Výsledky vyhľadávania - "энергозатраты"

  1. 1
  2. 2
  3. 3
  4. 4
  5. 5
  6. 6
  7. 7

    Zdroj: Fine Chemical Technologies; Vol 20, No 5 (2025); 407-429 ; Тонкие химические технологии; Vol 20, No 5 (2025); 407-429 ; 2686-7575 ; 2410-6593

    Popis súboru: application/pdf

    Relation: https://www.finechem-mirea.ru/jour/article/view/2299/2159; https://www.finechem-mirea.ru/jour/article/view/2299/2160; Тимофеев В.С., Серафимов Л.А., Тимошенко А.В. Принципы технологии основного органического и нефтехимического синтеза. М.: Высшая школа; 2010. 408 с. ISBN 978-5-06-006067-6; Жаров В.Т., Серафимов Л.А. Физико-химические основы дистилляции и ректификации. Л.: Химия; 1975. 240 с.; Фролкова А.К. Разделение азеотропных смесей. Физикохимические основы и технологические приемы: монография. М.: ВЛАДОС; 2010. 192 с. ISBN 978-5-691-01743-8; Zhigang L., Chengyue L., Biaohua C. Extractive Distillation: A Review. Sep. Purif. Rev. 2003;32(2):121–213. https://doi.org/10.1081/SPM-120026627; Gerbaud V., Rodriguez-Donis I., Hegely L., Lang P., Denes F., You X. Review of Extractive Distillation. Process design, operation, optimization and control. Chem. Eng. Res. Des. 2019;141:229–271. https://doi.org/10.1016/j.cherd.2018.09.020; Hilal N., Yousef G., Langston P. The reduction of extractive agent in extractive distillation and auto-extractive distillation. Chemical Engineering and Processing: Process Intensification. 2002;41(8): 673–679. https://doi.org/10.1016/S0255-2701(01)00187-8; Анохина Е.А. Энергосбережение в процессах экстрактивной ректификации. Тонкие химические технологии. 2013;8(5):3–19.; Раева В.М., Сазонова А.Ю., Себякин А.Ю., Кудрявцева Д.Ю. Критерий выбора потенциальных разделяющих агентов экстрактивной дистилляции. Тонкие химические технологии. 2011;6(4):20–27.; Фролкова А.В., Меркульева А.Д., Гаганов И.С. Синтез схем разделения расслаивающихся смесей: современное состояние проблемы. Тонкие химические технологии. 2018;13(3): 5–22. https://doi.org/10.32362/24106593-2018-13-3-5-22; Фролкова А.В., Фролкова А.К., Подтягина А.В., Спирякова В.В. Энергосбережение в схемах, основанных на сочетании ректификации и расслаивания. Теор. основы хим. технологии. 2018;52(5):489–496. https://doi.org/10.1134/S0040357118050032; Sosa J.E., Araújo J.M.M., Amado-González E., Pereiro A.B. Separation of azeotropic mixtures using protic ionic liquids as extraction solvents. J. Mol. Liquids. 2019;297:111733. https://doi.org/10.1016/j.molliq.2019.111733; Patel K., Panchal N., Ingle Dr.Pr. Review of Extraction Techniques Extraction Methods: Microwave, Ultrasonic, Pressurized Fluid, Soxhlet Extraction, Etc. International Journal of Advanced Research in Chemical Science (IJARCS). 2018;6(3):6–21. https://doi.org/10.20431/2349-0403.0603002; Silvestre Cr.I.C., Santos J.L.M., Lima J.L.F.C., Zagatto E.A.G. Liquid–liquid extraction in flow analysis: A critical review. Anal. Chim. Acta. 2009;652(1–2):54–65. https://doi.org/10.1016/j.aca.2009.05.042; Носов Г.А., Михайлов М.В., Абсаттаров А.И. Разделение смесей путем сочетания процессов ректификации и фракционной крислаллизации. Тонкие химические технологии. 2017;12(3): 44–51. https://doi.org/10.32362/2410-6593-2017-12-3-44-51; Berry D.A, Ng K.M. Synthesis of crystallization-distillation hybrid separation processes. AIChE J. 1997;43(7):1751–1762. https://doi.org/10.1002/aic.690430712; Cisternas L.A., Vasquez C.M., Swaney R.E. On the Design of Crystallization-Based Separation Processes: Review and Extension. AIChE J. 2006;52(5):1754–1769. https://doi.org/10.1002/aic.10768; Серафимов Л.А. Современное состояние термодинамикотопологического анализа фазовых диаграмм. Теор. основы хим. технологии. 2009;43(3):284–294.; Kiss А.А., Suszwalak D. J-.P.C. Enhanced bioethanol dehydration by extractive and azeotropic distillation in dividing-wall columns. Sep. Purif. Technol. 2012;86:70–78. https://doi.org/10.1016/j.seppur.2011.10.022; Frolkova A.V., Frolkova A.K., Gaganov I.S. Comparison of Extractive and Heteroazeotropic Distillation of High-Boiling Aqueous Mixtures. ChemEngineering 2022;6(5):83. https://doi.org/10.3390/chemengineering6050083; Chen Y.-Ch., Yu B.-Y., Hsu Ch.-Ch., Chien I-L. Comparison of heteroazeotropic and extractive distillation for the dehydration of propylene glycol methyl ether. Chem. Eng. Res. Des. 2016;111:184–195. https://doi.org/10.1016/j.cherd.2016.05.003; Zhao L., Lyu X., Wang W., Shan J., Qiu T. Comparison of heterogeneous azeotropic distillation and extractive distillation methods for ternary azeotrope ethanol/toluene/ water separation. Comput. Chem. Eng. 2017;100:27–37 https://doi.org/10.1016/j.compchemeng.2017.02.007; Фролкова А.В., Фролкова А.К., Гаганов И.С. Комбинирование специальных приемов при разработке схем разделения смеси метанол + вода + метилметакрилат. Химическая технология. 2023;24(8):314–320. https://doi.org/10.31044/1684-5811-2023-24-8-314-320; Серафимов Л.А. Правило азеотропии и классификация многокомпонентных смесей VII. Диаграммы трехкомпонентных смесей. Журн. физ. химии. 