Výsledky vyhľadávania - "церамиды"

  • Zobrazené výsledky 1 - 11 z 11
Upresniť hľadanie
  1. 1

    Zdroj: Obstetrics, Gynecology and Reproduction; Online First ; Акушерство, Гинекология и Репродукция; Online First ; 2500-3194 ; 2313-7347

    Popis súboru: application/pdf

    Relation: https://www.gynecology.su/jour/article/view/2609/1406; Петров И.А., Дмитриева М.Л., Тихоновская О.А. и др. Тканевые и молекулярные основы фолликулогенеза. Механизмы раннего фолликулярного роста. Проблемы репродукции. 2017;23(5):33–41. https://doi.org/10.17116/repro201723533-41.; Pors S.E., Harðardóttir L., Olesen H.Ø. et al. Effect of sphingosine-1-phosphate on activation of dormant follicles in murine and human ovarian tissue. Mol Hum Reprod. 2020;26(5):301–11. https://doi.org/10.1093/molehr/gaaa022.; Zhang Y., Yan Z., Qin Q. et al. Transcriptome landscape of human folliculogenesis reveals oocyte and granulosa cell interactions. Mol Cell. 2018;72(6):1021–1034.e4. https://doi.org/10.1016/j.molcel.2018.10.029.; Hernández-Coronado C.G., Guzmán A., Castillo-Juárez H. et al. Sphingosine-1-phosphate (S1P) in ovarian physiology and disease. Ann Endocrinol (Paris). 2019;80(5–6):263–72. https://doi.org/10.1016/j.ando.2019.06.003.; Pitman M., Oehler M.K., Pitson S.M. Sphingolipids as multifaceted mediators in ovarian cancer. Cell Signal. 2021;81:109949. https://doi.org/10.1016/j.cellsig.2021.109949.; Quinville B.M., Deschenes N.M., Ryckman A.E., Walia J.S. A comprehensive review: sphingolipid metabolism and implications of disruption in sphingolipid homeostasis. Int J Mol Sci. 2021;22(11):5793. https://doi.org/10.3390/ijms22115793.; Sukocheva O., Wadham C., Holmes A. et al. Estrogen transactivates EGFR via the sphingosine 1-phosphate receptor Edg-3: the role of sphingosine kinase-1. J Cell Biol. 2006;173(2):301–10. https://doi.org/10.1083/jcb.200506033.; Chou C.H., Chen M.J. The effect of steroid hormones on ovarian follicle development. Vitam Horm. 2018;107:155–75. https://doi.org/10.1016/bs.vh.2018.01.013.; Zeleznik O.A., Clish C.B., Kraft P. et al. Circulating lysophosphatidylcholines, phosphatidylcholines, ceramides, and sphingomyelins and ovarian cancer risk: a 23-year prospective study. J Natl Cancer Inst. 2020;112(6):628–36. https://doi.org/10.1093/jnci/djz195.; Janneh A.H., Ogretmen B. Targeting sphingolipid metabolism as a therapeutic strategy in cancer treatment. Cancers (Basel). 2022;14(9):2183. https://doi.org/10.3390/cancers14092183.; Gomez-Larrauri A., Das Adhikari U., Aramburu-Nuñez M. et al. Ceramide metabolism enzymes-therapeutic targets against cancer. Medicina (Kaunas). 2021;57(7):729. https://doi.org/10.3390/medicina57070729.; Companioni O., Mir C., Garcia-Mayea Y., LLeonart M.E. Targeting sphingolipids for cancer therapy. Front Oncol. 2021;11:745092. https://doi.org/10.3389/fonc.2021.745092.; Yuan Y., Jia G., Wu C. et al. Structures of signaling complexes of lipid receptors S1PR1 and S1PR5 reveal mechanisms of activation and drug recognition. Cell Res. 2021;31(12):1263–74. https://doi.org/10.1038/s41422-021-00566-x.; Lucki N.C., Sewer M.B. The interplay between bioactive sphingolipids and steroid hormones. Steroids. 2010;75(6):390–9. https://doi.org/10.1016/j.steroids.2010.01.020.; Roth Z. Symposium review: reduction in oocyte developmental competence by stress is associated with alterations in mitochondrial function. J Dairy Sci. 2018;101(4):3642–54. https://doi.org/10.3168/jds.2017-13389.; Протопопов В.А., Секунов А.В., Панов А.В., Брындина И.Г. Взаимосвязь сфинголипидных механизмов с окислительным стрессом и изменениями митохондрий при функциональной разгрузке постуральных мышц. Acta Biomedica Scientifica. 2024;9(2):228–42. https://doi.org/10.29413/ABS.2024-9.2.23.; Kujjo L.L., Perez G.I. Ceramide and mitochondrial function in aging oocytes: joggling a new hypothesis and old players. Reproduction. 2012;143(1):1–10. https://doi.org/10.1530/REP-11-0350.; Zigdon H., Kogot-Levin A., Park J.W. et al. Ablation of ceramide synthase 2 causes chronic oxidative stress due to disruption of the mitochondrial respiratory chain. J Biol Chem. 2013;288(7):4947–56. https://doi.org/10.1074/jbc.M112.402719.; Arora A.S., Jones B.J., Patel T.C. et al. Ceramide induces hepatocyte cell death through disruption of mitochondrial function in the rat. Hepatology. 1997;25(4):958–63. https://doi.org/10.1002/hep.510250428.; Malott K.F., Luderer U. Toxicant effects on mammalian oocyte mitochondria†. Biol Reprod. 