/media/Files/Groups/ECSG/05_ecsg_privacyframewk.ashx/, accessed 2015/3/6. [16] BSI (British Standards Insitution), BS 10012: Data Protection - Specification for a Personal Information Management System, 2009. [17] Deming, W. E., Out of the Crisis, MIT Center for Advanced Engineering Study, 1986. [18] Higgins S., A. U., Information Security Management: Using BS 10012:2009 to Comply with The Data Protection Act, 12 August 2009. http://www.dcc.ac.uk/resources/briefing-papers/standards-watch-papers/information-security-management-using-bs-100122009-#c6/, accessed 2015/3/8. [19] Huang, C.-C., A Study on Information Security Management with Personal Data Protection, IEEE, pp. 624 - 630, 7-9 Dec. 2011. [20] Huang, C.-C., A Study on ISMS Policy: Importing Personal Data Protection of ISMS, 2012. http://oplab.im.ntu.edu.tw/download/pubication/journal/J38_2012_A%20Study%20on%20ISMS%20Policy%20Importing%20Personal%20Data%20Protection%20of%20ISMS.pdf/, accessed 2015/3/6. [21] International Association of Privacy Professionals, CIPP certification- Certified Information Privacy Professional certification, 2004. https://www.privacyassociation.org/, accessed 2015/3/8. [22] ISO (International Organization for Standardization), ISO/IEC 27018:2014, 2014. [23] Liu, C. Y., Critical Factors of Educational Institutions Adoption for BS 10012: Persional Information Management System, International Journal of Network Security, vol. 16, No.3, pp. 161-167, 2014. [24] OECD (Organization for Economic Co-operation and Development), OECD Guidelines on the Protection of Privacy and Transborder Flows of Personal Data. http://www.oecd.org/sti/ieconomy/oecdguidelinesontheprotectionofprivacyandtransborderflowsofpersonaldata.html/, accessed 2015/3/8. [25] 日本經濟產業省、『JIS Q 15001』、2006,網址: http://privacymark.jp/reference/pdf/guideline_V2.0_120907.pdf/,上網日期:2015年3月8日。; https://tkuir.lib.tku.edu.tw/dspace/handle/987654321/105542; https://tkuir.lib.tku.edu.tw/dspace/bitstream/987654321/105542/1/index.html
-
11
Autoři: a další
Přispěvatelé: a další
Témata: 個人資料保護, 個資管理, 風險評鑑, personal data protection, Personal Information Management, Risk Evaluation
Popis souboru: 144 bytes; text/html
Relation: [1] 行政院研究發展考核委員會,2009,『風險管理及危機處理作業手冊』。 [2] 行政院國家資通安全會報,2010,『資訊系統分類分級與鑑別機制參考手冊』。 [3] 行政院國家資通安全會報,2011,『個人資料保護參考指引』。 [4] 行政院國家資通安全會報,2011,『資訊系統風險評鑑參考指引』。 [5] 個人資料保護法,中華民國99年5月26日華總一義字第09900125121號總統令。 [6] 個人資料保護法施行細則,中華民國101年9月26日法務部法令字第10103107360號令。 [7] 余俊賢,2010,『因應個資法修正後電子商務業者之資料安全管理與稽核實務』,電腦稽核期刊22期。 [8] 吳啟文,2012,『個人資料保護法之衝擊與因應』,行政院研考會。 [9] 周韋杏,2010,『公務機關人事機構處理個人資料之研究-以2010年修正之個人資料保護法為中心』,東吳大學法律學系碩士論文。 [10] 林美月,2012,『組織落實個人資料保護法執行方案之研究』,高雄第一科技大學資訊管理研究所碩士論文。 [11] 林宸竹,2010,『一個考量符合性與風險資訊呈現之資訊安全風險管理系統』,國立臺灣科技大學資訊管理系碩士論文。 [12] 林淑儀,2014,『建構企業導入「臺灣個人資料保護與管理制度」環境之探討』,淡江大學資訊管理系碩士論文。 [13] 祝亞琪、魏銪志、鄭皓陽,2011,『資訊安全風險評鑑方法比較』,電腦稽核期刊23期。 [14] 張明森、陳志誠,2013,『從稽核觀點探討資訊系統對法令遵循之研究—以個人資料保護法為例』,TANET2013臺灣網際網路研討會論文集:564~570頁。 [15] 張書鳴,2011,『以BS 10012 為基礎評估組織導入個人資訊管理制度之研究』,淡江大學資訊管理學系碩士論文。 [16] 張碩毅、江佩姿,2011,『資訊安全風險評鑑機制之建構測試與實證─以教育體系為例』,電腦稽核期刊23期:58~77頁。 [17] 張碩毅、黃迺康、陳央庭、蘇仲杰,2012,『企業個人資料保護管理機制之建構與實證』,電腦稽核期刊25期:89~111頁。 [18] 莊景全,2012,『個資防護經驗分享-以ISMS架構為例』,政府機關資安監控與防護研討會。 [19] 陳志誠,2009,『資訊資產分類與風險評鑑之研究-以銀行業為例』,資訊管理學報,第十六卷.第三期:55~84頁。 [20] 黃小玲,2010,『個資法及ISO 27001共通性與操作概述』,清流月刊99年11月號。 [21] 黃彥棻,『新版ISO 27001:2013正式出爐,企業2015年適用新標準』,網址:http://www.ithome.com.tw/node/83807,上網日期:2014年12月22日。 [22] 鄒宛璉,2011,『以BS10012為基礎評估大專校院導入個人資訊管理制度之研究』,淡江大學資訊管理學系碩士論文。 [23] 廖佩君,『2012,掌握個資風險數量與成分是關鍵』,網址:http://www.informationsecurity.com.tw/article/article_print.aspx?aid=7210,上網日期:2012年11月21日。 [24] 廖健興、廖偉鵬、郭明煌等,2008,『建構資訊安全風險管理模式之個案研究』,2008知識社群與系統發展研討會。 [25] 劉佐國、李世德,2012,個人資料保護法釋義與實務,台北:碁峰資訊股份有限公司。 [26] 劉彥辰,2010,『論醫療資訊隱私之保護規範』,世新大學法律學研究所碩士論文。 [27] 樊國楨、黃健誠,2011,『個人資料保護與資訊安全管理初探』,電腦稽核期刊23期。 [28] 鄭伊雯,2012,『植基於ISO 27001建立符合BS 10012之個人資訊管理自我評鑑模式』,中原大學資訊管理系碩士論文。 [29] Anderson, A. M. 1991. Comparing risk analysis methodologies. Proceedings of the IFIP TC11, Seventh International Conference on Information Security (IFIP/Sec ''91),pp. 301-311. [30] Holden, M. C., and Wedman, J. F. 1993. "Future issues of computer-mediated communication: The results of a delphi study," Educational Technology Research and Development, vol. 41, pp. 5-24. [31] ISO. 2011. ISO/IEC 27005 - Information technology - Security techniques - Information security risk management. [32] ISO. 2013. ISO/IEC 27001 - Information technology - Security techniques - Information security management systems – Requirements. [33] ISO Survey 2013. http://www.iso.org/iso/iso-survey, accessed 2014/12/22 [34] McCallister, E., Grance, T., and Scarfone, K. 2010. Guide to Protecting the Confidentiality of Personally Identifiable Information (PII), NIST Special Publication 800-122.; https://tkuir.lib.tku.edu.tw/dspace/handle/987654321/105527; https://tkuir.lib.tku.edu.tw/dspace/bitstream/987654321/105527/1/index.html
-
12
Autoři: a další
Přispěvatelé: a další
Témata: 情感分析, 機器學習, 領域詞典, 意見單元, 網路探勘, Sentiment analysis, Machine learning, Domain Dictionary, Opinion unit, Web Mining
Popis souboru: 144 bytes; text/html
Relation: 參考文獻 [1] ACNielsen. (2013). 第三方背書的免費廣告最受全球消費者信賴. Retrieved from http://www.nielsen.com/tw/zh/press-room/2013/newsTWTrustInAd20130917.html [2] Ameur, H., & Jamoussi, S. (2013). Dynamic construction of dictionaries for sentiment classification. Paper presented at the Data Mining Workshops (ICDMW), 2013 IEEE 13th International Conference On, 896-903. [3] Aue, A., & Gamon, M. (2005). Customizing sentiment classifiers to new domains: A case study. Paper presented at the Proceedings of Recent Advances in Natural Language Processing (RANLP), , 1(3.1) 2.1. [4] Brown, P. F., Desouza, P. V., Mercer, R. L., Pietra, V. J. D., & Lai, J. C. (1992). Class-based n-gram models of natural language. Computational Linguistics, 18(4), 467-479. [5] Chang, C., & Lin, C. (2011). LIBSVM: A library for support vector machines. ACM Transactions on Intelligent Systems and Technology (TIST), 2(3), 27. [6] Cortes, C., & Vapnik, V. (1995). Support-vector networks. Machine Learning, 20(3), 273-297. [7] Ding, X., Liu, B., & Yu, P. S. (2008). A holistic lexicon-based approach to opinion mining. Paper presented at the Proceedings of the 