Výsledky vyhľadávania - "церамиды"
-
1
Autori: a ďalší
Zdroj: Obstetrics, Gynecology and Reproduction; Online First ; Акушерство, Гинекология и Репродукция; Online First ; 2500-3194 ; 2313-7347
Predmety: таргетная терапия, ceramides, CERs, sphingosine-1-phosphate, S1P, ovarian reserve, oocytes, folliculogenesis, ovarian cancer, polycystic ovary syndrome, endometriosis, obesity, premature ovarian failure, reproductive health, angiogenesis, apoptosis, biomarkers, targeted therapy, церамиды, сфингозин-1-фосфат, овариальный резерв, ооциты, фолликулогенез, рак яичников, синдром поликистозных яичников, эндометриоз, ожирение, преждевременная недостаточность яичников, репродуктивное здоровье, ангиогенез
Popis súboru: application/pdf
Relation: https://www.gynecology.su/jour/article/view/2609/1406; Петров И.А., Дмитриева М.Л., Тихоновская О.А. и др. Тканевые и молекулярные основы фолликулогенеза. Механизмы раннего фолликулярного роста. Проблемы репродукции. 2017;23(5):33–41. https://doi.org/10.17116/repro201723533-41.; Pors S.E., Harðardóttir L., Olesen H.Ø. et al. Effect of sphingosine-1-phosphate on activation of dormant follicles in murine and human ovarian tissue. Mol Hum Reprod. 2020;26(5):301–11. https://doi.org/10.1093/molehr/gaaa022.; Zhang Y., Yan Z., Qin Q. et al. Transcriptome landscape of human folliculogenesis reveals oocyte and granulosa cell interactions. Mol Cell. 2018;72(6):1021–1034.e4. https://doi.org/10.1016/j.molcel.2018.10.029.; Hernández-Coronado C.G., Guzmán A., Castillo-Juárez H. et al. Sphingosine-1-phosphate (S1P) in ovarian physiology and disease. Ann Endocrinol (Paris). 2019;80(5–6):263–72. https://doi.org/10.1016/j.ando.2019.06.003.; Pitman M., Oehler M.K., Pitson S.M. Sphingolipids as multifaceted mediators in ovarian cancer. Cell Signal. 2021;81:109949. https://doi.org/10.1016/j.cellsig.2021.109949.; Quinville B.M., Deschenes N.M., Ryckman A.E., Walia J.S. A comprehensive review: sphingolipid metabolism and implications of disruption in sphingolipid homeostasis. Int J Mol Sci. 2021;22(11):5793. https://doi.org/10.3390/ijms22115793.; Sukocheva O., Wadham C., Holmes A. et al. Estrogen transactivates EGFR via the sphingosine 1-phosphate receptor Edg-3: the role of sphingosine kinase-1. J Cell Biol. 2006;173(2):301–10. https://doi.org/10.1083/jcb.200506033.; Chou C.H., Chen M.J. The effect of steroid hormones on ovarian follicle development. Vitam Horm. 2018;107:155–75. https://doi.org/10.1016/bs.vh.2018.01.013.; Zeleznik O.A., Clish C.B., Kraft P. et al. Circulating lysophosphatidylcholines, phosphatidylcholines, ceramides, and sphingomyelins and ovarian cancer risk: a 23-year prospective study. J Natl Cancer Inst. 2020;112(6):628–36. https://doi.org/10.1093/jnci/djz195.; Janneh A.H., Ogretmen B. Targeting sphingolipid metabolism as a therapeutic strategy in cancer treatment. Cancers (Basel). 2022;14(9):2183. https://doi.org/10.3390/cancers14092183.; Gomez-Larrauri A., Das Adhikari U., Aramburu-Nuñez M. et al. Ceramide metabolism enzymes-therapeutic targets against cancer. Medicina (Kaunas). 2021;57(7):729. https://doi.org/10.3390/medicina57070729.; Companioni O., Mir C., Garcia-Mayea Y., LLeonart M.E. Targeting sphingolipids for cancer therapy. Front Oncol. 2021;11:745092. https://doi.org/10.3389/fonc.2021.745092.; Yuan Y., Jia G., Wu C. et al. Structures of signaling complexes of lipid receptors S1PR1 and S1PR5 reveal mechanisms of activation and drug recognition. Cell Res. 2021;31(12):1263–74. https://doi.org/10.1038/s41422-021-00566-x.; Lucki N.C., Sewer M.B. The interplay between bioactive sphingolipids and steroid hormones. Steroids. 2010;75(6):390–9. https://doi.org/10.1016/j.steroids.2010.01.020.; Roth Z. Symposium review: reduction in oocyte developmental competence by stress is associated with alterations in mitochondrial function. J Dairy Sci. 2018;101(4):3642–54. https://doi.org/10.3168/jds.2017-13389.; Протопопов В.А., Секунов А.В., Панов А.В., Брындина И.