1970;44(4):1021–1027.; Клинов А.В., Фазлыев А.Р., Хайруллина А.Р., Алексеев К.А., Латыпов Д.Р. Экстрактивная ректификация смеси этанол – вода с использованием этиленгликоля. Вестник технологического университета. 2023;26(1): 44–47. https://doi.org/10.55421/1998-7072_2023_26_1_44; Фролкова А.К., Фролкова А.В., Раева В.М., Жучков В.И. Особенности дистилляционного разделения многокомпонентных смесей. Тонкие химические технологии. 2022;17(3): 87–106. https://doi.org/10.32362/2410-6593-2022-17-2-87-106; Frolkova A., Frolkova A., Gaganov I. Extractive and Auto-Extractive Distillation of Azeotropic Mixtures. Chem. Eng. Technol. 2021;44(8):1397–1402. https://doi.org/10.1002/ceat.202100024; Luo H., Liang K., Li W., Ming Xia Y., Xu C. Comparison of Pressure-Swing Distillation and Extractive Distillation Methods for Isopropyl Alcohol/Diisopropyl Ether Separation. Ind. Eng. Chem. Res. 2014;53(39):15167–15182. https://doi.org/10.1021/ie502735g; Lladosa E., Montón J.B., Burguet M. Separation of di-n-propyl ether and n-propyl alcohol by extractive distillation and pressureswing distillation: Computer simulation and economic optimization. Chem. Eng. Process.: Process Intensif. 2011;50(11–12): 1266–1274. https://doi.org/10.1016/j.cep.2011.07.010; Wang X., Xie L., Tian P., Tian G. Design and control of extractive dividing wall column and pressure-swing distillation for separating azeotropic mixture of acetonitrile/N-propanol. Chem. Eng. Process.: Process Intensif. 2016;110:172–187. https://doi.org/10.1016/j.cep.2016.10.009; Ghuge Pr.D., Mali N.A., Joshi S.S. Comparative Analysis of Extractive and Pressure Swing Distillation for Separation of THF-Water Separation. Comput. Chem. Eng. 2017;103:188–200. http://dx.doi.org/10.1016/j.compchemeng.2017.03.019; Muñoz R., Montón J.B., Burguet M.C., de laTorre J. Separation of isobutyl alcohol and isobutyl acetate by extractive distillation and pressure-swing distillation: Simulation and optimization. Sep. Purif. Technol. 2006;50(2):175–183. https://doi.org/10.1016/j.seppur.2005.11.022; Cao Y., Hu J., Jia H., Bu G., Zhu Zh., Wang Y. Comparison of pressureswing distillation and extractive distillation with varied-diameter column in economics and dynamic control. J. Process Control. 2017;49:9–25. https://doi.org/10.1016/j.jprocont.2016.11.005; Luyben W.L. Comparison of pressure-swing and extractivedistillation methods for methanol-recovery systems in the TAME reactive-distillation process. Ind. Eng. Chem. Res. 2005;44(15):5715–5725. https://doi.org/10.1021/ie058006q; Modla G., Lang P. Removal and Recovery of Organic Solvents from Aqueous Waste Mixtures by Extractive and Pressure Swing Distillation. Ind. Eng. Chem. Res. 2012;51(35): 11473–11481. https://doi.org/10.1021/ie300331d; Luyben W.L. Comparison of extractive distillation and pressure swing distillation for acetone-methanol separation. Ind. Eng. Chem. Res. 2008;47(8):2696−2707. https://doi.org/10.1021/ie701695u; LuybenW.L. Comparison of extractive distillation and pressure-swing distillation for acetone/chloroform separation. Comput. Chem. Eng. 2013;50:1–7. https://doi.org/10.1016/j.compchemeng.2012.10.014; Hosgor E., Kucuk T., Oksal I.N., Kaymak D.B. Design and control of distillation processes for methanol–chloroform separation. Comput. Chem. Eng. 2014;67:166–177. https://doi.org/10.1016/j.compchemeng.2014.03.026; Фролкова А.В., Шашкова Ю.И., Фролкова А.К., Маевский М.А. Сравнение альтернативных методов разделения смеси метилацетат – метанол – уксусная кислота – уксусный ангидрид. Тонкие химические технологии. 2019;14(5): 51–60. https://doi.org/10.32362/2410-6593-2019-14-5-51-60; Qin Y., Zhuang Y., Wang Ch., Dong Y., Zhang L., Liu L., Du J. Comparison of Pressure-Swing Distillation and Extractive Distillation for the Separation of the Non-Pressure-Sensitive Azeotropes. In: Proceedings of the 24th Conference on Process Integration, Modelling and Optimisation for Energy Saving and Pollution Reduction. 2021. URL: https://www.researchgate.net/publication/355982388_Comparison_of_Pressure-Swing_Distillation_and_Extractive_Distillation_for_the_Separation_of_the_Non-Pressure-Sensitive_Azeotropes. Accessed September 08, 2025.; Раева В.М., Капранова А.С. Сравнение эффективности экстрактивных агентов при разделении смеси ацетон – метанол. Химическая промышленность сегодня. 2015;3:33–46.; Guang C., Shi X., Zhang Z., Wang C., Wang C., Gao J. Comparison of heterogeneous azeotropic and pressure-swing distillations for separating the diisopropylether/isopropanol/ water mixtures. Chem. Eng. Res. Design. 2019;143:249–260. https://doi.org/10.1016/j.cherd.2019.01.021; Cui Y., Shi X., Guang C., Zhang Z., Wang C., Wang C. Comparison of pressure-swing distillation and heterogeneous azeotropic distillation for recovering benzene and isopropanol from wastewater. Process Saf. Environ. Protection. 