2021;104(4):784–93. https://doi.org/10.1093/biolre/ioab002.; Kasapoğlu I., Seli E. Mitochondrial dysfunction and ovarian aging. Endocrinology. 2020;161(2):bqaa001. https://doi.org/10.1210/endocr/bqaa001.; Smits M.A.J., Schomakers B.V., van Weeghel M. et al. Human ovarian aging is characterized by oxidative damage and mitochondrial dysfunction. Hum Reprod. 2023;38(11):2208–20. https://doi.org/10.1093/humrep/dead177.; Lee S., Kang H.G., Jeong P.S. et al. Heat stress impairs oocyte maturation through ceramide-mediated apoptosis in pigs. Sci Total Environ. 2021;755(Pt 1):144144. https://doi.org/10.1016/j.scitotenv.2020.144144.; Hernández-Coronado C.G., Guzmán A., Espinosa-Cervantes R. et al. Sphingosine-1-phosphate and ceramide are associated with health and atresia of bovine ovarian antral follicles. Animal. 2015;9(2):308–12. https://doi.org/10.1017/S1751731114002341.; Kujjo L.L., Acton B.M., Perkins G.A. et al. Ceramide and its transport protein (CERT) contribute to deterioration of mitochondrial structure and function in aging oocytes. Mech Ageing Dev. 2013;134(1–2):43–52. https://doi.org/10.1016/j.mad.2012.12.001.; Morita Y., Tilly J.L. Oocyte apoptosis: like sand through an hourglass. Dev Biol. 1999;213(1):1–17. https://doi.org/10.1006/dbio.1999.9344.; Hernández-Coronado C.G., Guzmán A., Rodríguez A. et al. Sphingosine-1-phosphate, regulated by FSH and VEGF, stimulates granulosa cell proliferation. Gen Comp Endocrinol. 2016;236:1–8. https://doi.org/10.1016/j.ygcen.2016.06.029.; Hao X., Zhang M. Roles of sphingosine-1-phosphate in follicle development and oocyte maturation. Anim Res One Health. 2024;2(3):314–22. https://doi.org/10.1002/aro2.53.; Park J.Y., Su Y.Q., Ariga M. et al. EGF-like growth factors as mediators of LH action in the ovulatory follicle. Science. 2004;303(5658):682–4. https://doi.org/10.1126/science.1092463.; Yamanaka M., Shegogue D., Pei H. et al. Sphingosine kinase 1 (SPHK1) is induced by transforming growth factor-beta and mediates TIMP-1 up-regulation. J Biol Chem. 2004;279(52):53994–4001. https://doi.org/10.1074/jbc.M410144200.; Squecco R., Sassoli C., Nuti F. et al. Sphingosine 1-phosphate induces myoblast differentiation through Cx43 protein expression: a role for a gap junction-dependent and -independent function. Mol Biol Cell. 2006;17(11):4896–910. https://doi.org/10.1091/mbc.e06-03-0243.; Giepmans B.N., Verlaan I., Hengeveld T. et al. Gap junction protein connexin-43 interacts directly with microtubules. Curr Biol. 2001;11(17):1364–8. https://doi.org/10.1016/s0960-9822(01)00424-9.; Hao X., Wang Y., Kong N. et al. Growth factor-mobilized intracellular calcium of cumulus cells decreases natriuretic peptide receptor 2 affinity for natriuretic peptide type C and induces oocyte meiotic resumption in the mouse. Biol Reprod. 2016;95(2):45. https://doi.org/10.1095/biolreprod.116.140137.; Yuan F., Hao X., Cui Y. et al. SphK-produced S1P in somatic cells is indispensable for LH-EGFR signaling-induced mouse oocyte maturation. Cell Death Dis. 2022;13(11):963. https://doi.org/10.1038/s41419-022-05415-2.; Mostafa S., Nader N., Machaca K. Lipid signaling during gamete maturation. Front Cell Dev Biol. 2022;10:814876. https://doi.org/10.3389/fcell.2022.814876.; Birbes H., El Bawab S., Hannun Y.A., Obeid L.M. Selective hydrolysis of a mitochondrial pool of sphingomyelin induces apoptosis. FASEB J. 2001;15(14):2669–79. https://doi.org/10.1096/fj.01-0539com.; Hernández-Corbacho M.J., Salama M.F., Canals D. et al. Sphingolipids in mitochondria. Biochim Biophys Acta Mol Cell Biol Lipids. 2017;1862(1):56–68. https://doi.org/10.1016/j.bbalip.2016.09.019.; Ueda N. Ceramide-induced apoptosis in renal tubular cells: a role of mitochondria and sphingosine-1-phoshate. Int J Mol Sci. 2015;16(3):5076–124. https://doi.org/10.3390/ijms16035076.; Fisher-Wellman K.H., Hagen J.T., Neufer P.D. et al. On the nature of ceramide-mitochondria interactions – dissection using comprehensive mitochondrial phenotyping. Cell Signal. 2021;78:109838. https://doi.org/10.1016/j.cellsig.2020.109838.; Eliyahu E., Shtraizent N., Martinuzzi K. et al. Acid ceramidase improves the quality of oocytes and embryos and the outcome of in vitro fertilization. FASEB J. 2010;24(4):1229–38. https://doi.org/10.1096/fj.09-145508.; Santiquet N.W., Greene A.F, Becker J. et al. A pre-in vitro maturation medium containing cumulus oocyte complex ligand-receptor signaling molecules maintains meiotic arrest, supports the cumulus oocyte complex and improves oocyte developmental competence. Mol Hum Reprod. 