Г. Взаимосвязь сфинголипидных механизмов с окислительным стрессом и изменениями митохондрий при функциональной разгрузке постуральных мышц. Acta Biomedica Scientifica. 2024;9(2):228–42. https://doi.org/10.29413/ABS.2024-9.2.23.; Kujjo L.L., Perez G.I. Ceramide and mitochondrial function in aging oocytes: joggling a new hypothesis and old players. Reproduction. 2012;143(1):1–10. https://doi.org/10.1530/REP-11-0350.; Zigdon H., Kogot-Levin A., Park J.W. et al. Ablation of ceramide synthase 2 causes chronic oxidative stress due to disruption of the mitochondrial respiratory chain. J Biol Chem. 2013;288(7):4947–56. https://doi.org/10.1074/jbc.M112.402719.; Arora A.S., Jones B.J., Patel T.C. et al. Ceramide induces hepatocyte cell death through disruption of mitochondrial function in the rat. Hepatology. 1997;25(4):958–63. https://doi.org/10.1002/hep.510250428.; Malott K.F., Luderer U. Toxicant effects on mammalian oocyte mitochondria†. Biol Reprod. 2021;104(4):784–93. https://doi.org/10.1093/biolre/ioab002.; Kasapoğlu I., Seli E. Mitochondrial dysfunction and ovarian aging. Endocrinology. 2020;161(2):bqaa001. https://doi.org/10.1210/endocr/bqaa001.; Smits M.A.J., Schomakers B.V., van Weeghel M. et al. Human ovarian aging is characterized by oxidative damage and mitochondrial dysfunction. Hum Reprod. 2023;38(11):2208–20. https://doi.org/10.1093/humrep/dead177.; Lee S., Kang H.G., Jeong P.S. et al. Heat stress impairs oocyte maturation through ceramide-mediated apoptosis in pigs. Sci Total Environ. 2021;755(Pt 1):144144. https://doi.org/10.1016/j.scitotenv.2020.144144.; Hernández-Coronado C.G., Guzmán A., Espinosa-Cervantes R. et al. Sphingosine-1-phosphate and ceramide are associated with health and atresia of bovine ovarian antral follicles. Animal. 2015;9(2):308–12. https://doi.org/10.1017/S1751731114002341.; Kujjo L.L., Acton B.M., Perkins G.A. et al. Ceramide and its transport protein (CERT) contribute to deterioration of mitochondrial structure and function in aging oocytes. Mech Ageing Dev. 2013;134(1–2):43–52. https://doi.org/10.1016/j.mad.2012.12.001.; Morita Y., Tilly J.L. Oocyte apoptosis: like sand through an hourglass. Dev Biol. 1999;213(1):1–17. https://doi.org/10.1006/dbio.1999.9344.; Hernández-Coronado C.G., Guzmán A., Rodríguez A. et al. Sphingosine-1-phosphate, regulated by FSH and VEGF, stimulates granulosa cell proliferation. Gen Comp Endocrinol. 2016;236:1–8. https://doi.org/10.1016/j.ygcen.2016.06.029.; Hao X., Zhang M. Roles of sphingosine-1-phosphate in follicle development and oocyte maturation. Anim Res One Health. 2024;2(3):314–22. https://doi.org/10.1002/aro2.53.; Park J.Y., Su Y.Q., Ariga M. et al. EGF-like growth factors as mediators of LH action in the ovulatory follicle. Science. 2004;303(5658):682–4. https://doi.org/10.1126/science.1092463.; Yamanaka M., Shegogue D., Pei H. et al. Sphingosine kinase 1 (SPHK1) is induced by transforming growth factor-beta and mediates TIMP-1 up-regulation. J Biol Chem. 2004;279(52):53994–4001. https://doi.org/10.1074/jbc.M410144200.; Squecco R., Sassoli C., Nuti F. et al. Sphingosine 1-phosphate induces myoblast differentiation through Cx43 protein expression: a role for a gap junction-dependent and -independent function. Mol Biol Cell. 2006;17(11):4896–910. https://doi.org/10.1091/mbc.e06-03-0243.; Giepmans B.N., Verlaan I., Hengeveld T. et al. Gap junction protein connexin-43 interacts directly with microtubules. Curr Biol. 2001;11(17):1364–8. https://doi.org/10.1016/s0960-9822(01)00424-9.; Hao X., Wang Y., Kong N. et al. Growth factor-mobilized intracellular calcium of cumulus cells decreases natriuretic peptide receptor 2 affinity for natriuretic peptide type C and induces oocyte meiotic resumption in the mouse. Biol Reprod. 