2018;122:1–12. https://doi.org/10.1016/j.psep.2018.11.017; Tripodi A., Compagnoni M., Ramis G., Rossetti I. Pressureswing or extraction-distillation for the recovery of pure acetonitrile from ethanol ammoxidation process: A comparison of efficiency and cost. Chem. Eng. Res. Design. 2017;127: 92–102. https://doi.org/10.1016/j.cherd.2017.09.018; Zhu Z., Wang Y., Hu J., Qi X., Wang Y. Extractive distillation process combined with decanter for separating ternary azeotropic mixture of toluene-methanol-water. Chem. Eng. Trans. 2017;61:763–768. https://doi.org/10.3303/CET1761125; Гаганов И.С., Белим С.С., Фролкова А.В., Фролкова А.К. Разработка схем разделения смеси получения фенола на основе анализа диаграмм фазового равновесия. Теор. основы хим. технологии. 2023;57(1):38–47. https://doi.org/10.31857/S0040357123010049; Новрузова А.Н., Фролкова А.В. Сравнение технологических схем разделения смеси ацетонитрил – вода, основанных на разных массообменных процессах. В сб.: Химия и химическая технология: достижения и перспективы: Сборник тезисов I Международной VII Всероссийской конференции. 2024. C. 0234.1–0234.6.; Yu B.-Y., Huang R., Zhong X.-Y., Lee M.-J., Chien I.-L. Energy-Efficient Extraction-Distillation Process for Separating Diluted Acetonitrile-Water Mixture: Rigorous Design with Experimental Verification from Ternary Liquid-Liquid Equilibrium Data. Ind. Eng. Chem. Res. 2017;56(51):15112–15121. https://doi.org/10.1021/acs.iecr.7b04408; Mahdi T., Ahmad A. Nasef M.M., Ripin A. State-of-the-Art Technologies for Separation of Azeotropic Mixtures. Sep. Purif. Rev. 2015;44(4):308–330. https://doi.org/10.1080/15422119.2014.963607; Daviou M.C., Hoch P.M., Eliceche A.M. Design of membrane modules used in hybrid distillation/pervaporation systems. Ind. Eng. Chem. Res. 2004;43(13):3403–3412. https://doi.org/10.1021/ie034259c; Naidu Y., Malik R.K. A generalized methodology for optimal configurations of hybrid distillation–pervaporation processes. Chem. Eng. Res. Design. 2011;89(8):1348–1361. https://doi.org/10.1016/j.cherd.2011.02.025; Kookos I.K. Optimal design of membrane/distillation column hybrid processes. Ind. Eng. Chem. Res. 2003;42(8): 1731–1738. https://doi.org/10.1021/ie020616s; Hoof V.V., Van den Abeele L., Buekenhoudt A., Dotremont C., Leysen R. Economic comparison between azeotropic distillation and different hybrid systems combining distillation with pervaporation for the dehydration of isopropanol. Sep. Purif. Technol. 2004;37(1): 33–49. https://doi.org/10.1016/j.seppur.2003.08.003; Nangare D.M., Suseeladevi M. Hybrid pervaporation/ distillation process for ethanol – water separation effect of distillation column side stream. Asian J. Sci. Technol. 2017;8(11):6522–6525.; Koczka K., Mizsey P., Fonyo Zs. Rigorous modelling and optimization of hybrid separation processes based on pervaporation. Open Chemistry. 2005;5(4):1124–1147. https://doi.org/10.2478/s11532-007-0050-8; Han G.L., Zhang Q., Zhong J., Shao H. Separation of Dimethylformamide/H2O Mixtures Using Pervaporation-distillation Hybrid Process. Adv. Mater. Res. 2011;233–235:866–869. https://doi.org/10.4028/www.scientific.net/AMR.233-235.866; Hassankhan B., Raisi A. Separation of isobutanol/water mixtures by hybrid distillationpervaporation process: Modeling, simulation and economic comparison. Chem. Eng. Process.: Process Intensif. 2020;155:108071. https://doi.org/10.1016/j.cep.2020.108071; Zong Ch., Guo Q., Shen B., Yang X., Zhou H., Jin W. Heat-Integrated Pervaporation−Distillation Hybrid System for the Separation of Methyl Acetate−Methanol Azeotropes. Ind. Eng. Chem. Res. 2021;60(28):10327–10337. https://doi.org/10.1021/acs.iecr.1c01513; Penkova A.V., Polotskaya G.A., Toikka A.M. Separation of acetic acid–methanol–methyl acetate–water reactive mixture. Chem. Eng. Sci. 2013;101:586–592. https://doi.org/10.1016/j.ces.2013.05.055; Тойкка А.М., Самаров А.А., Тойкка М.А. Фазовое и химическое равновесие в многокомпонентных флюидных системах с химической реакцией. Успехи химии. 2015;84(4):378–392. https://doi.org/10.1070/RCR4515; Wang Y., Zhang Z., Zhang H., Zhang Q. Control of heat integrated pressure-swing-distillation process for separating azeotropic mixture of tetrahydrofuran and methanol. Ind. Eng. Chem. Res. 2015;54(5):1646–1655. https://doi.org/10.1021/ie505024q; Zhu Z., Wang L., Ma Y., Wang W., Wang Y. Separating an azeotropic mixture of toluene and ethanol via heat integration pressure swing distillation. Comput. Chem. Eng. 2015;76: 137–149. https://doi.org/10.1016/j.compchemeng.2015.02.016; Анохина Е.А., Тимошенко А.В. Синтез схем ректификации со связанными тепловыми и материальными потоками. Тонкие химические технологии. 2017;12(6):46–70. https://doi.org/10.32362/2410-6593-2017-12-6-46-70; Анохина Е.А., Тимошенко А.В. Влияние количества и уровня бокового отбора на расход экстрактивного агента в комплексах экстрактивной ректификации с частично связанными тепловыми и материальными потоками. Теор. основы хим. технологии. 