2017;23(9):594–606. https://doi.org/10.1093/molehr/gax032.; Eliyahu E., Shtraizent N., Shalgi R., Schuchman E.H. Construction of conditional acid ceramidase knockout mice and in vivo effects on oocyte development and fertility. Cell Physiol Biochem. 2012;30(3):735–48. https://doi.org/10.1159/000341453.; Morita Y., Perez G.I., Paris F. et al. Oocyte apoptosis is suppressed by disruption of the acid sphingomyelinase gene or by sphingosine-1-phosphate therapy. Nat Med. 2000;6(10):1109–14. https://doi.org/10.1038/80442.; Coll O., Morales A., Fernández-Checa J.C., Garcia-Ruiz C. Neutral sphingomyelinase-induced ceramide triggers germinal vesicle breakdown and oxidant-dependent apoptosis in Xenopus laevis oocytes. J Lipid Res. 2007;48(9):1924–35. https://doi.org/10.1194/jlr.M700069-JLR200.; Yuan F., Wang Z., Sun Y. et al. Sgpl1 deletion elevates S1P levels, contributing to NPR2 inactivity and p21 expression that block germ cell development. Cell Death Dis. 2021;12(6):574. https://doi.org/10.1038/s41419-021-03848-9.; Morita Y., Tilly J.L. Sphingolipid regulation of female gonadal cell apoptosis. Ann N Y Acad Sci. 2000;905:209–20. https://doi.org/10.1111/j.1749-6632.2000.tb06551.x.; Knapp P., Chomicz K., Świderska M. et al. Unique roles of sphingolipids in selected malignant and nonmalignant lesions of female reproductive system. Biomed Res Int. 2019;2019:4376583. https://doi.org/10.1155/2019/4376583.; Kreitzburg K.M., van Waardenburg R.C.A.M., Yoon K.J. Sphingolipid metabolism and drug resistance in ovarian cancer. Cancer Drug Resist. 2018;1:181–97. https://doi.org/10.20517/cdr.2018.06.; Rutherford T., Brown W.D., Sapi E. et al. Absence of estrogen receptor-beta expression in metastatic ovarian cancer. Obstet Gynecol. 2000;96(3):417–21. https://doi.org/10.1016/s0029-7844(00)00917-0.; Jeon S.-Y., Hwang K.-A., Choi K.-C. Effect of steroid hormones, estrogen and progesterone, on epithelial mesenchymal transition in ovarian cancer development. J Steroid Biochem Mol Biol. 2016;158:1–8. https://doi.org/10.1016/j.jsbmb.2016.02.005.; Mungenast F., Thalhammer T. Estrogen biosynthesis and action in ovarian cancer. Front Endocrinol (Lausanne). 2014;5:192. https://doi.org/10.3389/fendo.2014.00192.; Giaccari C., Antonouli S., Anifandis G. et al. An update on physiopathological roles of Akt in the reprodAKTive mammalian ovary. Life (Basel). 2024;14(6):722. https://doi.org/10.3390/life14060722.; Yang Y., Lang P., Zhang X. et al. Molecular characterization of extracellular vesicles derived from follicular fluid of women with and without PCOS: integrating analysis of differential miRNAs and proteins reveals vital molecules involving in PCOS. J Assist Reprod Genet. 2023;40(3):537–52. https://doi.org/10.1007/s10815-023-02724-z.; Liu L., Yin T.L., Chen Y. et al. Follicular dynamics of glycerophospholipid and sphingolipid metabolisms in polycystic ovary syndrome patients. J Steroid Biochem Mol Biol. 2019;185:142–9. https://doi.org/10.1016/j.jsbmb.2018.08.008.; Shi Y., Zhao H., Shi Y. et al. Genome-wide association study identifies eight new risk loci for polycystic ovary syndrome. Nat Genet. 2012;44(9):1020–5. https://doi.org/10.1038/ng.2384.; Parasar P., Ozcan P., Terry K.L. Endometriosis: epidemiology, diagnosis and clinical management. Curr Obstet Gynecol Rep. 2017;6(1):34–41. https://doi.org/10.1007/s13669-017-0187-1.; Lee Y.H., Tan C.W., Venkatratnam A. et al. Dysregulated sphingolipid metabolism in endometriosis. J Clin Endocrinol Metab. 2014;99(10):E1913–21. https://doi.org/10.1210/jc.2014-1340.; Zhang Q., Duan J., Liu X., Guo S.W. Platelets drive smooth muscle metaplasia and fibrogenesis in endometriosis through epithelial-mesenchymal transition and fibroblast-to-myofibroblast transdifferentiation. Mol Cell Endocrinol. 2016;428:1–16. https://doi.org/10.1016/j.mce.2016.03.015.; Bernacchioni C., Capezzuoli T., Vannuzzi V. et al. Sphingosine 1-phosphate receptors are dysregulated in endometriosis: possible implication in transforming growth factor β-induced fibrosis. Fertil Steril. 2021;115(2):501–11. https://doi.org/10.1016/j.fertnstert.2020.08.012.; Turathum B., Gao E.M., Grataitong K. et al. Dysregulated sphingolipid metabolism and autophagy in granulosa cells of women with endometriosis. Front Endocrinol (Lausanne). 