2008 International Conference on Web Search and Data Mining, 231-240. [8] Dong, Z., & Dong, Q. (2006). HowNet and the computation of meaning World Scientific. [9] Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., & Witten, I. H. (2009). The WEKA data mining software: An update. ACM SIGKDD Explorations Newsletter, 11(1), 10-18. [10] Ku, L., & Chen, H. (2007). Mining opinions from the web: Beyond relevance retrieval. Journal of the American Society for Information Science and Technology, 58(12), 1838-1850. [11] Larsen, B., & Aone, C. (1999). Fast and effective text mining using linear-time document clustering. Paper presented at the Proceedings of the Fifth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 16-22. [12] Liu, B. (2010a). Sentiment analysis and subjectivity. Handbook of Natural Language Processing, 2, 627-666. [13] Liu, B. (2010b). Sentiment analysis: A multi-faceted problem. IEEE Intelligent Systems, 25(3), 76-80. [14] Liu, B. (2012). Sentiment analysis and opinion mining. Synthesis Lectures on Human Language Technologies, 5(1), 1-167. [15] Liu, B., Hu, M., & Cheng, J. (2005). Opinion observer: Analyzing and comparing opinions on the web. Paper presented at the Proceedings of the 14th International Conference on World Wide Web, 342-351. [16] Ma, W., & Chen, K. (2003). Introduction to CKIP chinese word segmentation system for the first international chinese word segmentation bakeoff. Paper presented at the Proceedings of the Second SIGHAN Workshop on Chinese Language Processing-Volume 17, 168-171. [17] McNaughton, R., & Yamada, H. (1960). Regular expressions and state graphs for automata. [18] Nguyen, H. N., Van Le, T., Le, H. S., & Pham, T. V. (2014). Domain specific sentiment dictionary for opinion mining of vietnamese text. Multi-disciplinary trends in artificial intelligence (pp. 136-148) Springer. [19] Nunamaker Jr, J. F., & Chen, M. (1990). Systems development in information systems research. Paper presented at the System Sciences, 1990., Proceedings of the Twenty-Third Annual Hawaii International Conference On, , 3 631-640. [20] O''reilly, T. (2007). What is web 2.0: Design patterns and business models for the next generation of software. Communications & Strategies, (1), 17. [21] Pang, B., Lee, L., & Vaithyanathan, S. (2002). Thumbs up?: Sentiment classification using machine learning techniques. Paper presented at the Proceedings of the ACL-02 Conference on Empirical Methods in Natural Language Processing-Volume 10, 79-86. [22] Shelke, N. M., Deshpande, S., & Thakre, V. (2012). Survey of techniques for opinion mining. International Journal of Computer Applications (0975–8887) Volume, 57 [23] Wang, J., & Lee, C. (2011). Unsupervised opinion phrase extraction and rating in chinese blog posts. Paper presented at the Privacy, Security, Risk and Trust (Passat), 2011 Ieee Third International Conference on and 2011 Ieee Third International Conference on Social Computing (Socialcom), 820-823. [24] Wiebe, J. (2000). Learning subjective adjectives from corpora. Paper presented at the AAAI/IAAI, 735-740. [25] Yu, H., & Hatzivassiloglou, V. (2003). Towards answering opinion questions: Separating facts from opinions and identifying the polarity of opinion sentences. Paper presented at the Proceedings of the 2003 Conference on Empirical Methods in Natural Language Processing, 129-136. [26] Zhang, H., Yu, H., Xiong, D., & Liu, Q. (2003). HHMM-based chinese lexical analyzer ICTCLAS. Paper presented at the Proceedings of the Second SIGHAN Workshop on Chinese Language Processing-Volume 17, 184-187. [27] Zhao, L., & Li, C. (2009). Ontology based opinion mining for movie reviews Springer. [28] 楊盛帆. (2009). 以整合式規則來做網路論壇上的 3C 產品口碑分析. 元智大學資訊管理學系學位論文, , 1-60. [29] 王卫平, & 孟翠翠. (2011). 基于句法分析与依存分析的评价对象抽取. 计算机系统应用, 20(8), 52-57. [30] 簡之文. (2012). 部落格文章情感分析之研究. 淡江大學資訊管理學系碩士班學位論文, , 1-52. [31] 謝衫蒂. (2014). 應用機器學習與多辭典的中英雙語意見分析之研究. 淡江大學資訊管理學系碩士在職專班學位論文, , 1-89. [32] 陈强, 宋俊德, & 鄂海红. (2013). 基于动态词库的中文分词模块的设计与实现.; https://tkuir.lib.tku.edu.tw/dspace/handle/987654321/105514; https://tkuir.lib.tku.edu.tw/dspace/bitstream/987654321/105514/1/index.html
-
13
Autoři: a další
Přispěvatelé: a další
Témata: 資安健診, 網站安全, 更新管理, Information Security Diagnostic, ISO27001, Web Security, Patch Management
Relation: 一、中文文獻 1.行政院國家資通安全會報,《政府機關(構)資訊安全責任等級分作業施行計畫》,臺北:行政院,2009。 2.行政院國家資通安全會報,《國家資通訊安全發展方案(98年至 101年)》,臺北:行政院,2009。 3.行政院國家資通安全會報,《資訊系統分類分級與鑑別機制》,臺北:行政院,2009。 4.行政院國家資通安全會報,,網址:http://www.nicst.ey.gov.tw/News_Content.aspx?n=283E5E09B7E62655&sms=BC5E204B65C9D817&s=B93FF8D386E9B7EC,上網日期:2014年4月11日 5.李振昌譯,Fischer and Green著,《企業安全管理完全手冊》,臺北:紐奧良文化,2002。 6.吳思菁,《資通安全治理之研究-以政府部門為例》,碩士論文,淡江大學資訊管理學系,2008。 7.林傳敏,電腦稽核— 網路世代不能沒有電腦稽核觀念(上),企銀報導,18卷6期,頁44-55,6月,2000。 8.林傳敏,電腦稽核— 網路世代不能沒有電腦稽核觀念(下),企銀報導,18卷7期,頁25-33,7月,2000。 9.柯炫旭,《政府機關資安治理之研究-以臺北市政府為例》,碩士論文,淡江大學資訊管理學系,2010。 10.陳瑞祥,,網址: http://www.informationsecurity.com.tw/article/article_detail.aspx?aid=6158#ixzz2u22P31NK,上網日期:2013年12月1日。 11.陳耀崑,電腦稽核與安全控管,89年農漁會信用部稽核人員班講義,2000。 12.張士龍,《政府部門導入ISO27001 關鍵成功因素之研究》,碩士論文,世新大學,資訊管理學系,2007。 13.張景皓,,網址:http://www.ithome.com.tw/node/79400#.Uwg_i_mSw4Y,上網日期:2013年11月13日。 14.黃亮宇著,《資訊安全規劃與管理》,台北:松崗電腦圖書公司,1992。 15.黃彥棻,,網址:http://www.ithome.com.tw/node/80703#.UwhB_PmSw4Y,上網日期:2013年11月18日。 16.廖珮君,,網址:http://www.informationsecurity.com.tw/article/article_detail.aspx?aid=7338,上網日期:2014年5月19日。 17.蕭秀琴,,網址:http://news.ey.gov.tw/News_Content2.aspx?n=DDD0705B2394AD88&s=B38799813171EEFF,上網日期:2013年12月19日。 二、英文文獻 18.Cisco, “CISCO Network Security Baseline,” Cisco Corporation, 2008. 19.CSI, “2010/2011 Computer Crime And Security Survey,” Computer Security Institute, 2010. 20.ICSA, “Information Security Health Check,” Information and Computer Security Architecture, 2002. 21.ISO/IEC 27001:2005, Information Technology—Security Techniques—Information Security Management Systems—Requirements. 22.ISO/IEC 27002:2005, Information Technolog—Security Techniques—Code of Practice for Information Security. 23.ISO/IEC 27005:2008, Information Technology—Security Techniques—Information Security Risk Management. 24.Microsoft, “Security Health Check (SECHC),” Microsoft Corporation, 2007. 25.NIST, “Special Publication (SP) 800-44 Version 2,” National Institute of Standards and Technology, 2007. 26.OWASP, “OWASP Top 10 Application Security Risks 2013,”The Open Web Application Security Project, 2013. 27.Rusell, D. & Gangemi, G. T. , “Computer Security Basics”, California: O’Reilly & Associates Inc, 1992. 28.Robert K. Yin, Case Study Research: Design And Methods, California: Sage Publishing, 1994. 29.Weber, Ron., Information Systems Control and Audit , Prentice Hall Press, Inc., Oct. 1998. 30.SANS, “SANS Institute Linux Security Checklist,”SANS Institute, 2012. 31.Schneider, E.C. and Therkalsen, G.W., “How Secure Are Your System?” Avenues to Automation, 1990, pp.68-72. 32.Symantec,“2013 Norton Report, ”Symantec Corporation, 2013 33.US Department of Commerce, 1979, Guidelines for automatic data processing risk analysis. FIPS Publications 65.; https://tkuir.lib.tku.edu.tw/dspace/handle/987654321/102410