2016;95(2):45. https://doi.org/10.1095/biolreprod.116.140137.; Yuan F., Hao X., Cui Y. et al. SphK-produced S1P in somatic cells is indispensable for LH-EGFR signaling-induced mouse oocyte maturation. Cell Death Dis. 2022;13(11):963. https://doi.org/10.1038/s41419-022-05415-2.; Mostafa S., Nader N., Machaca K. Lipid signaling during gamete maturation. Front Cell Dev Biol. 2022;10:814876. https://doi.org/10.3389/fcell.2022.814876.; Birbes H., El Bawab S., Hannun Y.A., Obeid L.M. Selective hydrolysis of a mitochondrial pool of sphingomyelin induces apoptosis. FASEB J. 2001;15(14):2669–79. https://doi.org/10.1096/fj.01-0539com.; Hernández-Corbacho M.J., Salama M.F., Canals D. et al. Sphingolipids in mitochondria. Biochim Biophys Acta Mol Cell Biol Lipids. 2017;1862(1):56–68. https://doi.org/10.1016/j.bbalip.2016.09.019.; Ueda N. Ceramide-induced apoptosis in renal tubular cells: a role of mitochondria and sphingosine-1-phoshate. Int J Mol Sci. 2015;16(3):5076–124. https://doi.org/10.3390/ijms16035076.; Fisher-Wellman K.H., Hagen J.T., Neufer P.D. et al. On the nature of ceramide-mitochondria interactions – dissection using comprehensive mitochondrial phenotyping. Cell Signal. 2021;78:109838. https://doi.org/10.1016/j.cellsig.2020.109838.; Eliyahu E., Shtraizent N., Martinuzzi K. et al. Acid ceramidase improves the quality of oocytes and embryos and the outcome of in vitro fertilization. FASEB J. 2010;24(4):1229–38. https://doi.org/10.1096/fj.09-145508.; Santiquet N.W., Greene A.F, Becker J. et al. A pre-in vitro maturation medium containing cumulus oocyte complex ligand-receptor signaling molecules maintains meiotic arrest, supports the cumulus oocyte complex and improves oocyte developmental competence. Mol Hum Reprod. 2017;23(9):594–606. https://doi.org/10.1093/molehr/gax032.; Eliyahu E., Shtraizent N., Shalgi R., Schuchman E.H. Construction of conditional acid ceramidase knockout mice and in vivo effects on oocyte development and fertility. Cell Physiol Biochem. 2012;30(3):735–48. https://doi.org/10.1159/000341453.; Morita Y., Perez G.I., Paris F. et al. Oocyte apoptosis is suppressed by disruption of the acid sphingomyelinase gene or by sphingosine-1-phosphate therapy. Nat Med. 2000;6(10):1109–14. https://doi.org/10.1038/80442.; Coll O., Morales A., Fernández-Checa J.C., Garcia-Ruiz C. Neutral sphingomyelinase-induced ceramide triggers germinal vesicle breakdown and oxidant-dependent apoptosis in Xenopus laevis oocytes. J Lipid Res. 2007;48(9):1924–35. https://doi.org/10.1194/jlr.M700069-JLR200.; Yuan F., Wang Z., Sun Y. et al. Sgpl1 deletion elevates S1P levels, contributing to NPR2 inactivity and p21 expression that block germ cell development. Cell Death Dis. 2021;12(6):574. https://doi.org/10.1038/s41419-021-03848-9.; Morita Y., Tilly J.L. Sphingolipid regulation of female gonadal cell apoptosis. Ann N Y Acad Sci. 2000;905:209–20. https://doi.org/10.1111/j.1749-6632.2000.tb06551.x.; Knapp P., Chomicz K., Świderska M. et al. Unique roles of sphingolipids in selected malignant and nonmalignant lesions of female reproductive system. Biomed Res Int. 2019;2019:4376583. https://doi.org/10.1155/2019/4376583.; Kreitzburg K.M., van Waardenburg R.C.A.M., Yoon K.J. Sphingolipid metabolism and drug resistance in ovarian cancer. Cancer Drug Resist. 2018;1:181–97. https://doi.org/10.20517/cdr.2018.06.; Rutherford T., Brown W.D., Sapi E. et al. Absence of estrogen receptor-beta expression in metastatic ovarian cancer. Obstet Gynecol. 2000;96(3):417–21. https://doi.org/10.1016/s0029-7844(00)00917-0.; Jeon S.-Y., Hwang K.-A., Choi K.-C. Effect of steroid hormones, estrogen and progesterone, on epithelial mesenchymal transition in ovarian cancer development. J Steroid Biochem Mol Biol. 2016;158:1–8. https://doi.org/10.1016/j.jsbmb.2016.02.005.; Mungenast F., Thalhammer T. Estrogen biosynthesis and action in ovarian cancer. Front Endocrinol (Lausanne). 2014;5:192. https://doi.org/10.3389/fendo.2014.00192.; Giaccari C., Antonouli S., Anifandis G. et al. An update on physiopathological roles of Akt in the reprodAKTive mammalian ovary. Life (Basel). 