2022;13:906570. https://doi.org/10.3389/fendo.2022.906570.; Itami N., Shirasuna K., Kuwayama T., Iwata H. Palmitic acid induces ceramide accumulation, mitochondrial protein hyperacetylation, and mitochondrial dysfunction in porcine oocytes. Biol Reprod. 2018;98(5):644–53. https://doi.org/10.1093/biolre/ioy023.; Fucho R., Casals N., Serra D., Herrero L. Ceramides and mitochondrial fatty acid oxidation in obesity. FASEB J. 2017;31(4):1263–72. https://doi.org/10.1096/fj.201601156R.; Torretta E., Barbacini P., Al-Daghri N.M., Gelfi C. Sphingolipids in obesity and correlated co-morbidities: the contribution of gender, age and environment. Int J Mol Sci. 2019;20(23):5901. https://doi.org/10.3390/ijms20235901.; Samad F., Hester K.D., Yang G. et al. Altered adipose and plasma sphingolipid metabolism in obesity: a potential mechanism for cardiovascular and metabolic risk. Diabetes. 2006;55(9):2579–87. https://doi.org/10.2337/db06-0330.; Shibahara H., Ishiguro A., Inoue Y. et al. Mechanism of palmitic acid-induced deterioration of in vitro development of porcine oocytes and granulosa cells. Theriogenology. 2020;141:54–61. https://doi.org/10.1016/j.theriogenology.2019.09.006.; Levi A.J., Raynault M.F., Bergh P.A. et al. Reproductive outcome in patients with diminished ovarian reserve. Fertil Steril. 2001;76(4):666–9. https://doi.org/10.1016/s0015-0282(01)02017-9.; Timur B., Aldemir O., İnan N. et al. Clinical significance of serum and follicular fluid ceramide levels in women with low ovarian reserve. Turk J Obstet Gynecol. 2022;19(3):207–14. https://doi.org/10.4274/tjod.galenos.2022.05760.; Alizadeh J., da Silva Rosa S.C., Weng X. et al. Ceramides and ceramide synthases in cancer: Focus on apoptosis and autophagy. Eur J Cell Biol. 2023;102(3):151337. https://doi.org/10.1016/j.ejcb.2023.151337.; Nakahara T., Iwase A., Nakamura T. et al. Sphingosine-1-phosphate inhibits H2O2-induced granulosa cell apoptosis via the PI3K/Akt signaling pathway. Fertil Steril. 2012;98(4):1001–8.e1. https://doi.org/10.1016/j.fertnstert.2012.06.008.; Valtetsiotis K., Valsamakis G., Charmandari E., Vlahos N.F. Metabolic mechanisms and potential therapeutic targets for prevention of ovarian aging: data from up-to-date experimental studies. Int J Mol Sci. 2023;24(12):9828. https://doi.org/10.3390/ijms24129828.; Li F., Turan V., Lierman S. et al. Sphingosine-1-phosphate prevents chemotherapy-induced human primordial follicle death. Hum Reprod. 2014;29(1):107–13. https://doi.org/10.1093/humrep/det391.; Pascuali N., Scotti L., Di Pietro M. et al. Ceramide-1-phosphate has protective properties against cyclophosphamide-induced ovarian damage in a mice model of premature ovarian failure. Hum Reprod. 2018;33(5):844–59. https://doi.org/10.1093/humrep/dey045.; Абусуева З.А., Мухтарова М.М., Хашаева Т.Х. и др. Компаративная оценка провоспалительных цитокинов у женщин с диагностированными наследственными тромбофилиями различного генеза и их ассоциация с ранними и поздними эмбриональными потерями. Проблемы репродукции. 2022;28(3):10–7. https://doi.org/10.17116/repro20222803110.; Cianci A., Calogero A.E., Palumbo M.A. et al. Relationship between tumour necrosis factor alpha and sex steroid concentrations in the follicular fluid of women with immunological infertility. Hum Reprod. 1996;11(2):265–8. https://doi.org/10.1093/humrep/11.2.265.; Banaras S., Paracha R.Z., Nisar M. et al. System level modeling and analysis of TNF-α mediated sphingolipid signaling pathway in neurological disorders for the prediction of therapeutic targets. Front Physiol. 2022;13:872421. https://doi.org/10.3389/fphys.2022.872421.; Sukocheva O.A., Neganova M.E., Aleksandrova Y/ et al. Signaling controversy and future therapeutical perspectives of targeting sphingolipid network in cancer immune editing and resistance to tumor necrosis factor-α immunotherapy. Cell Commun Signal. 2024;22(1):251. https://doi.org/10.1186/s12964-024-01626-6.; Kolesnick R. The therapeutic potential of modulating the ceramide/sphingomyelin pathway. J Clin Invest. 2002;110(1):3–8. https://doi.org/10.1172/JCI16127.; Di Paolo A., Vignini A., Alia S. et al. Pathogenic role of the sphingosine 1-phosphate (S1P) pathway in common gynecologic disorders (GDs): a possible novel therapeutic target. Int J Mol Sci. 2022;23(21):13538. https://doi.org/10.3390/ijms232113538.; Коваль О.М., Хачанова Н.В., Журавлева М.В. и др. Безопасность воспроизведенного финголимода. Безопасность и риск фармакотерапии. 2018;6(1):23–31. https://doi.org/10.30895/2312-7821-2018-6-1-23-31.; https://www.gynecology.su/jour/article/view/2609