2023;57(2):177–187. https://doi.org/10.31857/S0040357123010013; Yu B., Wang Q., XuC. Design and control of distillation system for methylal/methanol separation. Part 2: pressure swing distillation with full heat integration. Ind. Eng. Chem. Res. 2012;51(3):1293–1310. https://doi.org/10.1021/ie201949q; Shirsat S.P. Modeling, simulation and control of an internally heat integrated pressure swing distillation process for bioethanol separation. Comput. Chem. Eng. 2013;53:201–202. https://doi.org/10.1016/j.compchemeng.2013.01.009; Liu G., Chen Z., Huang K., Shi Z., Chen H., Wang S. Studies of the externally heat-integrated double distillation columns (EHIDDiC). Asia-Pacific J. Chem. Eng. 2011;6(3):327–337. https://doi.org/10.1002/apj.566; Huang K., Liu W., Ma J., Wang S. Externally heat-integrated double distillation column (EHIDDiC): basic concept and general characteristics. Ind. Eng. Chem. Res. 2010;49(3): 1333–1350. https://doi.org/10.1021/ie901307j; Rudakov D.G., Klauzner P.S., Ramochnikov D.A., Anokhina E.A., Timoshenko A.V. Efficiency of Using Heat Pumps in the Extractive Rectification of an Allyl Alcohol– Allyl Acetate Mixture Depending on the Composition of the Feed. Part 2. Application of Heat Pumps in Column Complexes with Partially Coupled Heat and Material Flows. Theor. Found. Chem. Eng. 2024;58(1):192–201. https://doi.org/10.1134/S0040579524700337; Клаузнер П.С., Рудаков Д.Г., Анохина Е.А., Тимошенко А.В. Закономерности применения тепловых насосов в экстрактивной ректификации. Теор. основы хим. технологии. 2022;56(3):313–325. https://doi.org/10.31857/S0040357122030071; Wang Y., Zhang Z., Xu D., Liu W., Zhu Z. Design and control of pressure-swing distillation for azeotropes with different types of boiling behavior at different pressures. J. Process. Control. 2016;42:59–76. https://doi.org/10.1016/j.jprocont.2016.04.006; Luyben W.L. Control comparison of conventional and thermally coupled ternary extractive distillation processes. Chem. Eng. Res. Des. 2016;106:253–262. https://doi.org/10.1016/j.cherd.2015.11.021; Gil I.D., Gómez J.M., Rodríguez G. Control of an extractive distillation process to dehydrate ethanol using glycerol as entrainer. Comput. Chem. Eng. 2012;39:129–142. https://doi.org/10.1016/j.compchemeng.2012.01.006; Qin J., Ye Q., Xiong X., Li N. Control of benzene-cyclohexane separation system via extractive distillation using sulfolane as entrainer. Ind. Eng. Chem. Res. 2013;52(31):10754–10766. https://doi.org/10.1021/ie401101c; Wei H.-M., Wang F., Zhang J.-L., Liao B., Zhao N., Xiao F., Wei W., Sun Y. Design and control of dimethyl carbonate-methanol separation via pressure-swing distillation. Ind. Eng. Chem. Res. 2013;52(33):11463–11478. https://doi.org/10.1021/ie3034976; Fan Z., Zhang X., Cai W., Wang F. Design and control of extraction distillation for dehydration of tetrahydrofuran. Chem. Eng. Technol. 2013;36(5):829–839. https://doi.org/10.1002/ceat.201200611

  8. 8

    Zdroj: Science & Technique; Том 24, № 1 (2025); 12-23 ; НАУКА и ТЕХНИКА; Том 24, № 1 (2025); 12-23 ; 2414-0392 ; 2227-1031 ; 10.21122/2227-1031-2025-24-1

    Popis súboru: application/pdf

    Relation: https://sat.bntu.by/jour/article/view/2831/2367; Deschênes J. M., Fraser A. (2020) Empirical Study of Laser Cleaning of Rust, Paint, and Mill Scale from Steel Surface. Lee, J., Wagstaff, S., Lambotte, G., Allanore, A., Tesfaye, F. (eds). Materials Processing Fundamentals 2020. The Minerals, Metals & Materials Series. Springer, Cham, 189–201. https://doi.org/10.1007/978-3-030-36556-1_17.; Zhang J., Wang Y., Cheng P., Yao Y. L. (2006). Effect of Pulsing Parameters on Laser Ablative Cleaning of Copper Oxides. Journal of Applied Physics, 99 (6), 064902. https://doi.org/10.1063/1.2175467.; Seo C., Ahn D., Kim D. (2015) Removal of Oxides From Copper Surface Using Femtosecond and Nanosecond Pulsed Lasers. Applied Surface Science, 349, 361–367. https:// doi.org/10.1016/j.apsusc.2015.05.011.; Zaheer Ud Din S., Shi C., Zhang Q., Wei Y., Zhang W. (2023) Evaluation of the Laser Cleaning Efficacy of Q235 Steel Using Laser-Induced Breakdown Spectroscopy. Metals, 13 (1), 59. https://doi.org/10.3390/met13010059.; Ogbekene Y., Shukla P., Zhang Y., Shen X., Prabhakaran S., Kalainathan S., Gulia K. (2018) Laser Cleaning of Grey Cast Iron Automotive Brake Disc: Rust Removal and Improvement in Surface Integrity. International Journal of Peening Science and Technology, 1 (2), 155–180. Available at: https://wlv.openrepository.com/bitstream/handle/2436/622861/Author%20Accepted%20Manuscript%20IJPST%20KG.pdf?sequence=3&isAllowed=y.; Xie X., Huang Q., Long J., Ren Q., Hu W., Liu S. (2020) A New Monitoring Method for Metal Rust Removal States in Pulsed Laser Derusting Via Acoustic Emission Techniques. Journal of Materials Processing Technology, 275, 116321. https://doi.org/10.1016/j.jmatprotec.2019.116321.; Li Z., Zhang D., Su X., Yang S., Xu J., Ma R., Shan D., Guo B. (2021) Removal Mechanism of Surface Cleaning on TA15 Titanium Alloy Using Nanosecond Pulsed Laser. Optics & Laser Technology, 139, 106998. https://doi.org/10.1016/j.optlastec.2021.106998.; Ren