-
14
Autoři: a další
Přispěvatelé: a další
Témata: 詐騙偵測, 分類樹, 線上拍賣, 電子商務, Fraud Detection, Decision tree, Online Auction, Electronic Commerce
Relation: [1] Balingit, R., Trevathan, J., Lee, Y., & Read, W. (2009). A Software Tool for Collecting Data from Online Auctions. Proceedings the 6th International Conference on Information Technology: New Generations, (pp. 922-927). [2] Chang, J. S., & Chang, W. (2009). An Early Fraud Detection Mechanism for Online Auctions Based on Phased Modeling. Proceeding the 2009 International Workshop on Mobile Systems E-commerce and Agent Technology (MSEAT 2009). December 3-5, Taipei, Taiwan. [3] Chang, W. and J.-S. (2010a). A Multiple-Phased Modeling Method to Identify Potential Fraudsters in Online Auctions. Proceedings of the 2nd International Conference on Computer Research and Development (ICCRD 2010). May 7-10, Kuala Lumpur, Malaysia. [4] Chang, W. and Chang, J.-S. (2010b). An Online Auction Fraud Screening Mechanism for Choosing Trading Partners. Proceeding of 2010 the 2nd International Conference on Education Technology and Computer (ICIEE 2010). June 22-24, Shanghai, China. [5] Chang, W., & Chang, J.-S. (2011). A Novel Two-Stage Phased Modeling Framework for Early Fraud Detection in Online Auctions. Expert System with Applications, vol.38, no.9 , pp. 11244-11260. [6] Chang, W., & Chang, J.-S. (2012). An Effective Early Fraud Detection Method for Online Auctions. Electronic Commerce Research and Application 11 (2012) 346–360. [7] Chang, Jau-Shien, and Wong, Hao-Jhen, “Selecting appropriate sellers in online auctions through a multi-attribute reputation calculation method,” Electronic Commerce Research and Applications 10(2): 144-154 (2011) [8] Chen, Y. L., S. S. Chen, and P. Y. Hsu, “Mining hybrid sequential patterns and sequential rules”, Information Systems, Vol. 27, No. 5, 2004, pp. 345-362. [9] Chau, D. H., & Faloutsos, C. (2005). Fraud Detection in Electronic Auction. Proceedings of European Web Mining Forum (EWMF 2005) at ECML/PKDD 2005. October 3-7. [10] Chua, C. E., & Wareham, J. (2004). Fighting Internet Auction Fraud: An Assessment and Proposal. Computer, vol. 37, no. 10 , pp. 31-37. [11] eBay Inc. (2013). 2013 Quarterly Report. Retrieved Dec 1, 2013, from http://investor.ebay.com/annuals.cfm [12] eBay Inc. (1995). How Feedback works. Retrieved Aug 11, 2012, from eBay: http://pages.ebay.com/help/feedback/howitworks.html [13] Gavish, B., & Tucci, C. (2008). Reducing Internet Auction Fraud. Communications of the ACM, vo. 51, no. 5 , pp. 89-97. [14] Goes, P., Tu, Y., & Tung, A. (2009). Online Auctions Hidden Metrics. Communications of the ACM, 52(4) , pp. 147-149. [15] Ishioka, T. (2005). An expansion of x-means for automatically determining the optimal number of clusters-progressive iterations of k-means and merging of the clusters. Proceedings of fourth IASTED international conference computational intelleigence. July 4-6, 2005, Calgery, Alberta, Canada. [16] Josang, A., and Golbeck, J., “Challenges for Robust Trust and Reputation Systems,” in Proceedings of the 5th International Workshop on Security and Trust Management, Saint Malo, France, Sep. 2009. [17] Josang, A., “Robustness of Trust and Reputation: Does It Matter,” IFIPTM 2012, IFIP AICT 374, pp. 353-262, 2012. [18] Kaszuba, T., Hupa, Al., and Wierzbicki, A. (2010), “Advanced Feedback Management for Internet Auction Reputation Systems, “ IEEE Internet Computing, Sep/Oct 2010, p. 31-37. [19] Kauffman, R., & Wood, C. (2003). Running up the Bid: Detecting, Predicting, and Preventing Reserve Price Shilling in Online Auctions. Proceedings of the 5th international conference on Electronic Commerce. [20] Kobayashi, M., & Ito, T. (2007a). A transactional relationship visualization system in internet auctions. IEEE Computer Society , pp. 248-251. [21] Kobayashi, M., & Ito, T. (2008). A Transactional Relationship Visualization System in Internet Auctions. Electronic Commerce - Studies in Computational Intelligence, 110(2008) , pp. 87-99.. [22] National White Collar Crime Center (NW3C). (2011, January 1- December 31). 2010 Internet Crime Report. Retrieved Aug 2012, from Internet Crime Complaint Center: http://www.ic3.gov/media/annualreport/2010_IC3Report.pdf [23] National White Collar Crime Center(NW3C). (2012). 2011 Internet Crime Report. Retrieved Aug 2012, from Internet Crime Complaint Center: http://www.ic3.gov/media/annualreport/2011_IC3Report.pdf [24] Nguyen, T. D., and N. R. Jennings (2003), “Concurrent bi-lateral negotiation in agent systems,” Proceedings of the 14th International Workshop on Database and Expert Systems Applications(DEXA’03), pp. 1-6. [25] Panda, M., & Patra, M. (2009, November). A Novel Classification via Clustering Method for Anomaly Based Network Intrusion Detection System. International Journal of Recent Trends in Engineering, vol.2, no.1 . [26] Pandit, S., Chau, D., Wang, S., & Faloutsos, C. (2007). Netprobe: a fast and scalable system for fraud detection in online auction networks. WWW ''07 Proceedings of the 16th international conference on World Wide Web (pp. 201-210). New York, NY, US: ACM. [27] Quinlan, J. R. (1993). C4.5 Programs for machine learning. San Mateo, CA: Morgan Kaufmann. [28] Rubin,S., et al., (2005). An auctioning reputation system based on