2024;14(6):722. https://doi.org/10.3390/life14060722.; Yang Y., Lang P., Zhang X. et al. Molecular characterization of extracellular vesicles derived from follicular fluid of women with and without PCOS: integrating analysis of differential miRNAs and proteins reveals vital molecules involving in PCOS. J Assist Reprod Genet. 2023;40(3):537–52. https://doi.org/10.1007/s10815-023-02724-z.; Liu L., Yin T.L., Chen Y. et al. Follicular dynamics of glycerophospholipid and sphingolipid metabolisms in polycystic ovary syndrome patients. J Steroid Biochem Mol Biol. 2019;185:142–9. https://doi.org/10.1016/j.jsbmb.2018.08.008.; Shi Y., Zhao H., Shi Y. et al. Genome-wide association study identifies eight new risk loci for polycystic ovary syndrome. Nat Genet. 2012;44(9):1020–5. https://doi.org/10.1038/ng.2384.; Parasar P., Ozcan P., Terry K.L. Endometriosis: epidemiology, diagnosis and clinical management. Curr Obstet Gynecol Rep. 2017;6(1):34–41. https://doi.org/10.1007/s13669-017-0187-1.; Lee Y.H., Tan C.W., Venkatratnam A. et al. Dysregulated sphingolipid metabolism in endometriosis. J Clin Endocrinol Metab. 2014;99(10):E1913–21. https://doi.org/10.1210/jc.2014-1340.; Zhang Q., Duan J., Liu X., Guo S.W. Platelets drive smooth muscle metaplasia and fibrogenesis in endometriosis through epithelial-mesenchymal transition and fibroblast-to-myofibroblast transdifferentiation. Mol Cell Endocrinol. 2016;428:1–16. https://doi.org/10.1016/j.mce.2016.03.015.; Bernacchioni C., Capezzuoli T., Vannuzzi V. et al. Sphingosine 1-phosphate receptors are dysregulated in endometriosis: possible implication in transforming growth factor β-induced fibrosis. Fertil Steril. 2021;115(2):501–11. https://doi.org/10.1016/j.fertnstert.2020.08.012.; Turathum B., Gao E.M., Grataitong K. et al. Dysregulated sphingolipid metabolism and autophagy in granulosa cells of women with endometriosis. Front Endocrinol (Lausanne). 2022;13:906570. https://doi.org/10.3389/fendo.2022.906570.; Itami N., Shirasuna K., Kuwayama T., Iwata H. Palmitic acid induces ceramide accumulation, mitochondrial protein hyperacetylation, and mitochondrial dysfunction in porcine oocytes. Biol Reprod. 2018;98(5):644–53. https://doi.org/10.1093/biolre/ioy023.; Fucho R., Casals N., Serra D., Herrero L. Ceramides and mitochondrial fatty acid oxidation in obesity. FASEB J. 2017;31(4):1263–72. https://doi.org/10.1096/fj.201601156R.; Torretta E., Barbacini P., Al-Daghri N.M., Gelfi C. Sphingolipids in obesity and correlated co-morbidities: the contribution of gender, age and environment. Int J Mol Sci. 2019;20(23):5901. https://doi.org/10.3390/ijms20235901.; Samad F., Hester K.D., Yang G. et al. Altered adipose and plasma sphingolipid metabolism in obesity: a potential mechanism for cardiovascular and metabolic risk. Diabetes. 2006;55(9):2579–87. https://doi.org/10.2337/db06-0330.; Shibahara H., Ishiguro A., Inoue Y. et al. Mechanism of palmitic acid-induced deterioration of in vitro development of porcine oocytes and granulosa cells. Theriogenology. 2020;141:54–61. https://doi.org/10.1016/j.theriogenology.2019.09.006.; Levi A.J., Raynault M.F., Bergh P.A. et al. Reproductive outcome in patients with diminished ovarian reserve. Fertil Steril. 2001;76(4):666–9. https://doi.org/10.1016/s0015-0282(01)02017-9.; Timur B., Aldemir O., İnan N. et al. Clinical significance of serum and follicular fluid ceramide levels in women with low ovarian reserve. Turk J Obstet Gynecol. 2022;19(3):207–14. https://doi.org/10.4274/tjod.galenos.2022.05760.; Alizadeh J., da Silva Rosa S.C., Weng X. et al. Ceramides and ceramide synthases in cancer: Focus on apoptosis and autophagy. Eur J Cell Biol. 2023;102(3):151337. https://doi.org/10.1016/j.ejcb.2023.151337.; Nakahara T., Iwase A., Nakamura T. et al. Sphingosine-1-phosphate inhibits H2O2-induced granulosa cell apoptosis via the PI3K/Akt signaling pathway. Fertil Steril. 2012;98(4):1001–8.e1. https://doi.org/10.1016/j.fertnstert.2012.06.008.; Valtetsiotis K., Valsamakis G., Charmandari E., Vlahos N.F. Metabolic mechanisms and potential therapeutic targets for prevention of ovarian aging: data from up-to-date experimental studies. Int J Mol Sci. 2023;24(12):9828. https://doi.org/10.3390/ijms24129828.; Li F., Turan V., Lierman S. et al. Sphingosine-1-phosphate prevents chemotherapy-induced human primordial follicle death. Hum Reprod. 