  2. 2

    Prispievatelia: E. I. Usova L. M. Malishevskii A. S. Alieva a ďalší

    Zdroj: Translational Medicine; Том 11, № 4 (2024); 309-323 ; Трансляционная медицина; Том 11, № 4 (2024); 309-323 ; 2410-5155 ; 2311-4495

    Popis súboru: application/pdf

    Relation: https://transmed.almazovcentre.ru/jour/article/view/938/579; https://transmed.almazovcentre.ru/jour/article/downloadSuppFile/938/2118; https://transmed.almazovcentre.ru/jour/article/downloadSuppFile/938/2119; https://transmed.almazovcentre.ru/jour/article/downloadSuppFile/938/2120; https://transmed.almazovcentre.ru/jour/article/downloadSuppFile/938/2121; Usova EI, Alieva AS, Yakovlev AN, et al. Integrative Analysis of Multi-Omics and Genetic Approaches-A New Level in Atherosclerotic Cardiovascular Risk Prediction. Biomolecules. 2021;11(11):1597. DOI:10.3390/biom11111597.; McGurk KA, Keavney BD, Nicolaou A. Circulating ceramides as biomarkers of cardiovascular disease: Evidence from phenotypic and genomic studies. Atherosclerosis. 2021;327:18–30. DOI:10.1016/j.atherosclerosis.2021.04.021.; Cheng JM, Suoniemi M, Kardys I, et al. Plasma concentrations of molecular lipid species in relation to coronary plaque characteristics and cardiovascular outcome: Results of the ATHEROREMO-IVUS study. Atherosclerosis. 2015;243(2):560–6. DOI:10.1016/j.atherosclerosis.2015.10.022.; Meeusen JW, Donato LJ, Kopecky SL, et al. Ceramides improve atherosclerotic cardiovascular disease risk assessment beyond standard risk factors. Clin Chim Acta. 2020;511:138–142. DOI:10.1016/j.cca.2020.10.005.; Laaksonen R, Ekroos K, Sysi-Aho M, et al. Plasma ceramides predict cardiovascular death in patients with stable coronary artery disease and acute coronary syndromes beyond LDL-cholesterol. Eur Heart J. 2016;37(25):1967–76. DOI:10.1093/eurheartj/ehw148.; Усова Е.И., Малишевский Л.М., Алиева А.С. и др. Анализ предикторов риска развития повторных острых сердечно-сосудистых событий у пациентов с острым коронарным синдромом. Российский кардиологический журнал. 2024;29(6):5881]. DOI:10.15829/1560-4071-2024-5881.; Eggers LF, Schwudke D. Liquid Extraction: Folch. Encyclopedia of Lipidomics, 2016; 1–6. DOI:10.1007/978-94-007-7864-1_89-1.; Tan SH, Koh HWL, Chua JY, et al. Variability of the Plasma Lipidome and Subclinical Coronary Atherosclerosis. Arterioscler Thromb Vasc Biol. 2022;42(1):100–112. DOI:10.1161/ATVBAHA.121.316847.; de Carvalho LP, Tan SH, Ow GS, et al. Plasma Ceramides as Prognostic Biomarkers and Their Arterial and Myocardial Tissue Correlates in Acute Myocardial Infarction. JACC Basic Transl Sci. 2018;3(2):163–175. DOI:10.1016/j.jacbts.2017.12.005.; Burrello J, Biemmi V, Dei Cas M, et al. Sphingolipid composition of circulating extracellular vesicles after myocardial ischemia. Sci Rep. 2020;10(1):16182. DOI:10.1038/s41598-020-73411-7.; Akhiyat N, Vasile V, Ahmad A, et al. Plasma Ceramide Levels Are Elevated in Patients With Early Coronary Atherosclerosis and Endothelial Dysfunction. J Am Heart Assoc. 2022;11(7):e022852. DOI:10.1161/JAHA.121.022852.; Meeusen JW, Donato LJ, Bryant SC, et al. Plasma Ceramides. Arterioscler Thromb Vasc Biol. 2018;38(8):1933– 1939. DOI:10.1161/ATVBAHA.118.311199.; Tu C, Xie L, Wang Z, et al. Association between ceramides and coronary artery stenosis in patients with coronary artery disease. Lipids Health Dis. 2020;19(1):151. DOI:10.1186/s12944-020-01329-0.; Jensen PN, Fretts AM, Hoofnagle AN, et al. Plasma Ceramides and Sphingomyelins in Relation to Atrial Fibrillation Risk: The Cardiovascular Health Study. J Am Heart Assoc. 2020;9(4):e012853. DOI:10.1161/JAHA.119.012853.; Gencer B, Morrow DA, Braunwald E, et al. Plasma ceramide and phospholipid-based risk score and the risk of cardiovascular death in patients after acute coronary syndrome. Eur J Prev Cardiol. 2022;29(6):895–902. DOI:10.1093/eurjpc/zwaa143.; Li F, Li D, Yu J, et al. Association Between Plasma Ceramides and One-Year Mortality in Patients with Acute Coronary Syndrome: Insight from the PEACP Study. Clin Interv Aging. 2023;18:571–584. DOI:10.2147/CIA.S402253.; Gaggini M, Michelucci E, Ndreu R, et al. Lipidomic Analysis to Assess the Correlation between Ceramides, Stress Hyperglycemia, and HbA1c in Acute Myocardial Infarction. Molecules. 2023;28(2):716. DOI:10.3390/molecules28020716.; Knapp M, Lisowska A, Knapp P, Baranowski M. Dose-dependent effect of aspirin on the level of sphingolipids in human blood. Adv Med Sci. 2013;58(2):274–81. DOI:10.2478/ams-2013-0021.; Tarasov K, Ekroos K, Suoniemi M, et al. Molecular lipids identify cardiovascular risk and are efficiently lowered by simvastatin and PCSK9 deficiency. J Clin Endocrinol Metab. 2014;99(1):E45–52. DOI:10.1210/jc.2013-2559.; Ng TW, Ooi EM, Watts GF, et al. Dose-dependent effects of rosuvastatin on the plasma sphingolipidome and phospholipidome in the metabolic syndrome. J Clin Endocrinol Metab. 2014;99(11):e2335–40. DOI:10.1210/jc.2014-1665.; Ye Q, Svatikova A, Meeusen JW, et al. Effect of Proprotein Convertase Subtilisin/Kexin Type 9 Inhibitors on Plasma Ceramide Levels. Am J Cardiol. 2020;128:163–167. DOI:10.1016/j.amjcard.2020.04.052.; https://transmed.almazovcentre.ru/jour/article/view/938

  3. 3
  4. 4

    Zdroj: GASTROENTEROLOGY; Том 54, № 2 (2020); 96-100
    Гастроэнтерология-Gastroenterologìa; Том 54, № 2 (2020); 96-100
    Гастроентерологія-Gastroenterologìa; Том 54, № 2 (2020); 96-100

    Popis súboru: application/pdf

  5. 5
  6. 6

    Zdroj: Current Pediatrics; Том 20, № 5 (2021); 435-440 ; Вопросы современной педиатрии; Том 20, № 5 (2021); 435-440 ; 1682-5535 ; 1682-5527