anomaly detection. Proceedings of the 12th ACM Conference on Computer and Communications Security (CCS). [29] Sherchan, Wanita, Nepal, Surya, and Paris, C., “A Survey of Trust in Social Networks,” ACM Computing Survey, Vol. 45, No. 4, Article 47. Aug. 2013. [30] Schmidt, S., Steele, R., Dillon, T., and Chang, E. Fuzzy trust evaluation and credibility development in multi-agent systems. Applied Soft Computing, 7, 2, 2007, 492–505. [31] Selvaraj, C., and Anand S., “A Survey on Security Issues of reputation Management Systems for Peer-to-Peer Networks,” Computer Science Review 6 (2012) 145-160. [32] Song, S., Hwang, K., Zhou, R., and Kwok, Y. K. Trusted P2P transactions with fuzzy reputation aggregation. IEEE Internet Computing, Vol. 9, 6, 2005, 24–34. [33] Tavakolifard, M., and Almeroth, K. C., “Social Comuting: An Intersection of recommender Systems, Trust/Reputation Systems, and Social Network,” IEEE Network, July/August 2012, p. 53-58. [34] Trevathan, J., & Read, W. (2007). Detecting Collusive Shill Bidding. Proceeding of International Conference on Information Technology (ITNG''07), (pp. 799-808). April 2-4, Las Vegas, Nevada, USA. [35] Wang, J., & Chiu, C. (2005). Detecting OnlineAuction Inflated-Reputation Behaviors using Social Network Analysis. Proceedings of NAACSOS Conference 2005, June 26-28. [36] Wierzbicki, A., et al., “Improving Computational trust representation based on Internet Auction traces, “ Decision Support System 54 (2013) 929-940. [37] Witten, I. H. Data mining: Practical machine learning tools and techniques. Morgan Kaufmann, Burlinton, 3rd ed.2010. [38] Yu, H., et al., “A Survey of Trust and Repuation Management Systems in Wireless Communications,” Proceedings of the IEEE, Vol. 98, No. 10, Oct. 2010, p.1755-1772. [39] 洪儀玶,「具早期預警能力之線上拍賣詐騙偵測」,淡江大學資訊管理學系,碩士論文,民96。 [40] 翁豪箴,「考量服務品質之多屬性線上拍賣名聲系統」,淡江大學資訊管理學系,碩士論文,民97。 [41] 梁賀翔,「一套線上拍賣詐騙即時偵測系統」,淡江大學資訊管理學系,碩士論文,民99。 [42] 郎健如,「一套線上拍賣不誠實交易者之二階段偵測方法」,碩士論文,民99。 [43] 葉學杰,「協商中的對手喜好預測與協商策略應用」,碩士論文,民101。 [44] 劉祐宏,「線上拍賣詐騙偵測之屬性挑選與流程設計」,碩士論文,民101。 [45] 莊秉諺,「線上拍賣詐騙行為之時序分析」,淡江大學資訊管理學系,碩士論文,民102。 [46] 曾憲雄、蔡秀滿等人,「資料探勘」,旗標出版,民97。; https://tkuir.lib.tku.edu.tw/dspace/handle/987654321/102396
-
15
Autoři: a další
Přispěvatelé: a další
Témata: 資料探勘, 航安風險, 風險因素, data mining, Flight Safety risk, Risk Factors
Relation: 1. 王保進,《多變量分析: 套裝程式與資料分析》,2004。 2. 李建億、蔡芳遠,〈應用資料探勘技術於網路專題學習活動之分析〉,南師學報:教育類,第38期,第1卷,頁1-23,2004 3. 李珮瑩,《以資料探勘方法探討服務業之顧客區隔及滿意度指標-以大台北地區餐廳為例》,碩士論文,臺北科技大學資訊與運籌管理學系,2011。 4. 邱志洲、田政祺、周宇超,〈資料探勘中分群模式與分類模式之建構-模糊自適應共振理論綱路、分類迴歸樹與類神經綱路之整合與應用〉,工業工程學刊,第22期,第2卷,頁171-188,2005 5. 徐清郎,《回歸分析》,2007 6. 郭清江(2000),,網址: http://www.taasa-web.org/airplanesafety.htm,上網日期:2000年10月28日。 7. 陳彥文,《以ANP建構飛安風險推論模型》,碩士論文,淡江大學資訊管理學系,2013。 8. 陳芓頲,《飛航管制飛安風險因素之探究》,碩士論文,逢甲大學交通工程與管理學系碩士班,2006。 9. 陳奕翔,《飛行操作風險評估系統(FORAS)之風險因素權重分析》,碩士論文,國立成功大學民航研究所,2007。 10. 陳正昌,程炳林,陳新豐,劉子鍵.,《多變量分析方法—統計軟體應用》,五南,2004 11. 黃敬元,《基於FORAS之高飛航風險航班關鍵因素搜尋》,碩士論文,淡江大學資訊管理學系,2011。 12. 葉怡成,《應用類神經網路》,儒林圖書有限公司,1995。 13. 蘇文灶、官文霖,〈2002年第一屆飛航操作監控及飛航安全發展研討會報告書〉,行政飛航安全基金會,2002。 14. 蘇志雄、鄭宇庭,〈商業智慧的工具-資料採礦〉,輔仁管理評論, 9(3), 11-34,2002。 15. 〈飛安新思維〉,科學月刊346 期,民國87.10。 16. 〈航空安全管理〉,季刊第1卷,第1期,民國103.1。 17. Berry, M. J., and Linoff, G. S., Data mining techniques: for marketing, sales, and customer relationship management, John Wiley & Sons, 2004. 18. Chang, Y. H., and Wang, Y. C., "Significant human risk factors in aircraft maintenance technicians," Safety Science, vol. 48, no. 1, pp. 54-62, 2010. 19. Chen, M.S., Han, J., and Yu, P.S., "Data mining: an overview from a database perspective," IEEE transactions on knowledge and data engineering, vol. 8, pp. 866-883, 1996. 20. Cheng, B. W., Chang, C. L. and Liu, I. S., "Enhancing care services quality of nursing homes using data mining, " Total Quality Management and Business Excellence, vol. 16, no. 2, pp. 575-596, 2005. 21. Deepa, V. K., and Geetha, J. R., "Rapid Development of Applications in Data Mining," Green High Performance Computing, pp. 1-4, 2013. 22. Edwards, E., "Man and machine: systems for safety," Proceedings of British Airline Pilots Associations Technical Symposium, British Airline Pilots Associations, London, pp. 21–36, 1972. 23. Fayyad, U. M., Piatetsky-Shapiro, G., and Smyth, P., "Knowledge Discovery and Data Mining:Towards a Unifying Framework," KDD, Vol. 96, pp. 82-88, August. 1996. 24. Goguen, J. A., Linde, C., and Murphy, M., "Crew communication as a factor in aviation accidents," 1984. 25. Han, J., Kamber, M., and Pei, J., Data mining: concepts and techniques, Morgan kaufmann, 2006. 26. Hand, D. J., Mannila, H., and Smyth, P., Principles of data mining, 2001. 27. Hawkins, F. H., and Orlady, H. W., Human factors in flight, 1993. 28. Kleissner, C., "Data mining for the enterprise," Proceedings of the Thirty-First International Conference of System Sciences, Hawaii , pp. 163–167, Jan. 1998. 29. Lei, W., and Le, D., "Risk evaluation of human factors in flight deck system," Advanced Management Science (ICAMS), Vol. 1, pp. 381-385, July 2010. 30. Michael, H., Osborne, D.M., Ross, D., Boyd, D., and Brown, B.G., "The Flight Operations Risk Assessment System," Proceedings of the SAE Advances Safety Conference, vol. 108 no. 1, pp. 150-156, Jan. 1999. 31. Nirkhi, S., "Potential use of artificial neural network in data mining," Computer and Automation Engineering (ICCAE), Vol. 2, pp. 339-343, Feb. 2010 32. Reason, J., "Achieving a safe culture: theory and practice," Work & Stress, 12(3), 293-306, 1998. 33. Witten, I. H., and Frank, E., Data mining: Practical machine learning tools and techniques with Java implementations, 2000. 34. Wang. Xiaoyun., and Zhao. Tingdi., "Design of integrated aircraft inflight safety monitoring and early warning system," Prognostics and Health Management Conference, pp.1-5, Jan. 2010.; https://tkuir.lib.tku.edu.tw/dspace/handle/987654321/102395
-
16
Autoři: a další
Přispěvatelé: a další