2014;29(1):107–13. https://doi.org/10.1093/humrep/det391.; Pascuali N., Scotti L., Di Pietro M. et al. Ceramide-1-phosphate has protective properties against cyclophosphamide-induced ovarian damage in a mice model of premature ovarian failure. Hum Reprod. 2018;33(5):844–59. https://doi.org/10.1093/humrep/dey045.; Абусуева З.А., Мухтарова М.М., Хашаева Т.Х. и др. Компаративная оценка провоспалительных цитокинов у женщин с диагностированными наследственными тромбофилиями различного генеза и их ассоциация с ранними и поздними эмбриональными потерями. Проблемы репродукции. 2022;28(3):10–7. https://doi.org/10.17116/repro20222803110.; Cianci A., Calogero A.E., Palumbo M.A. et al. Relationship between tumour necrosis factor alpha and sex steroid concentrations in the follicular fluid of women with immunological infertility. Hum Reprod. 1996;11(2):265–8. https://doi.org/10.1093/humrep/11.2.265.; Banaras S., Paracha R.Z., Nisar M. et al. System level modeling and analysis of TNF-α mediated sphingolipid signaling pathway in neurological disorders for the prediction of therapeutic targets. Front Physiol. 2022;13:872421. https://doi.org/10.3389/fphys.2022.872421.; Sukocheva O.A., Neganova M.E., Aleksandrova Y/ et al. Signaling controversy and future therapeutical perspectives of targeting sphingolipid network in cancer immune editing and resistance to tumor necrosis factor-α immunotherapy. Cell Commun Signal. 2024;22(1):251. https://doi.org/10.1186/s12964-024-01626-6.; Kolesnick R. The therapeutic potential of modulating the ceramide/sphingomyelin pathway. J Clin Invest. 2002;110(1):3–8. https://doi.org/10.1172/JCI16127.; Di Paolo A., Vignini A., Alia S. et al. Pathogenic role of the sphingosine 1-phosphate (S1P) pathway in common gynecologic disorders (GDs): a possible novel therapeutic target. Int J Mol Sci. 2022;23(21):13538. https://doi.org/10.3390/ijms232113538.; Коваль О.М., Хачанова Н.В., Журавлева М.В. и др. Безопасность воспроизведенного финголимода. Безопасность и риск фармакотерапии. 2018;6(1):23–31. https://doi.org/10.30895/2312-7821-2018-6-1-23-31.; https://www.gynecology.su/jour/article/view/2609
-
2
Autori: a ďalší
Prispievatelia: a ďalší
Zdroj: Translational Medicine; Том 11, № 4 (2024); 309-323 ; Трансляционная медицина; Том 11, № 4 (2024); 309-323 ; 2410-5155 ; 2311-4495
Predmety: церамиды, ceramides, high-performance liquid chromatography tandem mass spectrometry, lipidomic analysis, липидомный анализ, острый коронарный синдром
Popis súboru: application/pdf
Relation: https://transmed.almazovcentre.ru/jour/article/view/938/579; https://transmed.almazovcentre.ru/jour/article/downloadSuppFile/938/2118; https://transmed.almazovcentre.ru/jour/article/downloadSuppFile/938/2119; https://transmed.almazovcentre.ru/jour/article/downloadSuppFile/938/2120; https://transmed.almazovcentre.ru/jour/article/downloadSuppFile/938/2121; Usova EI, Alieva AS, Yakovlev AN, et al. Integrative Analysis of Multi-Omics and Genetic Approaches-A New Level in Atherosclerotic Cardiovascular Risk Prediction. Biomolecules. 2021;11(11):1597. DOI:10.3390/biom11111597.; McGurk KA, Keavney BD, Nicolaou A. Circulating ceramides as biomarkers of cardiovascular disease: Evidence from phenotypic and genomic studies. Atherosclerosis. 2021;327:18–30. DOI:10.1016/j.atherosclerosis.2021.04.021.; Cheng JM, Suoniemi M, Kardys I, et al. Plasma concentrations of molecular lipid species in relation to coronary plaque characteristics and cardiovascular outcome: Results of the ATHEROREMO-IVUS study. Atherosclerosis. 