    Popis súboru: application/pdf

    Relation: https://vsp.spr-journal.ru/jour/article/view/2749/1090; Maliyar K, Sibbald C, Pope E, et al. Diagnosis and Management of Atopic Dermatitis. Adv Skin Wound Care. 2018;31(12):538-550. doi:10.1097/01.asw.0000547414.38888.8d; Drucker AM, Wang AR, Li WQ, et al. The Burden of Atopic Dermatitis: Summary of a Report for the National Eczema Association. J Investig Dermatol. 2017;137(1):26-30. doi:10.1016/j.jid.2016.07.012; Xu X, van Galen LS, Koh MJ., et al. Factors influencing quality of life in children with atopic dermatitis and their caregivers: A crosssectional study. Sci Rep. 2019;9(1):15990. doi:10.1038/s41598-019-51129-5; Mallol J, Crane J, von Mutius E, et al. The International Study of Asthma and Allergies in Childhood (ISAAC) Phase Three: A global synthesis. Allergol Immunopathol. 2013;41(2):73-85. doi:10.1016/j.aller.2012.03.001; Asher MI, Montefort S, Bjorksten B, et al. Worldwide time trends in the prevalence of symptoms of asthma, allergic rhinoconjunctivitis, and eczema in childhood: ISAAC Phases One and Three repeat multicountry cross-sectional surveys. Lancet. 2006;368(9537):733-743. doi:10.1016/s0140-6736(06)69283-0; Larsen FS, Hanifin JM. Epidemiology of atopic dermatitis. Immunol Allergy Clin North Am. 2002;22(1):1-24. doi:10.1016/s0889-8561(03)00066-3; National Center for Health Statistics. National Health and Nutrition Examination Survey (NHANES) body composition procedures manual. Centers for Disease Control and Prevention. Hyattsville, MD; 2006.; Deckers I.A., McLean S., Linssen S., et al. Investigating international time trends in the incidence and prevalence of atopic eczema 1990-2010: A systematic review of epidemiologic studies. PLoS One. 2012;7(7):e39803. doi:10.1371/journal.pone.0039803; Kowalska-Olędzka E, Czarnecka M, Baran A. Epidemiology of atopic dermatitis in Europe. J Drug Assess. 2019;8(1):126-128. doi:10.1080/21556660.2019.1619570; Shaw TE, Currie GP, Koudelka CW, Simpson EL. Eczema prevalence in the United States: data from the 2003 National Survey of Children's Health. J Invest Dermatol. 2011;131(1):67-73. doi:10.1038/jid.2010.251; Yang G, Seok JK, Kang HC, et al. Skin Barrier Abnormalities and Immune Dysfunction in Atopic Dermatitis. Int J Mol Sci. 2020;21(8):2867. doi:10.3390/ijms21082867; Kubo A, Nagao K, Amagai M. Epidermal barrier dysfunction and cutaneous sensitization in atopic diseases. J Clin Invest. 2012;122(2):440-447. doi:10.1172/JCI57416; Michael JC, Simon GD, Yiannis V, et al. Epidermal barrier dysfunction in atopic dermatitis. J Invest Dermatol. 2009;129(8):1892-1908. doi:10.1038/jid.2009.133; Bosko CA. Skin Barrier Insights: From Bricks and Mortar to Molecules and Microbes. J Drugs Dermatol. 2019;18(1s):s63-s67.; Wickett RR, Visscher MO. Structure and function of the epidermal barrier. Am J Infect Control. 2006;34(10):S98-S110. doi:10.1016/j.ajic.2006.05.295; Matsui T, Amagai M. Dissecting the formation, structure and barrier function of the stratum corneum. Int Immunol. 2015;27(6):269-280. doi:10.1093/intimm/dxv013; Segre JA. Epidermal barrier formation and recovery in skin disorders. J Clin Invest. 2006;116(5):1150-1158. doi:10.1172/JCI28521; Natsuga K. Epidermal barriers. Cold Spring Harb Perspect Med. 2014;4(4):a018218. doi:10.1101/cshperspect.a018218; Munoz-Garcia A, Thomas CP Keeney DS, et al. The importance of the lipoxygenase-hepoxilin pathway in the mammalian epidermal barrier. Biochim Biophys Acta. 2014;1841(3):401-408. doi:10.1016/j.bbalip.2013.08.020; Nakagawa N, Sakai S, Matsumoto M, et al. Relationship between NMF (lactate and potassium) content and the physical properties of the stratum corneum in healthy subjects. J Invest Dermatol. 2004;122(3):755-763. doi:10.1111/j.0022-202X.2004.22317.x; Sroka-Tomaszewska J, Trzeciak M. Molecular Mechanisms of Atopic Dermatitis Pathogenesis. Int J Mol Sci. 2021;22(8):4130. doi:10.3390/ijms22084130; Presland RB, Haydock PV, Fleckman P, et al. Characterization of the human epidermal profilaggrin gene. Genomic organization and identification of an S-100-like calcium binding domain at the amino terminus. J Biol Chem. 1992;267:23772-23781.; Palmer CN, Irvine AD, Terron-Kwiatkowski A, et al. Common loss-of-function variants of the epidermal barrier protein filaggrin are a major predisposing factor for atopic dermatitis. Nat Genet. 2006;38(4):441-446. doi:10.1038/ng1767; Brown SJ, Irvine AD. Atopic eczema and the filaggrin story. Semin Cutan Med Surg. 2008;27(2):128-137. doi:10.1016/j.sder.2008.04.001; Izadi N, Luu M, Ong PY, Tam JS. The Role of Skin Barrier in the Pathogenesis of Food Allergy. Children (Basel). 2015;2(3):382-402. doi:10.3390/children2030382; Osawa R, Akiyama M, Shimizu H. Filaggrin gene defects and the risk of developing allergic disorders. Allergol Int. 2011;60(1):1-9. doi:10.2332/allergolint.10-RAI-0270; Brown SJ, McLean WH. Eczema genetics: current state of knowledge and future goals. J Invest Dermatol. 2009;129(3):543-552. doi:10.1038/jid.2008.413; O'Regan GM, Sandilands A, McLean WHI, Irvine AD. Filaggrin in atopic dermatitis. J Allergy Clin Immunol. 2008;122(4):689-693. doi:10.1016/j.jaci.2008.08.002; Irvine AD, McLean WH, Leung DY. Filaggrin mutations associated with skin and allergic diseases. N Engl J Med. 2011;365(14):1315-1327. doi:10.1056/NEJMra1011040; McPherson T. Current Understanding in Pathogenesis of Atopic Dermatitis. Indian J Dermatol. 2016;61(6):649-655. doi:10.4103/0019-5154.193674; McAleer MA, Irvine AD. The multifunctional role of filaggrin in allergic skin disease. J Allergy Clin Immunol. 2013;131(2):280-291. doi:10.1016/j.jaci.2012.12.668; Zheng T, Yu J, Oh MH, Zhu Z. The atopic march: progression from atopic dermatitis to allergic rhinitis and asthma. Allergy Asthma Immunol Res. 2011;3(2):6773. doi:10.4168/aair.2011.3.2.67; Belgrave DC, Granell R, Simpson A, et al. Developmental profiles of eczema, wheeze, and rhinitis: two population-based birth cohort studies. PLoS Med. 2014;11(10):e1001748. doi:10.1371/journal.pmed.1001748; Irvine A.D., Mina-Osorio P. Disease trajectories in childhood atopic dermatitis: an update and practitioner's guide. Br J Dermatol. 