Relation: 參考文獻 一、 中文文獻 [1] iThome online,,網址:http://www.ithome.com.tw/itadm/article.php?c=79904,上網日期:2013年12月3日。 [2] TPIPAS臺灣個人資料保護與管理制度,,網址:http://www.tpipas.org.tw/,上網日期:2013年9月15日。 [3] 何星翰,,網址:https://www.informationsecurity.com.tw/article/article_detail.aspx?aid=7017,上網日期:2014年3月15日。 [4] 吳明遠,《2010年個人資料保護法修正後對金融機構之影響與衝擊》,碩士論文,東吳大學法律學系,2012。 [5] 宋佩珊,〈美國隱私標章與個人資料管理機制研析〉,科技法律透析,第21卷,第9期,頁17~23,2009年9月。 [6] 周韋杏,《公務機關人事機構處理個人資料之研究-以2010年修正之個人資料保護法為中心》,碩士論文,東吳大學法律學系,2010。 [7] 周逸濱,《行政機關個人資料保護法制之研究-以日本法為比較中心》,碩士論文,臺北大學法律學系,2008。 [8] 周慧蓮,〈資訊隱私保護爭議之國際化〉,月旦法學雜誌,第104期,頁112~132,2004年1月。 [9] 林美月,《組織落實個人資料保護法執行方案之研究》,碩士論文,高雄第一科技大學資訊管理研究,2012。 [10] 林桓、余啟民、簡榮宗,《政府機關強化個人資料保護措施之研究》,行政院研究發展考核委員會委託東吳大學之研究報告,2009。 [11] 林茹玉,〈個資安全防護實作建議〉,中華民國資訊安全學會,第17卷,第3期,頁31~51,2011年7月。 [12] 林詩韻,《銀行國際傳輸客戶資料保護規範-以英國法為中心》,碩士論文,政治大學法學院,2012。 [13] 法源法律網,,網址:http://db.lawbank.com.tw/FLAW/FLAWDAT01.aspx?lsid=FL010627,上網日期:2013年9月16日。 [14] 邱映曦,〈臺灣個人資料保護與管理制度(TPIPAS)簡報〉,個資保護無國界-隱私保護與個資管理跨境合作國際研討會,2011。 [15] 邱映曦、劉敏慧、何寶中,〈我國個人資料保護法與個人資料管理制度〉,資訊安全通訊,第19卷,第1期,頁45~62 ,2013年1月。 [16] 邱琳雅,〈德國聯邦個人資料保護法〉,金融聯合徵信雙月刊,第8期,頁60~64,2008年10月。 [17] 洪慧如,《新個人資料保護法管理機制建置之研究-以E公司為例》,碩士論文,世新大學企業管理研究所,2012。 [18] 范姜真媺,〈他律與自律共構之個人資料保護法制-以日本有關民間法制為主〉,東吳法律學報,第21卷,第1期,頁163~200,2009年6月。 [19] 范姜真媺,〈日本個人資訊保護法對民間業者處理個人資料之規範〉,科技法律透析,頁27~49,2011年1月。 [20] 張天宇,《以PMBOK方法論探討BS 10012個資管理制度專案規劃》,碩士論文,國立交通大學管理學院,2013。 [21] 張書鳴,《以BS 10012 為基礎評估組織導入個人資訊管理制度之研究》,碩士論文,淡江大學資訊管理學系,2011。 [22] 張夢麒,《個資法施行後企業風險之具體趨避模式-以委外企業為例》,碩士論文,東吳大學法律學系,2011。 [23] 章鈺,〈如何架構個人資料管理系統,以符合個人資料保護法要求〉,財金資訊季刊,第71期,頁13~18,2012年6月。 [24] 許淑萍,《個人資料保護法影響政府機關資訊公開之研究》,碩士論文,東吳大學法律學系,2011。 [25] 郭戎晉,〈日本「個人資料保護管理體系」與「隱私標章」制度之初探〉,科技法律透析,頁2~12,2008年12月。 [26] 陳威達、杜水龍,《電子商務個人資料管理制度建置計畫》,跨部會考察日本個資保護管理與隱私標章制度參訪團出國報告,2011。 [27] 陳雅玲,《德國與歐盟的個人資料保護-多層級治理模式》,碩士論文,東吳大學德國文化學系,2012。 [28] 黃彥棻,,網址:http://www.ithome.com.tw/node/79627/,上網日期:2014年3月15日。 [29] 葉亭巖,〈德國個人資料保護標誌及個人資料保護審核制度簡介-以Schleswig-Holstein州為例〉,科技法律透析,頁20~26,2009年3月。 [30] 鄒宛璉,《以BS10012為基礎評估大專校院導入個人資訊管理制度之研究》,碩士論文,淡江大學資訊管理學系,2011。 [31] 廖珮君,,網址:http://www.informationsecurity.com.tw/article/article_detail.aspx?aid=6621,上網日期:2014年4月3日。 [32] 蒲樹盛,〈全球風險下的個人資訊保護方案BS 10012:2009個人資訊管理系統〉,品質月刊,第46卷,第6期,頁28~29,2010年6月。 [33] 劉彥辰,《論醫療資訊隱私之保護規範》,碩士論文,世新大學法律學研究所,2010。 [34] 劉蓉菁,《個人資料與隱私權保護之法制與實踐》,碩士論文,東吳大學法律學系,2010。 [35] 鄭伊雯,《植基於ISO 27001建立符合BS 10012之個人資訊管理自我評鑑模式》,碩士論文,中原大學資訊管理研究所,2012。 [36] 鍾文岳、鄭雯娗,〈公務機關適用個人資料保護法之今後方向與課題-以日本實務經驗為借鏡〉,萬國法律,第181期,頁18~32,2012年2月。 [37] 簡榮宗,《網路上資訊隱私權保護問題之研究》,碩士論文,東吳大學法律學系,2000。 [38]羅一倫,《論個人資料保護法對產業之影響與因應》,碩士論文,東吳大學法律學系,2012。 二、日文文獻 [39] 日本電子政府綜合窗口,,網址:http://law.e-gov.go.jp/htmldata/H15/H15HO057.html,上網日期:2013年10月20日。 [40] 岡村久道,《情報セキュリティの法律》,商事法務,2004。 [41] 隱私標章促進中心,,網址:http://privacymark.jp/,上網日期:2013年9月20日。 三、英文文獻 [42] APEC Privacy Framework. 2004. September 2013(available online at http://www.apec.org/Groups/Committee-on-Trade-and-Investment/~/media/Files/Groups/ECSG/05_ecsg_privacyframewk.ashx). [43] Banisar, D., and Davies, S. 1999. “Global Trends in Privacy Protection: An International Survey of Privacy, Data Protection, and Surveillance Laws and Developments,” Journal of Computer & Information Law (18:1), pp. 1-112. [44] Cate, F. H. 1995. “The EU Data Protection Directive, Information Privacy, and the Public Interest,” Faculty Publications, paper 646. [45] Council of Europe. 1950. “Convention for the Protection of Human Rights and Fundamental Freedoms,” European Treaty Series, No. 5. [46] European Directive 95/46/EC. 1995. “ The Protection of Individuals with Regard to The Processing of Personal Data and on The Free Movement of Such Data,” Official Journal, September 2013 (available online at http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=CELEX:31995L0046:DE:HTML). [47] OECD Guidelines. 1980. “OECD Guidelines on the Protection of Privacy and Transborder Flows of Personal Data,” September 2013 (available online at http://www.oecd.org.ezproxy.lib.tku.edu.tw:2048/internet/ieconomy/oecdguidelinesontheprotectionofprivacyandtransborderflowsofpersonaldata.htm). [48] Riccardi, J. L. 1983. “The German Federal Data Protection Act of 1977: Protecting the Right to Privacy? ” Boston College International and Comparative Law Review, (6:1), pp. 243-271. [49] Todd, R. C. 1991. “Does The Privacy Act of 1974 Protect Your Right to Privacy? An Examination of The Routine Use Exemption,” The American University Law Review, (40:3), pp. 957-1002. [50]Warren, S. D., and Brandeis, L. D. 1890. “The Right to Privacy,” Harvard Law Review, (4:5), pp. 193-220.; https://tkuir.lib.tku.edu.tw/dspace/handle/987654321/102387
-
17
Autoři: a další
Přispěvatelé: a další
Témata: 智慧財產權, 數位浮水印, 視覺密碼, 小波轉換, 中位數, Intellectual Property Rights, digital watermark, Visual Cryptography, Wavelet transform, Median
Relation: [1] 趙元甫,〈資料隱藏技術之研究〉,國立中央大學碩士論文,八十八年六月 [2] 侯永昌,沈昌興,〈基於視覺密碼之不可察覺的浮水印技術〉,第六屆資訊管理暨實務研討會論文集,新竹,F1,民國八十九年十二月。 [3] 黃培修,〈結合非擴展式視覺密碼與機率理論於數位影像之保護〉,淡江大學資訊管理學系碩士論文,九十六年六月。 [4] 劉馨茹,〈應用統計特性於智慧財產權保護〉,淡江大學資訊管理學系碩士論文,九十八年六月。 [5] 林曉芳,〈統計學-SPSS之應用〉,鼎茂圖書出版股份有限公司,民國一百年五月十九日二版,pp.57-63。 [6] Lee S.J. and Jung S.H., “A Survey of Watermarking Techniques Applied to Multimedia”, Proceedings of IEEE International Symposium on Industrial Electronics vol. 1 (2001), pp. 272-277. [7] Noar, M. and Shamir, A., “Visual Cryptography”, Advances in Cryptology:Eurpocrypt’ 94, Springer-Verlag, Berlin, 1995, pp.1-12 [8] Blundo, C. and De Santis, A., “Visual Cryptography Schemes with Perfect Reconstruction of Black Pixels”, Computer & Graphics (12:4), 1998: pp. 449-455. [9] Sureca, B., Dr. Swamy, GN., Dr. Srinivasa Rao, K., A Ravi Kumar, “A Watermarking Technique based on Visual Cryptography,” Journal of Information Assurance and Security 4 (2009), 470-473 [10] Ito, R., Kuwakado, H., and Tanaka, H., “Image Size Invariant Visual Cryptography”, IEICE Transactions on Fundamentals of Electronics, Communications and Computer Science (E82-A:10), 1999, PP.2172-2177. [11] Y.C. Hou, C.Y. Chang, and C.S. Hsu, “Visual Cryptography for Color Images Without Pixel Expansion,” in Proceeding of CISST''2001, Vol. I, 2001,pp. 239-245, Las Vegas, Nevada. [12] Hou, Y.C. and Tu, S.F., “Visual Cryptography Techniques for Color Images without Pixel Expansion”, Journal of Information, Technology and Society, 2004(1), pp.95-110 [13] Hsu C.S., Hou Y.C., “Copyright Protection Scheme for Digital Images Using Visual Cryptography and Sampling Methods”, Optical Engineering, 2005.07, Vol. 44, Issue 7, pp. 077003 (10 pages). [14] I.J. Cox, J. Kilian, F.T. Leighton, T. Shamoon, Secure spread spectrum watermarking