Y., Wang L., Ma M., Cheng W., Li B., Lou Y., Li J. Ma X. (2022) Stepwise Removal Process Analysis Based on Layered Corrosion Oxides. Materials, 15 (21), 7559. https://doi.org/10.3390/ma15217559.; Ma M., Wang L., Li J., Jia X., Wang X., Ren Y. (2020) Investigation of the Surface Integrity of Q345 Steel After Nd:YAG Laser Cleaning of Oxidized Mining Parts. Coatings, 10 (8), 716. https://doi.org/10.3390/coatings10080716.; Sheleg V. K., Shpakevich D. A., Gorbunov A. V., Lapkovskiy A. S., Lutsko N. I. (2024) Study of the Process of Laser Cleaning of Low-Carbon Steel From Corrosion Products. Mashinostroenie: Respublikanskii Mezhvedomstvennyi Sbornik Nauchnykh Trudov [Mechanical Engineering: Republican Interdepartmental Collection of Scientific Works]. Minsk, BNTU, 114–122 (in Russian).; Zhang G., Hua X., Huang Y., Zhang Y., Li F., Shen C., Cheng J. (2020) Investigation on Mechanism of Oxide Removal and Plasma Behavior During Laser Cleaning on Aluminum Alloy. Applied Surface Science, 506, 144666. https://doi.org/10.1016/j.apsusc.2019.144666.; Windmann M., Röttger A., Kügler H., Theisen W. (2016) Removal of Oxides and Brittle Coating Constituents at the Surface of Coated Hot-Forming 22MnB5 Steel for a Laser Welding Process with Aluminum Alloys. Surface and Coatings Technology, 285, 153–160. https://doi.org/10.1016/j.surfcoat.2015.11.037.; Wang X., Xu M., Wang Z., Shen L., Qiu M., Tian Z., Ahsan M., Wang C. (2019) Properties of Jet-Plated Ni Coating on Ti Alloy (Ti6Al4V) with Laser Cleaning Pretreatment. Metals, 9 (2), 248. https://doi.org/10.3390/met9020248.; Grigor'eva I. A., Parfenov V. A., Prokuratov D. S., Shakhmin A. L. (2017) Laser Cleaning of Copper in Air and Nitrogen Atmospheres. (in Russian). Journal of Optical Technology, 84 (1), 1–4. https://doi.org/10.1364/JOT.84.000001.; Napadlek W. (2009) Ablative Laser Cleaning of Materials. Journal of KONES Powertrain and Transport, 16 (1), 357–366.; Hino M., Mitooka Y., Murakami K., Nishimoto K., Kanadani T. (2011) Application of Laser Removal Processing on Magnesium Alloy Anodized from Phosphate Solution. Materials Transactions, 52 (6), 1116–1122. https://doi.org/10.2320/matertrans.mc201005.; Kumar A., Bhatt R. B., Behere P. G., Afzal M., Kumar A., Nilaya J. P., Biswas D. J. (2014) Laser-Assisted Surface Cleaning of Metallic Components. Pramana, 82 (2), 237–242. https://doi.org/10.1007/s12043-013-0665-6.; Kumar A., Sonar V. R., Das D. K., Bhatt R. B., Behere P. G., Afzal M., Kumar A., Nilaya J. P. (2014). Laser Cleaning of Tungsten Ribbon. Applied Surface Science, 308, 216–220. https://doi.org/10.1016/j.apsusc.2014.04.138.; Prokuratov D., Samokhvalov A., Pankin D., Vereshchagin O., Kurganov N., Povolotckaia A., Shimko A., Mikhailova A., Balmashnov R., Reveguk A. (2023) Investigation towards Laser Cleaning of Corrosion Products from Lead Objects. Heritage, 6 (2), 1293–1307. https://doi.org/10.3390/heritage6020071.; Schubert S., Barday R., Kamps T., Quast T., Sievert F., Varkhalov A., Nietubyc R., Smedley J., Weinberg G. (2012) Investigation on Laser-Cleaning Process on Lead Photocathodes. Proc. of 3rd Int. Conf. on Particle Accelerator, IPAC 2012, New Orleans, LA, USA, Conference Proc. C1205201, 1515–1517. Available at: https://accelconf.web.cern.ch/IPAC2012/papers/tuppd050.pdf.; Palomar T., Oujja M., Llorente I., Ramírez Barat B., Cañamares M. V., Cano E., Castillejo M. (2016). Evaluation of Laser Cleaning for the Restoration of Tarnished Silver Artifacts. Applied Surface Science, 387, 118–127. https://doi.org/10.1016/j.apsusc.2016.06.017.; Marotta A., Gorbunov A. V., Mosse A. L. (2004) Heat and Mass Transfer During Plasmachemical Synthesis of Doped Lanthanum Chromite Powders for HighTemperature Semiconducting Materials. Heat Transfer Research, 35 (5–6), 427–430. https://doi.org/10.1615/HeatTransRes.v35.i56.110.; Gorbunov A. V., Devoino O. G., Gorbunova V. A., Yatskevitch O. K., Koval V. A. (2021) Thermodynamic Estimation of the Parameters for C–H–O–N–Me-Systems as Operating Fluid Simulants for New Processes of Powder Thermal Spraying and Spheroidizing. Nauka i Tehnika = Science & Technique, 20 (5), 390–398. https://doi.org/10.21122/2227-1031-2021-20-5-390-398.; Mourao R., Marquesi A. R., Gorbunov A. V., Petraconi Filho G., Halinouski A. A., Otani C. (2015) Thermochemical Assessment of Gasification Process Efficiency of Biofuels Industry Waste with Different Plasma Oxidants. IEEE Transactions on Plasma Science, 43 (10), 3760–3767. https://doi.org/10.1109/TPS.2015.2416129.; Fomin V. M., Golyshev A. A., Orishich A. M., Shulyat’ev V. B. (2017) Energy Balance in High-Quality Cutting of Steel by Fiber and CO2 Lasers. Journal of Applied Mechanics and Technical Physics, 58 (2), 371–378. https://doi.org/10.1134/S0021894417020237.; McPherson R. (1981) The Relationship Between the Mechanism of Formation, Microstructure and Properties of Plasma-Sprayed Coatings. Thin Solid Films, 83 (3), 297–310. https://doi.org/10.1016/0040-6090(81)90633-7.; Pateyron