2015;243(2):560–6. DOI:10.1016/j.atherosclerosis.2015.10.022.; Meeusen JW, Donato LJ, Kopecky SL, et al. Ceramides improve atherosclerotic cardiovascular disease risk assessment beyond standard risk factors. Clin Chim Acta. 2020;511:138–142. DOI:10.1016/j.cca.2020.10.005.; Laaksonen R, Ekroos K, Sysi-Aho M, et al. Plasma ceramides predict cardiovascular death in patients with stable coronary artery disease and acute coronary syndromes beyond LDL-cholesterol. Eur Heart J. 2016;37(25):1967–76. DOI:10.1093/eurheartj/ehw148.; Усова Е.И., Малишевский Л.М., Алиева А.С. и др. Анализ предикторов риска развития повторных острых сердечно-сосудистых событий у пациентов с острым коронарным синдромом. Российский кардиологический журнал. 2024;29(6):5881]. DOI:10.15829/1560-4071-2024-5881.; Eggers LF, Schwudke D. Liquid Extraction: Folch. Encyclopedia of Lipidomics, 2016; 1–6. DOI:10.1007/978-94-007-7864-1_89-1.; Tan SH, Koh HWL, Chua JY, et al. Variability of the Plasma Lipidome and Subclinical Coronary Atherosclerosis. Arterioscler Thromb Vasc Biol. 2022;42(1):100–112. DOI:10.1161/ATVBAHA.121.316847.; de Carvalho LP, Tan SH, Ow GS, et al. Plasma Ceramides as Prognostic Biomarkers and Their Arterial and Myocardial Tissue Correlates in Acute Myocardial Infarction. JACC Basic Transl Sci. 2018;3(2):163–175. DOI:10.1016/j.jacbts.2017.12.005.; Burrello J, Biemmi V, Dei Cas M, et al. Sphingolipid composition of circulating extracellular vesicles after myocardial ischemia. Sci Rep. 2020;10(1):16182. DOI:10.1038/s41598-020-73411-7.; Akhiyat N, Vasile V, Ahmad A, et al. Plasma Ceramide Levels Are Elevated in Patients With Early Coronary Atherosclerosis and Endothelial Dysfunction. J Am Heart Assoc. 2022;11(7):e022852. DOI:10.1161/JAHA.121.022852.; Meeusen JW, Donato LJ, Bryant SC, et al. Plasma Ceramides. Arterioscler Thromb Vasc Biol. 2018;38(8):1933– 1939. DOI:10.1161/ATVBAHA.118.311199.; Tu C, Xie L, Wang Z, et al. Association between ceramides and coronary artery stenosis in patients with coronary artery disease. Lipids Health Dis. 2020;19(1):151. DOI:10.1186/s12944-020-01329-0.; Jensen PN, Fretts AM, Hoofnagle AN, et al. Plasma Ceramides and Sphingomyelins in Relation to Atrial Fibrillation Risk: The Cardiovascular Health Study. J Am Heart Assoc. 2020;9(4):e012853. DOI:10.1161/JAHA.119.012853.; Gencer B, Morrow DA, Braunwald E, et al. Plasma ceramide and phospholipid-based risk score and the risk of cardiovascular death in patients after acute coronary syndrome. Eur J Prev Cardiol. 2022;29(6):895–902. DOI:10.1093/eurjpc/zwaa143.; Li F, Li D, Yu J, et al. Association Between Plasma Ceramides and One-Year Mortality in Patients with Acute Coronary Syndrome: Insight from the PEACP Study. Clin Interv Aging. 2023;18:571–584. DOI:10.2147/CIA.S402253.; Gaggini M, Michelucci E, Ndreu R, et al. Lipidomic Analysis to Assess the Correlation between Ceramides, Stress Hyperglycemia, and HbA1c in Acute Myocardial Infarction. Molecules. 2023;28(2):716. DOI:10.3390/molecules28020716.; Knapp M, Lisowska A, Knapp P, Baranowski M. Dose-dependent effect of aspirin on the level of sphingolipids in human blood. Adv Med Sci. 2013;58(2):274–81. DOI:10.2478/ams-2013-0021.; Tarasov K, Ekroos K, Suoniemi M, et al. Molecular lipids identify cardiovascular risk and are efficiently lowered by simvastatin and PCSK9 deficiency. J Clin Endocrinol Metab. 2014;99(1):E45–52. DOI:10.1210/jc.2013-2559.; Ng TW, Ooi EM, Watts GF, et al. Dose-dependent effects of rosuvastatin on the plasma sphingolipidome and phospholipidome in the metabolic syndrome. J Clin Endocrinol Metab. 2014;99(11):e2335–40. DOI:10.1210/jc.2014-1665.; Ye Q, Svatikova A, Meeusen JW, et al. Effect of Proprotein Convertase Subtilisin/Kexin Type 9 Inhibitors on Plasma Ceramide Levels. Am J Cardiol. 2020;128:163–167. DOI:10.1016/j.amjcard.2020.04.052.; https://transmed.almazovcentre.ru/jour/article/view/938
-
3
Autori: a ďalší
Zdroj: Байкальский медицинский журнал, Vol 2, Iss 3, Pp 59-61 (2023)
Predmety: церамиды, жировая ткань сердца, ишемическая болезнь сердца, приобретенные пороки сердца, Medicine (General), R5-920
Popis súboru: electronic resource
Prístupová URL adresa: https://doaj.org/article/0476ea99477c40cebd459ef50b794e38
-
4
Autori: Pavlovskyi, L.L.