2019;181(5):895-906. doi:10.1111/bjd.17766; Chan A, Terry W, Zhang H, et al. Filaggrin mutations increase allergic airway disease in childhood and adolescence through interactions with eczema and aeroallergen sensitization. Clin Exp Allergy. 2018;48(2):147-155. doi:10.1111/cea.13077; Venkataraman D, Soto-Ramfrez N, Kurukulaaratchy RJ, et al. Filaggrin loss-of-function mutations are associated with food allergy in childhood and adolescence. J Allergy Clin Immunol. 2014;134(4):876-882.e4. doi:10.1016/j.jaci.2014.07.033; Rodnguez E, Baurecht H, Herberich E, et al. Meta-analysis of filaggrin polymorphisms in eczema and asthma: robust risk factors in atopic disease. J Allergy Clin Immunol. 2009;123(6):1361-1370. e7. doi:10.1016/j.jaci.2009.03.036; Miajlovic H, Fallon PG, Irvine AD, Foster TJ. Effect of filag-grin breakdown products on growth of and protein expression by Staphylococcus aureus. J Allergy Clin Immunol. 2010;126(6):1184-1190. doi:10.1016/j.jaci.2010.09.015; Rabinowitz LG, Esterly NB. Atopic dermatitis and ichthyosis vulgaris. Pediatr Rev. 1994;15(6):220-226; quiz 226. doi:10.1542/pir.15-6-220; Sehgal VN, Khurana A, Mendiratta V, et al. Atopic dermatitis: Clinical connotations, especially a focus on concomitant atopic undertones in immunocompromised/susceptible genetic and metabolic disorders. Indian J Dermatol. 2016;(61):241-250. doi:10.4103/0019-5154.182433; Howell MD, Kim BE, Gao P, et al. Cytokine modulation of atopic dermatitis filaggrin skin expression. J Allergy Clin Immunol. 2007;120(1):150-155. doi:10.1016/j.jaci.2007.04.031; Arakawa H, Shimojo N, Katoh N, et al. Consensus statements on pediatric atopic dermatitis from dermatology and pediatrics practitioners in Japan: Goals of treatment and topical therapy. Allergol Int. 2020;69(1):84-90. doi:10.1016/j.alit.2019.08.006; Wollenberg A, Barbarot S, Bieber T, et al. Consensus-based European guidelines for treatment of atopic eczema (atopic dermatitis) in adults and children: part I. J Eur Acad Dermatol Venereol. 2018;32(5):657-682.; Reda AM, Ayman E, Ebraheem AI, et al. A practical algorithm for topical treatment of atopic dermatitis in the Middle East empha-sizing the importance of sensitive skin areas. J Dermatolog Treat. 2019;30(4):366-373. doi:10.1080/09546634.2018.1524823; Catherine M., Nebus J. Management of patients with atopic dermatitis: the role of emollient therapy. Dermatol Res Pract. 2012;2012:836931. doi:10.1155/2012/836931; Eichenfield LF, Tom WL, Berger TG, et al. Guidelines of care for the management of atopic dermatitis: section 2. Management and treatment of atopic dermatitis with topical therapies. J Am Acad Dermatol. 2014;71(1):116-132. doi:10.1016/j.jaad.2014.03.023; Hebert AA, Rippke, F, Weber TM, et al. Efficacy of Nonprescription Moisturizers for Atopic Dermatitis: An Updated Review of Clinical Evidence. Am J Clin Dermatol. 2020;21(5):641-655. doi:10.1007/s40257-020-00529-9; Simpson EL, Berry TM, Brown PA, Hanifin JM. A pilot study of emollient therapy for the primary prevention of atopic dermatitis. J Am Acad Dermatol. 2010;63(4):587-593. doi:10.1016/j.jaad.2009.11.011; Simpson EL, Chalmers JR, Hanifin JM, et al. Emollient enhancement of the skin barrier from birth offers effective atopic dermatitis prevention. J Allergy Clin Immunol. 2014;134(4):818-823. doi:10.1016/j.jaci.2014.08.005; Lowe A, Su J, Tang M, et al. PEBBLES study protocol: a randomised controlled trial to prevent atopic dermatitis, food allergy and sensitisation in infants with a family history of allergic disease using a skin barrier improvement strategy. BMJ Open. 2019;9(3):e024594. doi:10.1136/bmjopen-2018-024594; L0drup Carlsen KC, Rehbinder EM, Skjerven HO, et al. Preventing atopic dermatitis and ALLergies in children — the PreventADALL study. Allergy. 2018; 73(10):2063-2070. doi:10.1111/all.13468; Purnamawati S, Indrastuti N, Danarti R, Saefudin T. The Role of Moisturizers in Addressing Various Kinds of Dermatitis: A Review. Clin Med Res. 2017;15(3-4):75-87. doi:10.3121/cmr.2017.1363; Grimalt R, Mengeaud V, Cambazard F. The steroid-sparing effect of an emollient therapy in infants with atopic dermatitis: a randomized controlled study. Dermatology. 2007;214(1):61-67. doi:10.1159/000096915; Hon KL, Pong NH, Wang SS, et al. Acceptability and efficacy of an emollient containing ceramide-precursor lipids and moisturizing factors for atopic dermatitis in pediatric patients. Drugs R D. 2013;13(1):37-42. doi:10.1007/s40268-013-0004-x; Wollenberg A, Folster-Holst R, Saint Aroman M, et al. Effects of a protein-free oat plantlet extract on microinflammation and skin barrier function in atopic dermatitis patients. J Eur Acad Dermatol Venereol. 2018;32 (Suppl 1):1-15. doi:10.1111/jdv.14846; Topical skin care compositions. Patent. Publication Number: WO 2018/198039 A1. Publication Date: 01.11.2018. International Application No: PCT/IB2018/052866. International Filing Date: 25.04.2018. Applicant: DR. REDDY'S LABORATORIES LIMITED.; Mohammed D, Crowther JM, Matts PJ, et al. Influence of niacinamide containing formulations on the molecular and biophysical properties of the stratum corneum. Int J Pharm. 2013;441(1-2):192-201. doi:10.1016/j.ijpharm.2012.11.043; Coderch L, Lopez O, de la Maza A, Parra JL. Ceramides and skin function. Am J Clin Dermatol. 2003;4(2):107-129. doi:10.2165/00128071-200304020-00004; Kim ME, Kim HK, Kim DH, et al. Glycyrrhetinic acid from licorice root impairs dendritic cells maturation and Th1 immune responses. Immunopharmacol Immunotoxicol. 2013;35(3):329-335. doi:10.3109/08923973.2013.768636; Akihisa T, Kojima N, Kikuchi T, et al. Anti- inflammatory and chemopreventive effects of triterpene cinnamates and acetates from shea fat. J Oleo Sci. 2010;59(6):273-280. doi:10.5650/jos.59.273; Scapagnini G, Davinelli S, Di Renzo L, et al. Cocoa bioactive compounds: significance and potential for the maintenance of skin health. Nutrients. 2014;6(8):3202-3213. doi:10.3390/nu6083202; Abril-Gil M, Massot-Cladera M, Perez-Cano FJ, et al. A diet enriched with cocoa prevents IgE synthesis in a rat allergy model. Pharmacol Res. 2012;65(6):603-608. doi:10.1016/j.phrs.2012.02.001; Mandawgade SD, Patravale VB. Formulation and evaluation of exotic fat based cosmeceuticals for skin repair. Indian J Pharm Sci. 2008;70(4):539-542. doi:10.4103/0250-474X.44615