for multimedia, IEEE Transactions on Image Processing 6 (12) (1997) 1673–1687. [15] C. S. Tsai, C. C. Chang, T. S. Chen and M. H. Chen , Embedding robust gray-level watermarks in an image using discrete cosine transformation”,Technques and Applications, Portal, 2002, pp. 206-223 [16] G. Bor. and I. Pitas, “IMAGE WATERMARKING USING DCT DOMAINCONSTRAINTS”, Image Processing International Conference, 1996,pp. 231-234 [17] H. Kii, J. Onishi and S. Ozawa ,“The digital watermark method by using both patchwork and DCT”,IEEE multimedia Computer and System, International Conference, 1999, pp. 895-899. [18] M. Eyadat and S. Vasikarla, “Performance evaluation of an incorporated DCT block-based watermarking algorithm with human visual system model”,Pattern Recognition Letters, 2005, pp. 1405-1411 [19] Y. Wang, J.F. Doherty, R.E. Van Dyck, A wavelet-based watermarking algorithm for ownership verification of digital images, IEEE Transactions on Image Processing 11 (2) (2002) 77-88. [20] S. Joo, Y. Suh, J. Shin, H. Kikuchi, S.-J. Cho, A new robust watermark embedding into wavelet DC components, ETRI Journal 24 (5) (2002) 401-404 [21] Y. L. Tang and C. T. Chen , “Image Authentication Using Relation Measures of Wavelet Coefficients “ ,e-Technology, e-Commerce and e-Service, EEE ''04, IEEE International Conference, 2004, pp. 541-545. [22] Lou, D.C., Tso, H.K., Liu, J.L., “A copyright protection scheme for digital images using visual cryptography technique,” Computer Standards & Interfaces 29 (2007) 125–131. [23] Hsu, Chiou-Ting; Wu, Ja-Ling, “Multiresolution Watermarking for Digital Images,” IEEE Transactions on Circuits and Systems I: Analog and Digital Signal Processing, Vol. 45, No. 8, August 1998, PP. 1097-1101 [24] Dugad, R.; Ratakonda, K.; Ahuja, N., “A New Wavelet-based Scheme for Watermarking Images,” Proceedings of the IEEE International Conference on Image Processing (ICIP''98), Chicago, IL, USA, Vol. 2, October 1998, PP.419-423 [25] Hsieh S.L., Huang B.Y., “A Copyright Protection Scheme for Gray-Level Image Based on Secret Sharing and Wavelet Transformation’’, Int. Computer Symposium, Dec. 15-17, 2004, Taipei, Taiwan.; https://tkuir.lib.tku.edu.tw/dspace/handle/987654321/102372
-
18
Autoři: a další
Přispěvatelé: a další
Témata: 數位學習, 協同學習, 知識分享行為, 學習風格, 學習成效, E-Learning, Collaborative Learning, Knowledge Sharing Behavior, Learning style, learning performance
Relation: [1] 丁導民,〈企業實務社群的知識分享與組織學習關係之研究〉,臺灣師範大學社會教育學系學位論文,2002年。 [2] 于富雲,〈從理論基礎探究合作學習的教學效益〉,教育資料與研究,vol.0,no.38,頁22-28,2001年。 [3] 古永嘉、唐諾、威廉合,〈企業研究方法〉,台北:華泰書局,1996年。 [4] 田耐青,〈統整多元智慧與學習風格:把每位學生帶上來〉,台北市:遠流,2002年。 [5] 朱珍儀,〈心智地圖運用於數位學習環境研究-以excel2003教學為例〉,淡江大學資訊管理學系碩士班學位論文,no.2009年,頁 1-72,2009年。 [6] 吳有順,〈網路社群知識分享過程之研究-以企業管理教學網站為例〉國立政治大學企業管理研究所碩士論文,2000年。 [7] 吳百薰,〈學習風格理論探究〉,1998年。 [8] 吳威霖,〈以知識螺旋理論探討e-learning學習風格對學習成效的影響〉,淡江大學資訊管理學系碩士班學位論文,2008年。 [9] 吳盛、林東清,〈以計劃行為理論探討資訊人員的知識分享行為〉,資訊管理學報,vol.14,no.2,頁 75-110,2007年。 [10] 吳萬益、林清河,〈企業研究方法〉,台北市:華泰,2005年。 [11] 巫靜宜,〈比較網路教學與傳統教學對學習效果之研究---以Word2000之教學為例〉,私立淡江大學資訊管理研究所碩士論文(未出版),2000年。 [12] 李秋芳,〈國小高年級社會科合作學習之行動研究〉,2010年。 [13] 李秋芳,〈國小高年級社會科合作學習之行動研究〉,國民教育研究所,vol.碩士,頁 196,2002年。 [14] 李應宗,〈組織文化與知識分享之研究─以台北縣國民小學為例〉,國立台北師範學院國民教育研究所碩士論文,未出版,臺北市,2002年。 [15] 周凡淇、賴阿福,〈不同學習風格學童在學習歷程檔案系統之網路行為探討-以國小藝術與人文領域主題學習為例〉,2006年。 [16] 林生傳,〈新教學理論與策略〉,台北:五南,1988年。 [17] 林東清,〈知識管理〉,台北:智勝圖書公司,2003年。 [18] 林勇成,〈網路虛擬實驗室在國小自然領域教學之學習成效影響研究〉,未出版碩士論文,國立臺南師範學院教師在職進修資訊碩士學位,台南縣,2002年。 [19] 徐楊順,〈知識分享意願,組織公平與信任關係之研究〉,碩士論文,朝陽科技大學企業管理學系,台中,2001年。 [20] 財團法人資訊工業策進會,〈經濟部工業局101年度數位學習與典藏產業推動計畫期末執行成果報告〉,2012年。 [21] 高淑珍,〈以知識分享為中介變數探討學習動機,學習互動以及學習平台對協同學習滿意度的影響〉,商管科技季刊,vol.13,no.1,頁 77-100,2012年。 [22] 張火燦,〈產業升級與勞動力開發︰企業人力資源管理規劃〉,國立中山大學,高雄,1992年。 [23] 張金淑,〈合作學習對學習效果之研究〉,台北政大教育研究所碩士論文(未出版),1990年。 [24] 張春興〈心理學,教育心理學:三化取向的理論與實踐〉,臺灣:東華,1996年。 [25] 梁榮財,〈高中學生學習風格及其教學策略之研究〉,1998年。 [26] 郭小真,〈知識分享意願,管道與行為之研究:以幼稚園教師為例〉,2006年。 [27] 郭重吉,〈英美等國晚近對學生學習風格之研究〉,1987年。 [28] 陳佳苹,〈不同學習風格者運用Facebook進行協同學習以探討學習動機與成效之研究〉,淡江大學資訊管理學系碩士班學位論文,no.2012年,頁 1-73,2012年。 [29] 陳盈潔,〈網路合作學習環境之成效探討—實地實驗研究〉,2001年。 [30] 傅明俐,〈國民小學數學科合作學習之研究〉,2001年。 [31] 曾永權,〈以語意格網為基礎的協同合作學習環境〉,資訊管理研究所,vol.碩士,頁 67,2007年。 [32] 游政男,〈學習風格與超媒體網頁架構方式對學習鐘擺週期之影響〉,未出版碩士論文,國立東華大學,花蓮,2001年。 [33] 黃文俊,〈網路教學環境中群組互動對學習成效之影響〉,2001年。 [34] 黃宏能、劉志俊、方文聘,〈在有限資源下以服務導向架構建構數位學習輔助教學之案例分析〉,2007臺灣網際網路研討會,2007年。 [35] 黃英忠,吳復新、趙必孝,〈人力資源管理〉,國立空中大學,2001年。 [36] 黃善美、黃萬居,〈以問題為中心的合作學習策略對國小學童科學學習之研究〉,2003年。 [37] 黃銘廷,〈公務人員知識分享意願,組織信任與組織文化之關係研究〉,碩士論文,國立台灣科技大學技術及職業教育研究所,2002年。 [38] 楊國安,〈立足台灣,經驗全球,載於施振榮:Io聯網組織─知識經濟的經營之道〉,台北市:天下文化,2000年。 [39] 楊國安、企業管理、烏爾裏克、楊Nason、劉復苓、管理學,〈組織學習能力〉,聯經出版事業公司,2001年。 [40] 葉倩亨,〈國民中學教師人情特質,人際情感,組織文化與知識分享關係之研究〉,2003年。 [41] 詹惠雯,〈線上學習使用者自我認知學習成效及其影響因素之研究:以[公務員資訊學習網]為例〉,2005年。 [42] 廖慶榮、孫晟捷,〈以Ria技術開發之協同合作學習管理系統2.0〉,2009年。 [43] 廖慶榮、張瑗鈞,〈普及協同合作學習之實徵研究〉,2009年。 [44] 蔡錫濤,〈訓練評鑑的焦點與模式〉,2000年。 [45] 鄭仁偉、黎士群,〈組織公平,信任與知識分享行為之關係性研究〉,人力資源管理學報,vol.1,no.2,頁 69-93,2001年。 [46] 鄭孟芳、林素華,〈國小高年級自然科學習風格,學習動機與學業成就相關研究〉,生物科學,vol.52,no.2,頁 40-57,2010年。 [47] 鄭明韋,〈國立空中大學嘉義地區學生學習方式,學習參與程度與學習成效之研究〉,未出版論文,國立中正大學成人及繼續教育研究所碩士論文,嘉義,1999年。 [48] 黎士群,〈組織公平,信任與知識分享行為之關係性研究-以Unix系統管理人員為例〉,碩士論文,銘傳大學管理科學系,台北,1998年。 [49] Alliger, G.M. And Janak, E.A., "Kirkpatrick''s levels of training criteria: Thirty years later," Person.Psychol., vol. 42, no. 2, pp. 331-342 1989. [50] Barros, B., Verdejo, M., Read, T. And Mizoguchi, R., "Applications of a collaborative learning ontology," in MICAI 2002: Advances in Artificial Intelligence, Anonymous : Springer, 2002, pp. 301-310. [51] Beckman, T., "Implementing the knowledge organization in government," in Paper and Presentation, 10th National Conference on Federal Quality, 1997. [52] Bereiter, C., "Implications of postmodernism for science, or, science as progressive discourse," Educational Psychologist, vol. 29, no. 1, pp. 3-12 1994. [53] Brown, W.F. And Holtzman, W.H., "Use of the survey of study habits and attitudes for counseling students," The Personnel and Guidance Journal, vol. 35, no. 4, pp. 214-218 1956. [54] Davenport, T.H., De Long, D.W. And Beers, M.C., "Successful knowledge management projects," Sloan Manage.Rev., vol. 39, no. 2, pp. 43-57 1998. [55] Davenport, T.H. And Prusak, L., Working knowledge: How organizations manage what they know, Harvard Business Press, 