B., Calve N., Pawłowski L. (2013) Influence of Water and Ethanol on Transport Properties of the Jets used in Suspension Plasma Spraying. Surface and Coatings Technology, 220, 257–260. https://doi.org/10.1016/j.surfcoat.2012.10.010.; Grimm M., Conze S., Berger L. M., Paczkowski G. (2021) Changes in the Coating Composition Due to APS Process Conditions for Al2O3-Cr2O3-TiO2 Ternary Powder Blends. Journal of Thermal Spray Technology, 30 (1–2), 168–180. https://doi.org/10.1007/s11666-020-01133-3.; Kulik A. Ya., Borisov Yu. S., Mnukhin A. S., Nikitin M. D. (1985) Gas Thermal Spraying of Composite Powders. Leningrad, Mashinostroenie Publ. 199 (in Russian).; Vorobyev A. Y., Guo C. (2007). Residual Thermal Effects in Laser Ablation of Metals. Journal of Physics: Conference Series, 59, 418–423. https://doi.org/10.1088/1742-6596/59/1/089.; National Institute of Standards and Technology (NIST). NIST Chemistry WebBook, SRD 69. Available at: https://webbook.nist.gov/chemistry/form-ser/.; Haynes W. M. (ed.) (2016) CRC Handbook of Chemistry and Physics. 97th ed. CRC Press, USA. 2670. https://doi.org/10.1201/9781315380476.; Samsonov G. V. (1982). The Oxide Handbook. 2nd ed. IFI/Plenum, Springer, New York. 463.; Shackelford J. F., Alexander W. (2001) CRC Materials Science and Engineering Handbook. 3rd ed. CRC Press, Boca Raton, FL, USA. 645. https://doi.org/10.1201/9781420038408.; Masdeu F., Carmona C., Horrach G., Muñoz J. (2021) Effect of Iron (III) Oxide Powder on Thermal Conductivity and Diffusivity of Lime Mortar. Materials, 14, 998. https://doi.org/10.3390/ma14040998.; Yan Y., Ji L., Bao Y., Jiang Y. (2012). An Experimental and Numerical Study on Laser Percussion Drilling of ThickSection Alumina. Journal of Materials Processing Technology, 212 (6), 1257–1270. https://doi.org/10.1016/j.jmatprotec.2012.01.010.; Yan C., Li L., Li D. (2008) Experimental Measurement on the Absorption Coefficients of Al2O3 Ceramics to CO2 Laser Radiation (in Chinese). Hunan Daxue Xuebao / Journal of Hunan University (Natur. Sci.), 35 (1), 41–44.; Akiyama T., Ohta H., Takahashi R., Waseda Y., Yagi J. (1992). Measurement and Modeling of Thermal Conductivity for Dense Iron Oxide and Porous Iron Ore Agglomerates in Stepwise Reduction. ISIJ International, 32 (7), 829–837. https://doi.org/10.2355/isijinternational.32.829.; Endo R., Yagi T., Ueda M., Susa M. (2014). Thermal Diffusivity Measurement of Oxide Scale Formed on Steel during Hot-rolling Process. ISIJ International, 54 (9), 2084–2088. https://doi.org/10.2355/isijinternational.54.2084.; Bergström D., Powell J., Kaplan A. F. H. (2007) The Absorptance of Steels to Nd:YLF and Nd:YAG Laser Light at Room Temperature. Applied Surface Science, 253 (11), 5017–5028. https://doi.org/10.1016/j.apsusc.2006.11.018.; Marusak L. A., Messier R., White W. B. (1980). Optical Absorption Spectrum of Hematite, αFe2O3 Near IR to UV. Journal of Physics and Chemistry of Solids, 41 (9), 981–984. https://doi.org/10.1016/0022-3697(80)90105-5.; Li M., Akoshima M., Endo R., Ueda M. (2022) Thermal Diffusivity and Conductivity of Fe3O4 Scale Provided by Oxidation of Iron. ISIJ International, 62 (1), 275–277. https://doi.org/10.2355/isijinternational.ISIJINT-2021-326.; Schlegel A., Alvarado S. F., Wachter P. (1979) Optical Properties of Magnetite (Fe3O4). Journal of Physics C: Solid State Physics, 12 (6), 1157–1164. https://doi.org/10.1088/0022-3719/12/6/027.; Holmes R. D., O'Neill H. S. C., Arculus R. J. (1986). Standard Gibbs Free Energy of Formation for Cu2O, NiO, CoO, and FexO: High Resolution Electrochemical Measurements Using Zirconia Solid Electrolytes from 900–1400 K. Geochimica et Cosmochimica Acta, 50 (11), 2439–2452. https://doi.org/10.1016/0016-7037(86)90027-x.; Iron (II) Oxide. CeraWiki. Available at: https://ceramica. fandom.com/wiki/Iron(II)_oxide.; Cotton F. A., Wilkinson G., Murillo C. A., Bochmann M. (1999) Advanced Inorganic Chemistry. 6th ed. New York, Wiley-Interscience. 1376.; Li M., Endo R., Akoshima M., Susa M. (2017) Temperature Dependence of Thermal Diffusivity and Conductivity of FeO Scale Produced on Iron by Thermal Oxidation. ISIJ International, 57 (12), 2097–2106. https://doi.org/10.2355/isijinternational.ISIJINT-2017-301.; Henning T., Mutschke H. (1997) Low-Temperature Infrared Properties of Cosmic Dust Analogues. Astronomy and Astrophysics, 327, 743–754.; Li Z., Xu J., Zhang D., Shan D., Guo B. (2022) Finite Element Simulation of Temperature Field in Laser Cleaning of TA15 Titanium Alloy Oxide Film (in Chinese). Scientia Sinica Technologica, 2022, 52 (2), 318–332. https://doi.org/10.1360/SST-2021-0059.; Bale C. W., Be´lisle E., Chartrand P., Decterov S. A., Eriksson G., Gheribi A. E., Hack K., Jung I.-H., Kang Y.-B., Melancon J., Pelton A. D., Petersen S., Robelin C., Sangster J., Spencer P., van Ende M.