Zdroj: GASTROENTEROLOGY; Том 54, № 2 (2020); 96-100
Гастроэнтерология-Gastroenterologìa; Том 54, № 2 (2020); 96-100
Гастроентерологія-Gastroenterologìa; Том 54, № 2 (2020); 96-100Predmety: 03 medical and health sciences, 0302 clinical medicine, non-alcoholic fatty liver disease, insulin resistance, type 2 diabetes, ceramides, неалкогольная жировая болезнь печени, инсулинорезистентность, сахарный диабет 2 типа, церамиды, неалкогольна жирова хвороба печінки, інсулінорезистентність, цукровий діабет 2 типу, цераміди, 3. Good health
Popis súboru: application/pdf
-
5
Zdroj: Госпитальная медицина: наука и практика. :20-26
Predmety: hereditary epilepsy, миоклонус, ceramides, прогрессирующая миоклоническая эпилепсия, наследственная эпилепсия, церамидсинтаза, myoclonus, 3. Good health, электроэнцефалография, juvenile myoclonic epilepsy, ceramide synthase, progressive myoclonic epilepsy, эпилепсия, ювенильная миоклоническая эпилепсия, epilepsy, церамиды, electroencephalography
-
6
Autori: a ďalší
Prispievatelia: a ďalší
Zdroj: Current Pediatrics; Том 20, № 5 (2021); 435-440 ; Вопросы современной педиатрии; Том 20, № 5 (2021); 435-440 ; 1682-5535 ; 1682-5527
Predmety: церамиды, filaggrin, emollient, filagrinol, epidermal barrier, corneal layer, ceramides, филаггрин, эмоленты, филагринол, эпидермальный барьер, роговой слой
Popis súboru: application/pdf
Relation: https://vsp.spr-journal.ru/jour/article/view/2749/1090; Maliyar K, Sibbald C, Pope E, et al. Diagnosis and Management of Atopic Dermatitis. Adv Skin Wound Care. 2018;31(12):538-550. doi:10.1097/01.asw.0000547414.38888.8d; Drucker AM, Wang AR, Li WQ, et al. The Burden of Atopic Dermatitis: Summary of a Report for the National Eczema Association. J Investig Dermatol. 2017;137(1):26-30. doi:10.1016/j.jid.2016.07.012; Xu X, van Galen LS, Koh MJ., et al. Factors influencing quality of life in children with atopic dermatitis and their caregivers: A crosssectional study. Sci Rep. 2019;9(1):15990. doi:10.1038/s41598-019-51129-5; Mallol J, Crane J, von Mutius E, et al. The International Study of Asthma and Allergies in Childhood (ISAAC) Phase Three: A global synthesis. Allergol Immunopathol. 2013;41(2):73-85. doi:10.1016/j.aller.2012.03.001; Asher MI, Montefort S, Bjorksten B, et al. Worldwide time trends in the prevalence of symptoms of asthma, allergic rhinoconjunctivitis, and eczema in childhood: ISAAC Phases One and Three repeat multicountry cross-sectional surveys. Lancet. 2006;368(9537):733-743. doi:10.1016/s0140-6736(06)69283-0; Larsen FS, Hanifin JM. Epidemiology of atopic dermatitis. Immunol Allergy Clin North Am. 2002;22(1):1-24. doi:10.1016/s0889-8561(03)00066-3; National Center for Health Statistics. National Health and Nutrition Examination Survey (NHANES) body composition procedures manual. Centers for Disease Control and Prevention. Hyattsville, MD; 2006.; Deckers I.A., McLean S., Linssen S., et al. Investigating international time trends in the incidence and prevalence of atopic eczema 1990-2010: A systematic review of epidemiologic studies. PLoS One. 2012;7(7):e39803. doi:10.1371/journal.pone.0039803; Kowalska-Olędzka E, Czarnecka M, Baran A. Epidemiology of atopic dermatitis in Europe. J Drug Assess. 2019;8(1):126-128. doi:10.1080/21556660.2019.1619570; Shaw TE, Currie GP, Koudelka CW, Simpson EL. Eczema prevalence in the United States: data from the 2003 National Survey of Children's Health. J Invest Dermatol. 2011;131(1):67-73. doi:10.1038/jid.2010.251; Yang G, Seok JK, Kang HC, et al. Skin Barrier Abnormalities and Immune Dysfunction in Atopic Dermatitis. Int J Mol Sci. 2020;21(8):2867. doi:10.3390/ijms21082867; Kubo A, Nagao K, Amagai M. Epidermal barrier dysfunction and cutaneous sensitization in atopic diseases. J Clin Invest. 2012;122(2):440-447. doi:10.1172/JCI57416; Michael JC, Simon GD, Yiannis V, et al. Epidermal barrier dysfunction in atopic dermatitis. J Invest Dermatol. 