2000. [56] Dewiyanti, S., Brand-Gruwel, S., Jochems, W. And Broers, N.J., "Students’ experiences with collaborative learning in asynchronous computer-supported collaborative learning environments," Comput.Hum.Behav., vol. 23, no. 1, pp. 496-514 2007. [57] Drucker, P.F. And Harris, T.G., "The post-capitalist executive," 1995. [58] Dunn, R. & Dunn, K., The Complete Guide to the Learning Styles Inservice System, Allyn & Bacon, 1999. [59] Federico, P., "Learning styles and student attitudes toward various aspects of network-based instruction," Comput.Hum.Behav., vol. 16, no. 4, pp. 359-379 2000. [60] Felder, R.M. And Silverman, L.K., "Learning and teaching styles in engineering education," Engineering education, vol. 78, no. 7, pp. 674-681 1988. [61] Garger, S. And Guild, P., "Learning styles: The crucial differences." Curriculum Review, vol. 23, no. 1, pp. 9-12 1984. [62] Garrison, D.R., Anderson, T. And Archer, W., "Critical thinking and computer conferencing: A model and tool to assess cognitive presence," 2001. [63] Hendriks, P., "Why share knowledge? the influence of ICT on the motivation for knowledge sharing," Knowledge and process management, vol. 6, no. 2, pp. 91-100 1999. [64] Herzberg, F., Work and the Nature of Man, World Publishing Company Cleveland, 1966. [65] Horton, W.K., Evaluating e-learning, ASTD, 2001. [66] Janz, B.D., Colquitt, J.A. And Noe, R.A., "Knowledge worker team effectiveness: The role of autonomy, interdependence, team development, and contextual support variables," Person.Psychol., vol. 50, no. 4, pp. 877-904 1997. [67] Jehn, K.A. And Shah, P.P., "Interpersonal relationships and task performance: An examination of mediation processes in friendship and acquaintance groups." J.Pers.Soc.Psychol., vol. 72, no. 4, pp. 775 1997. [68] Jehn, K.A. And Shah, P.P., "Interpersonal relationships and task performance: An examination of mediation processes in friendship and acquaintance groups." J.Pers.Soc.Psychol., vol. 72, no. 4, pp. 775 1997. [69] Johnson, D.W. And Johnson, R.T., "Learning together and alone; cooperation, competition, and individualization." 1975. [70] Johnson, D.W. And Johnson, R.T., "Learning together and alone:Cooperative, competitive, and individualistic learning(4th ed.)." Competitive and Individualistic Learning, 4th edition, Massachusetts: Allyn and Bacon 1994. [71] Kirkpatrick, D.L., "Techniques for evaluating training programs," Classic writings on instructional technology, vol. 1, pp. 231-241 1979. [72] Kolb, D.A., "Experiential learning: Experience as the source of learning and development, " Prentice-Hall Englewood Cliffs, NJ, 1984. [73] Kolb, D.A. And Smith, D.M., "Learning style inventory: a manual for teachers and trainers. " User''s guide, McBer, 1986. [74] Lowyck, J. And Poysa, J., "Design of collaborative learning environments," Comput.Hum.Behav., vol. 17, no. 5, pp. 507-516 2001. [75] Maslow, A.H. And Lowry, R., "Toward a psychology of being," 1968. [76] Master, M., "Making it work: Once you recognize the psychological hurdles your employees face in sharing their knowledge, you''re ready to implement the programs that will overcome them," Across Board, vol. 36, pp. 21-25 1999. [77] Mcdermott, R., "Why information technology inspired but cannot deliver knowledge management," Calif.Manage.Rev., vol. 41, no. 4, pp. 103 1999. [78] Miller, P., "Learning styles: The multimedia of the mind. research report." 2001. [79] Mukama, E., "Strategizing computer-supported collaborative learning toward knowledge building," International Journal of Educational Research, vol. 49, no. 1, pp. 1-9 2010. [80] Nonaka, I. And Takeuchi, H., "The knowledge-creating company: How Japanese companies create the dynamics of innovation, " Oxford University Press, USA, 1995. [81] Pfeffer, J., "The human equation: Building profits by putting people first, " Harvard Business Press, 1998. [82] Puntambekar, S., "Analyzing collaborative interactions: Divergence, shared understanding and construction of knowledge," Comput.Educ., vol. 47, no. 3, pp. 332-351 2006. [83] Purser, R. And Pasmore, W., "Organizing for learning," Research in organizational change and development, vol. 6, no. 3, pp. 7-114 1992. [84] Quick, T.L., "Successful Team Building: A Worksmart Book, " AMACOM Div American Mgmt Assn, 1992. [85] Senge, P.M., "The fifth discipline," Measuring Business Excellence, vol. 1, no. 3, pp. 46-51 1997. [86] Silver, H.F., Strong, R.W. And Perini, M.J., "So Each May Learn: Integrating Learning Styles and Multiple Intelligences., " ERIC, 2000. [87] Slavin, R.E., "Cooperative learning: Theory, research, and practice, " Allyn and Bacon Boston, 1995. [88] Slavin, R.E., "Developmental and motivational perspectives on cooperative learning: A reconciliation," Child Dev., pp. 1161-1167 1987. [89] Smith, K., "Cooperative Learning: Effective Teamwork for Engineering Classrooms," in Proceedings of Frontiers in Education Conference, 1995, pp. 2b5.13-2b5.18. [90] So, H. And Brush, T.A., "Student perceptions of collaborative learning, social presence and satisfaction in a blended learning environment: Relationships and critical factors," Comput.Educ., vol. 51, no. 1, pp. 318-336 2008. [91] Stauffer, D., "Why people hoard knowledge," Across Board, vol. 36, no. 8, pp. 16-21 1999. [92] Stewart, T. And Ruckdeschel, C., "Intellectual capital: The new wealth of organizations," Performance Improvement, vol. 37, no. 7, pp. 56-59 1998. [93] Su, A., Yang, S.J., Hwang, W. And Zhang, J., "A web 2.0-based collaborative annotation system for enhancing knowledge sharing in collaborative learning environments," Comput.Educ., vol. 55, no. 2, pp. 752-766 2010. [94] Tampoe, M., "Motivating knowledge workers—the challenge for the 1990s," Long Range Plann., vol. 26, no. 3, pp. 49-55 1993. [95] Vera, D. And Crossan, M., "Strategic leadership and organizational learning." Academy of Management Review, vol. 29, no. 2, pp. 222-240 2004. [96] Vygotskiĭ, L.L.S., "Mind in society: The development of higher psychological processes, " Harvard university press, 1978. [97] Warring, D., "Impact of different types of cooperative learning on cross-ethnic and cross-sex relationships." J.Educ.Psychol., vol. 77, no. 1, pp. 53-59 1985.; https://tkuir.lib.tku.edu.tw/dspace/handle/987654321/101611