-A. (2016) Factsage Thermochemical Software and Databases, 2010–2016. Calphad, 54, 35–53. https://doi.org/10.1016/j.calphad.2016.05.002; Corundum, Aluminum Oxide, Alumina, 99.9%, Al2O3. MatWeb. Available at: https://www.matweb.com/search/datasheet.aspx?MatGUID=c8c56ad547ae4cfabad15977bfb537 f1&ckck=1.; Krzhizhanovsky R. E., Stern Z. Y. (1973) Thermophysical Properties of Non-Metallic Materials (Oxides). Leningrad, Energiya Publ., Leningrad Branch. 336 (in Russian).; Lidin R. A., Andreeva L. L., Molochko V. A. (2006) Constants of Inorganic Substances. 2nd ed. Moscow, Drofa Publ. 685 (in Russian).; Lamoreaux R. H., Hildenbrand D. L., Brewer L. (1987) High-Temperature Vaporization Behavior of Oxides II. Oxides of Be, Mg, Ca, Sr, Ba, B, Al, Ga, In, Tl, Si, Ge, Sn, Pb, Zn, Cd, and Hg. Journal of Physical and Chemical Reference Data. 16 (3), 419–443. https://doi.org/10.1063/1.555799.; Li Y., Li J., Dong H., Zhang W., Jin G. (2024). Simulation and Experimental Study on Continuous Wave Fiber Laser Removal of Epoxy Resin Paint Film on the Surface of 6061 Aluminum Alloy. Photonics, 11 (1), 82. https://doi.org/10.3390/photonics11010082.; Wang C., Zhao Z., Zhou H., Zeng J., Zhou Z. (2023) Numerical Simulation and Validation of Laser Polishing of Alumina Ceramic Surface. Micromachines, 14 (11), 2012. https://doi.org/10.3390/mi14112012.; McQuarrie M. (1954) Thermal Conductivity: VII, Analysis of Variation of Conductivity with Temperature for Al2O3, BeO, and MgO. Journal of the American Ceramic Society, 37 (2), 91–95. https://doi.org/10.1111/j.15512916.1954.tb20106.x.; Munro M. (2005). Evaluated Material Properties for a Sintered alpha-Alumina. Journal of the American Ceramic Society, 80 (8), 1919–1928. https://doi.org/10.1111/j.1151-2916.1997.tb03074.x.; Yang K., Zhou X., Liu C., Tao S., Ding C. (2013) Sliding Wear Performance of Plasma-Sprayed Al2O3-Cr2O3 Composite Coatings Against Graphite Under Severe Conditions. Journal of Thermal Spray Technology, 22 (7), 1154–1162. https://doi.org/10.1007/s11666-013-9959-y.; He Q., Hao Q., Chen G., Poudel B., Wang X., Wang D., Ren Z. (2007) Thermoelectric Property Studies on Bulk TiOx with x from 1 to 2. Applied Physics Letters, 91 (5), 052505. https://doi.org/10.1063/1.2767775.; Harada S., Tanaka K., Inui H. (2010) Thermoelectric Properties and Crystallographic Shear Structures in Titanium Oxides of the Magne´li Phases. Journal of Applied Physics, 108 (8), 083703. https://doi.org/10.1063/1.3498801.; Sugiyama K., Takéuchi Y. (1991). The Crystal Structure of Rutile as a Function of Temperature up to 1600°C. Zeitschrift Für Kristallographie – Crystalline Materials, 194 (3–4), 305–313. https://doi.org/10.1524/zkri.1991.194.3-4.305.; Liao D., Wang Q., Wang F., Chen H., Ji F., Wen T., Zhou L. (2023) Effect of Nanosecond Pulsed Laser Cleaning Scanning Speed on Cleaning Quality of Oxide Films on TC4 Titanium Alloy Surface. Chinese Journal of Lasers, 50 (4), 0402020 (in Chinese). https://doi.org/10.3788/CJL220819.; Park J., Kim D., Kim H., Lee J., Chung W. (2021) Thermal Radiative Copper Oxide Layer for Enhancing Heat Dissipation of Metal Surface. Nanomaterials, 11 (11), 2819. https://doi.org/10.3390/nano11112819.; Palik E. (ed.) (1991) Handbook of Optical Constants of Solids. Vol. II. Academic Press, San Diego, 1991.; Timoshpolsky V. I., Samoilovich Yu. A., Trusova I. A., Khopova O. G. (2001) Calculation Analysis of the Occurrence of “Dark Spots” During Thermal Interaction of Heated Wares with Supporting Devices of Reheating/ Continuous Furnaces. Metallurgiya: Respublikanskii Mezhvedomstvennyi Sbornik Nauchnykh Trudov [Metallurgy: Republican Interdepartmental Collection of Scientific Works]. Minsk, Vysshaya Shkola Publ., Iss. 25, 12–23 (in Russian).; Shi D., Zou F., Zhu Z., Sun J. (2014). Modeling the Normal Spectral Emissivity of Red Copper T2 at 800–1,100 K During the Growth of Oxide Layer. Transactions of the Indian Institute of Metals, 68 (4), 601–609. https://doi.org/10.1007/s12666-014-0490-8.; Ding C. X., Huang B. T., Lin H. J. (1984) PlasmaSprayed Wear Resistant Ceramic and Cermet Coating Materials. Thin Solid Films, 118 (4), 485–493. https://doi.org/10.1016/0040-6090(84)90277-3.; Wang S., Wang Y., Zhang S., Wang L., Chen S., Zheng H., Zhang C., Liu S., Cheng G.J., Liu F. (2021) Nanoscale-Precision Removal of Copper in Integrated Circuits Based on a Hybrid Process of Plasma Oxidation and Femtosecond Laser Ablation. Micromachines, 12 (10), 1188. https://doi.org/10.3390/mi12101188.; Teulet P., Girard L., Razafinimanana M., Gleizes A., Bertrand P., Camy-Peyret F., Baillot E., Richard F. (2006) Experimental Study of an Oxygen Plasma Cutting Torch: II. Arc–Material Interaction, Energy Transfer and Anode Attachment. Journal of Physics D: Applied Physics, 39 (8), 1557–1573. https://doi.org/10.1088/0022-3727/39/8/015.; Li G., Wang P. (2013) Properties of Steel at Elevated Temperatures. Advanced Analysis and Design for Fire Safety of Steel Structures. Advanced Topics in Science and Technology in China, 37–65. https://doi.org/10.1007/978-3-642-34393-3_3.; Okumu H. W. (2022) Cleaning of Metal Surfaces by Laser Irradiation; Mathematical Modeling and Experimental Analysis. Tesis de Maestría en Ciencias (Óptica). Centro de Investigaciones en Óptica, A.C. León, Guanajuato. 