  7. 7
  8. 8

    Zdroj: Pediatric pharmacology; Том 15, № 4 (2018); 318-323 ; Педиатрическая фармакология; Том 15, № 4 (2018); 318-323 ; 2500-3089 ; 1727-5776

    Popis súboru: application/pdf

    Relation: https://www.pedpharma.ru/jour/article/view/1652/1021; Eichenfield LF, Tom WL, Berger TG, et al. Guidelines of care for the management of atopic dermatitis: section 2. Management and treatment of atopic dermatitis with topical therapies. J Am Acad Dermatol. 2014;71(1):116–132. doi:10.1016/j.jaad. 2014.03.023.; Baron SE, Cohen SN, Archer CB, et al. Guidance on the diagnosis and clinical management of atopic eczema. Clin Exp Dermatol. 2012;37 Suppl 1:7–12. doi:10.1111/j.1365-2230.2012.04336.x.; Williams H, Flohr C. How epidemiology has challenged 3 prevailing concepts about atopic dermatitis. J Allergy Clin Immunol. 2006;118(1):209–213. doi:10.1016/j.jaci.2006.04.043.; Williams HC. Clinical practice. Atopic dermatitis. N Engl J Med. 2005;352(22):2314–2324. doi:10.1056/NEJMcp042803.; Bieber T. Atopic dermatitis 2.0: from the clinical phenotype to the molecular taxonomy and stratified medicine. Allergy. 2012; 67(12):1475–1482. doi:10.1111/all.12049.; Jordan HF, Todd G, Sinclair W, Green RJ. Aetiopathogenesis of atopic dermatitis. S Afr Med J. 2014;104(10):706–709. doi:10.7196/samj.8840.; Aberg KM, Man MQ, Gallo RL, et al. Co-regulation and interdependence of the mammalian epidermal permeability and antiСПИСОК ЛИТЕРАТУРЫ microbial barriers. J Invest Dermatol. 2008;128(4):917–925. doi:10.1038/sj.jid.5701099.; Biedermann T. Dissecting the role of infections in atopic dermatitis. Acta Derm Venereol. 2006;86(2):99–109. doi:10.2340/ 00015555-0047.; Breuer K, Wittmann M, Bosche B, et al. Severe atopic dermatitis is associated with sensitization to Staphylococcal enterotoxin B (SEB). Allergy. 2000;55(6):551–555. doi:10.1034/j.1398- 9995.2000.00432.x.; Leung DY, Guttman-Yassky E. Deciphering the complexities of atopic dermatitis: shifting paradigms in treatment approaches. J Allergy Clin Immunol. 2014;134(4):769–779. doi:10.1016/j. jaci.2014.08.008.; De Benedetto A, Agnihothri R, McGirt LY, et al. Atopic Dermatitis: a disease caused by innate immune defects? J Invest Dermatol. 2009;129(1):14–30. doi:10.1038/jid.2008.259.; Niebuhr M, Werfel T. Innate immunity, allergy and atopic dermatitis. Curr Opin Allergy Clin Immunol. 2010;10(5):463–468. doi:10.1097/ACI.0b013e32833e3163.; Кудрявцева А.В., Катосова Л.К., Балаболкин И.П., Асеева В.Г. Роль золотистого стафилококка при атопическом дерматите у детей. Педиатрия. Журнал им. Г.Н. Сперанского. — 2003. — Т.82. — №6 — С. 32–36. [Kudryavtseva AV, Katosova LK, Balabolkin II, Aseeva VG. Role of Staphylococcus aureus in pediatric atopic dermatitis. Pediatriia. 2003;82(6):32–36. (In Russ).]; Kedzierska A, Kapinska-Mrowiecka M, Czubak-Macugowska M, et al. Susceptibility testing and resistance phenotype detection in Staphylococcus aureus strains isolated from patients with atopic dermatitis, with apparent and recurrent skin colonization. Br J Dermatol. 2008;159(6):1290–1299. doi:10.1111/j.1365- 2133.2008.08817.x.; Pinchuk IV, Beswick EJ, Reyes VE. Staphylococcal enterotoxins. Toxins (Basel). 2010;2(8):2177–2197. doi:10.3390/toxins2082177.; Pastuszka M, Matych M, Kaszuba A, et al. Microorganisms in the etiopathogenesis of atopic dermatitis. Postep Derm Alergol. 2012;29(3):215–221.; Boguniewicz M, Leung DY. Recent insights into atopic dermatitis and implications for management of infectious complications. J Allergy Clin Immunol. 2010;125(1):4–13. doi:10.1016/j. jaci.2009.11.027.; Ng JP, Liew HM, Ang SB. Use of emollients in atopic dermatitis. J Eur Acad Dermatol Venereol. 2015;29(5):854–857. doi:10.1111/ jdv.12864.; Намазова-Баранова Л.С., Баранов А.А., Кубанова А.А., и др. Атопический дерматит у детей: современные клинические рекомендации по диагностике и терапии // Вопросы современной педиатрии. — 2016. — Т.15. — №3 — С. 279–294. [Namazova-Baranova LS, Baranov AA, Kubanova AA, et al. Atopic Dermatitis in Children: Current Clinical Guidelines for Diagnosis and Therapy. Current pediatrics. 2016;15(3):279–294. (In Russ).] doi:10.15690/vsp.v15i3.1566.; Мурашкин Н.Н., Глузмин М.И., Материкин А.И., Хотко А.А. Корнеотерапия как метод коррекции эпидермальных нарушений при хронических дерматозах у детей // Эффективная фармакотерапия. — 2012. — №31 — С. 26–31. [Murashkin NN, Gluzmin MI, Materikin AI, Khotko AA. Korneoterapiya kak metod korrektsii epidermal'nykh narushenii pri khronicheskikh dermatozakh u detei. Effektivnaya farmakoterapiya. 2012;(31):26–31. (In Russ).]; Boisnic S, Branchet-Gumila MC, Segard C. Inhibitory effect of Avene spring water on vasoactive intestinal peptide-induced inflammation in surviving human skin. Int J Tissue React. 2001;23(3):89–95.; https://www.pedpharma.ru/jour/article/view/1652

  9. 9
  10. 10
  11. 11