-
19
Autoři: a další
Přispěvatelé: a další
Témata: 深層網路, 綱要匹配, 綱要合併, 整合型介面, Deep Web, Schema Matching, Schema Merging, Integrated Search Interface
Relation: [1] 張珮慈. (2011). 一個識別特定主題深網查詢介面的分類器. 淡江大學資訊管理學系碩士班學位論文. [2] 曹慶皇,鞠時光,楊曉琴.(2009).基於關聯挖掘和語義聚類的Deep Web的複雜匹配方法.計算機應用研究,26(12),pp.4613-4616。 [3] 董永權,李慶忠,丁艷輝,張永新.(2011).基於證據理論和任務分配的Deep Web 查詢接口匹配方法. 模式識別與人工智能, 24(2) ,pp.262-271. [4] 鄭又誠.(2011).深層網路介面之綱要擷取研究.淡江大學資訊管理學系碩士班學位論文. [5] 蘭洋,尤磊.(2009).Deep Web聯規則的整體模式匹配. 信陽師範學院學報:自然科學版, 22(4) , pp.607-610. [6] Bernstein, P. A., Madhavan, J., and Rahm, E. (2011). Generic schema matching, ten years later. In Proceedings of the VLDB Endowment, 4(11), pp. 695-701. [7] Bernstein, P. A., Melnik, S., and Churchill, J. E. (2006). Incremental schema matching. In Proceedings of the 32nd International Conference on Very Large Databases, pp. 1167-1170. [8] Chen, K., Zuo, W., He, F., and Chen, Y. (2011). Hybrid Schema Matching for Deep Web. In Intelligent Computing and Information Science, pp. 165-170. [9] Chiticariu, L., Kolaitis, P. G., and Popa, L. (2008). Interactive generation of integrated schemas. In Proceedings of the 2008 ACM SIGMOD International Conference on Management of Data, pp. 833-846 [10] Doan, A., Domingos, P., and Halevy, A. Y. (2001). Reconciling schemas of disparate data sources: A machine-learning approach. In Proceedings of the ACM SIGMOD , 30(2), pp. 509-520. [11] Dragut, E., Wu, W., Sistla, P., Yu, C., and Meng, W. (2006). Merging source query interfaces on web databases. In Proceedings of the 22nd International Conference on IEEE, pp. 46-46. [12] El-Gamil, B. R., Winiwarter, W., Božić, B., and Wahl, H. (2011). Deep web integrated systems: current achievements and open issues. In Proceedings of the 13th International Conference on Information Integration and Web-based Applications and Services, pp. 447-450. [13] Gotoh, O. (1982). An improved algorithm for matching biological sequences. Journal of Molecular Biology, 162(3), pp.705-708. [14] He, B., and Chang, K. C. C. (2006). Automatic complex schema matching across web query interfaces: A correlation mining approach. ACM Transactions on Database Systems (TODS), 31(1), pp.346-395. [15] He, H., Meng, W., Yu, C., and Wu, Z. (2004). Automatic integration of Web search interfaces with WISE-Integrator. The VLDB Journal, 13(3), pp. 256-273. [16] He, H., Meng, W., Lu, Y., Yu, C., and Wu, Z. (2007). Towards deeper understanding of the search interfaces of the deep web. World Wide Web, 10(2), pp. 133-155. [17] Naz, T., Dorn, J., and Poulovassilis, A. (2010). Configurable meta-search in the job domain. International Journal of Web Engineering and Technology, 6(1), pp. 33-57. [18] Nguyen, H., Nguyen, T., and Freire, J. (2008). Learning to extract form labels. In Proceedings of the VLDB Endowment, 1(1), pp. 684-694. [19] Nguyen, H., Nguyen, T., and Freire, J. (2010). PruSM: a prudent schema matching approach for web forms. In Proceedings of the 19th ACM International Conference on Information and Knowledge Management, pp. 1385-1388. [20] Pottinger, R. A., and Bernstein, P. A. (2003). Merging models based on given correspondences. In Proceedings of the 29th International Conference on Very Large Databases, pp. 862-873. [21] Su, W., Wang, J., and Lochovsky, F. (2006). Holistic schema matching for web query interfaces. In Advances in Database Technology-EDBT, pp. 77-94. [22] Wang, J., Wen, J. R., Lochovsky, F., and Ma, W. Y. (2004). Instance-based schema matching for web databases by domain-specific query probing. In Proceedings of the 30th International Conference on Very Large Databases, pp. 408-419. [23] Wu, W. (2006). Integrating Deep Web Data Sources. Department of Computer Science, Ph.D. thesis. University of Illinois at Urbana-Champaign. [24] Wu, W., Yu, C., Doan, A., and Meng, W. (2004). An interactive clustering-based approach to integrating source query interfaces on the deep web. In Proceedings of the 2004 ACM SIGMOD International Conference on Management of Data, pp. 95-106.; https://tkuir.lib.tku.edu.tw/dspace/handle/987654321/101617
-
20
Autoři: a další
Přispěvatelé: a další
Relation: [1]戴燊,〈台灣企業資訊安全預防管理之現況、方法與趨勢〉,資訊安全通訊,Vol.19 No.1,頁75-81,中華民國資訊安全協會(CCISA),2013。 [2]林育地,《採用LiveCD改善電腦蒐證品質與效率之研究》,碩士論文,淡江大學資訊管理學系碩士班,2008。 [3]王旭正、柯宏叡、楊誠育,〈網站入侵安全的證據存留鑑識探討〉,資訊安全通訊,卷期:8:4,頁89-102,中華民國資訊安全協會(CCISA) ,2002。 [4]劉佐國,〈我國個人資料隱私權益之保護-論“電腦處理個人資料保護法”之立法與修法過程〉,律師雜誌,307期,42-51頁,2005。 [5]李震山,〈電腦處理個人資料保護法之回顧與前瞻〉,國立中正大學法學集刊,14期,35-82頁,2004。 [6]楊麗珍,《以共同準則落實資訊確保之探討~以S壽險公司之「旅行平安險網路投保系統」為例》,碩士論文,淡江大學資訊管理學系碩士班,2006。 [7]郭戎晉,〈企業如何因應新版個人資料保護法〉,2010資策會電子商務中高階主管研習會,2010。 [8]林宜隆,〈建構數位證據鑑識標準作業程序(DEFSOP)與案例實證之研究〉,司法新聲,101期,50-74頁,2012。 [9]陳志誠、蔡旻峰,《電腦犯罪案件偵查中數位證據蒐證、鑑識之建議標準作業程序》,碩士論文,中央警察大學資訊管理研究所,2004。 [10]黃景彰、蘇清偉,《網路犯罪入侵案件之數位證據蒐證研究,碩士論文》,交通大學資訊管理學程碩士班,2002。 [11]鄭進興、吳豐乾,《基植於Windows系統的電腦鑑識工具之研究,碩士論文》,樹德科技大學資訊管理研究所,2004。 [12]鄭進興、林敬皇、沈志昌、林宜隆,〈電腦鑑識方法與程序之研究〉,台灣網際網路研討會,2003。 [13]林盈達、林柏青,〈資訊安全認證之測試與評比測試〉,交通大學網路測試中心,1999 [14]資訊技術-安全技術-資訊技術安全評估準則-第一部:簡介及一般模型,中華民國國家標準CNS,2004 [15]資訊技術-安全技術-資訊技術安全評估準則-第二部:安全功能需求,中華民國國家標準CNS,2004。 [16]資訊技術-安全技術-資訊技術安全評估準則-第三部:安全保證需求,中華民國國家標準CNS,2004。 [17]柴惠珍、姜國慶,〈無線網路資通安全探討〉,國防通資,第6期,2005 [18]劉暉,〈信息安全產品等級評估綜述〉,第三期,2005。 [19]樊國楨,〈資訊安全風險管理,行政院國科會科資中心,頁10-12,2002 [20]劉仲矩、王中北、蔡慶隆,《以腦力激盪法探索中小企業資訊安全問題之研究》,第七屆兩岸中華文化與經營管理學術研討會論文集,頁603-610,2004 [21]Donn B. Parker, “ Crime by computer”, New York : Charles Scribner''s,1976 [22]Brian Carrier, and Eugene Spafford, “Getting Physical with the Digital Investigation Process,” International Journal of Digital Evidence, Issue 2, Vol. 2, 2003 [23]Eoghan Casey, “ Digital evidence and computer crime : forensic science, computers and the internet”, Third Edition, MA : Academic Press, 2011 [24]ISO,Common Criteria for Information Technology Security Evaluation, ISO/IEC 15408,Version 3.1,2012。 [25]全國法規資料庫,網址:http://law.moj.gov.tw/Index.aspx,上網日期:2012年10月24日 [26]法務部,個人資料保護法,網址:http://www.moj.gov.tw/lp.asp?ctNode=28007&CtUnit=805&BaseDSD=7&mp=001,上網日期:2012年10月24日 [27]iThome,網址:http://www.ithome.com.tw/,上網日期:2012年12月20日; https://tkuir.lib.tku.edu.tw/dspace/handle/987654321/94273
Nájsť tento článok vo Web of Science