91. Available at: https://cio.repositorioinstitucional.mx/ jspui/handle/1002/1243.; Kermanpur A., Mahmoudi Sh., Hajipour A. (2008) Numerical Simulation of Metal Flow and Solidification in the Multi-Cavity Casting Moulds of Automotive Components. Journal of Materials Processing Technology, 206 (1–3), 62–68. https://doi.org/10.1016/j.jmatprotec.2007.12.004.; Muller M., El-Rabii H., Fabbro R. (2015). Liquid Phase Combustion of Iron in an Oxygen Atmosphere. Journal of Materials Science, 50 (9), 3337–3350. https://doi.org/10.1007/s10853-015-8872-9.; Devoino O. G., Gorbunov A. V., Lapkovsky A. S., Lutsko N. I., Shpakevitch D. A., Gorbunova V. A., Koval V. A. (2024) Data Sets Formation on the Physical Properties of Oxide Scale Components for theoretical Assessment of efficiency Parameters of Laser Cleaning of Carbon Steels and Related Processes. Nauka i Tehnika = Science & Technique, 23 (3), 192–203. https://doi.org/10.21122/2227-1031-202423-3-192-203.; Lienhard J. H. IV, Lienhard J. H. V. (2019) A Heat Transfer Textbook. 5th ed. Phlogiston Press. 784.; Frewin M. R. (1997) Experimental and Theoretical Investigation of Tandem Laser Welding. Doctor of Philosophy Thesis. University of Wollongong, Australia. 179. Avai lable at: https://core.ac.uk/download/pdf/37028176.pdf.; Volpp J. (2023). Laser Beam Absorption Measurement at Molten Metal Surfaces. Measurement, 209, 112524. https://doi.org/10.1016/j.measurement.2023.112524.; Dausinger F., Shen J. (1993). Energy Coupling Efficiencyin Laser Surface Treatment. ISIJ International, 33 (9), 925–933. https://doi.org/10.2355/isijinternational.33.925.; Chen Y., Xie X., Xiao X. (2019). An Evolving Model of Surface Profile Produced by Nanosecond laser Ablation on Aluminum Alloy. JLMN-Journal of Laser Micro Nanoengineering, 14 (2), 152–160. https://doi.org/10.2961/jlmn.2019.02.0007.; Chen M. J., Zhang P., Li Q. (2018) Design and Heat Transfer Analysis of a Compound Multi-Layer Insulations for Use in High Temperature Cylinder Thermal Protection Systems. Science China Technological Sciences, 61 (7), 994–1002. https://doi.org/10.1007/s11431-017-9250-x.; Yu H., Li H., Wu X., Yang J. (2020). Dynamic Testing of Nanosecond Laser Pulse Induced Plasma Shock Wave Propulsion for Microsphere. Applied Physics A, 126 (1), 63. https://doi.org/10.1007/s00339-019-3243-z.; Lammers N. A., Bleeker A. (2007) Laser Shockwave Cleaning of EUV Reticles. Naber R. J., Kawahira H. (ed.). Photomask Technology. Proc. of SPIE, 6730, 67304P. https://doi.org/10.1117/12.746388.; Lim H., Jang D., Kim D., Lee J. W., Lee J. M. (2005). Correlation Between Particle Removal and Shock-Wave Dynamics in the Laser Shock Cleaning Process. Journal of Applied Physics, 97 (5), 054903. https://doi.org/10.1063/1.1857056.; Campanella B., Legnaioli S., Pagnotta S., Poggialini F., Palleschi V. (2019). Shock Waves in Laser-Induced Plasmas. Atoms, 7 (2), 57. https://doi.org/10.3390/atoms7020057.; Kumar A., Prasad M., Bhatt R., Behere P., Afzal M., Kumar A., Nilaya J., Biswas D. (2014) Laser Shock Cleaning of Radioactive Particulates From Glass Surface. Optics and Lasers in Engineering, 57, 114–120. https://doi.org/10.1016/j.optlaseng.2014.01.013.; Gu Q., Feng G., Zhou G., Han J., Luo J., Men J., Jiang Y. (2018) Regional Effects and Mechanisms of Nanoparticle Removal From Si Substrate by Laser Plasma Shock Waves. Applied Surface Science, 457, 604–615. https://doi.org/10.1016/j.apsusc.2018.06.234.; Fabbro R., Fournier J., Ballard P., Devaux D., Virmont J. (1990) Physical Study of Laser‐Produced Plasma in Confined Geometry. Journal of Applied Physics, 68 (2), 775–784. https://doi.org/10.1063/1.346783.; Berthe L., Fabbro R., Peyre P., Bartnicki E. (1999) Wavelength Dependent of Laser Shock-Wave Generation in the Water-Confinement Regime. Journal of Applied Physics, 85 (11), 7552–7555. https://doi.org/10.1063/1.370553.; https://sat.bntu.by/jour/article/view/2831

  9. 9
  10. 10
  11. 11
  12. 12

    Zdroj: Известия Томского политехнического университета: Инжиниринг георесурсов, Vol 333, Iss 11, Pp 140-148 (2022)
    Известия Томского политехнического университета
    Bulletin of the Tomsk Polytechnic University
    Bulletin of the Tomsk Polytechnic University Geo Assets Engineering
    Bulletin of the Tomsk Polytechnic University, Geo Assets Engineering

    Popis súboru: application/pdf

  13. 13
  14. 14
  15. 15
  16. 16
  17. 17
  18. 18
  19. 19
  20. 20

    Zdroj: Eastern-European Journal of Enterprise Technologies; Vol. 1 No. 11(115) (2022): Technology and Equipment of Food Production; 6-14
    Eastern-European Journal of Enterprise Technologies; Том 1 № 11(115) (2022): Технологии и оборудование пищевых производств; 6-14
    Eastern-European Journal of Enterprise Technologies; Том 1 № 11(115) (2022): Технології та обладнання харчових виробництв; 6-14

    Popis súboru: application/pdf