2009;129(8):1892-1908. doi:10.1038/jid.2009.133; Bosko CA. Skin Barrier Insights: From Bricks and Mortar to Molecules and Microbes. J Drugs Dermatol. 2019;18(1s):s63-s67.; Wickett RR, Visscher MO. Structure and function of the epidermal barrier. Am J Infect Control. 2006;34(10):S98-S110. doi:10.1016/j.ajic.2006.05.295; Matsui T, Amagai M. Dissecting the formation, structure and barrier function of the stratum corneum. Int Immunol. 2015;27(6):269-280. doi:10.1093/intimm/dxv013; Segre JA. Epidermal barrier formation and recovery in skin disorders. J Clin Invest. 2006;116(5):1150-1158. doi:10.1172/JCI28521; Natsuga K. Epidermal barriers. Cold Spring Harb Perspect Med. 2014;4(4):a018218. doi:10.1101/cshperspect.a018218; Munoz-Garcia A, Thomas CP Keeney DS, et al. The importance of the lipoxygenase-hepoxilin pathway in the mammalian epidermal barrier. Biochim Biophys Acta. 2014;1841(3):401-408. doi:10.1016/j.bbalip.2013.08.020; Nakagawa N, Sakai S, Matsumoto M, et al. Relationship between NMF (lactate and potassium) content and the physical properties of the stratum corneum in healthy subjects. J Invest Dermatol. 2004;122(3):755-763. doi:10.1111/j.0022-202X.2004.22317.x; Sroka-Tomaszewska J, Trzeciak M. Molecular Mechanisms of Atopic Dermatitis Pathogenesis. Int J Mol Sci. 2021;22(8):4130. doi:10.3390/ijms22084130; Presland RB, Haydock PV, Fleckman P, et al. Characterization of the human epidermal profilaggrin gene. Genomic organization and identification of an S-100-like calcium binding domain at the amino terminus. J Biol Chem. 1992;267:23772-23781.; Palmer CN, Irvine AD, Terron-Kwiatkowski A, et al. Common loss-of-function variants of the epidermal barrier protein filaggrin are a major predisposing factor for atopic dermatitis. Nat Genet. 2006;38(4):441-446. doi:10.1038/ng1767; Brown SJ, Irvine AD. Atopic eczema and the filaggrin story. Semin Cutan Med Surg. 2008;27(2):128-137. doi:10.1016/j.sder.2008.04.001; Izadi N, Luu M, Ong PY, Tam JS. The Role of Skin Barrier in the Pathogenesis of Food Allergy. Children (Basel). 2015;2(3):382-402. doi:10.3390/children2030382; Osawa R, Akiyama M, Shimizu H. Filaggrin gene defects and the risk of developing allergic disorders. Allergol Int. 2011;60(1):1-9. doi:10.2332/allergolint.10-RAI-0270; Brown SJ, McLean WH. Eczema genetics: current state of knowledge and future goals. J Invest Dermatol. 2009;129(3):543-552. doi:10.1038/jid.2008.413; O'Regan GM, Sandilands A, McLean WHI, Irvine AD. Filaggrin in atopic dermatitis. J Allergy Clin Immunol. 2008;122(4):689-693. doi:10.1016/j.jaci.2008.08.002; Irvine AD, McLean WH, Leung DY. Filaggrin mutations associated with skin and allergic diseases. N Engl J Med. 2011;365(14):1315-1327. doi:10.1056/NEJMra1011040; McPherson T. Current Understanding in Pathogenesis of Atopic Dermatitis. Indian J Dermatol. 2016;61(6):649-655. doi:10.4103/0019-5154.193674; McAleer MA, Irvine AD. The multifunctional role of filaggrin in allergic skin disease. J Allergy Clin Immunol. 2013;131(2):280-291. doi:10.1016/j.jaci.2012.12.668; Zheng T, Yu J, Oh MH, Zhu Z. The atopic march: progression from atopic dermatitis to allergic rhinitis and asthma. Allergy Asthma Immunol Res. 2011;3(2):6773. doi:10.4168/aair.2011.3.2.67; Belgrave DC, Granell R, Simpson A, et al. Developmental profiles of eczema, wheeze, and rhinitis: two population-based birth cohort studies. PLoS Med. 2014;11(10):e1001748. doi:10.1371/journal.pmed.1001748; Irvine A.D., Mina-Osorio P. Disease trajectories in childhood atopic dermatitis: an update and practitioner's guide. Br J Dermatol. 2019;181(5):895-906. doi:10.1111/bjd.17766; Chan A, Terry W, Zhang H, et al. Filaggrin mutations increase allergic airway disease in childhood and adolescence through interactions with eczema and aeroallergen sensitization. Clin Exp Allergy. 2018;48(2):147-155. doi:10.1111/cea.13077; Venkataraman D, Soto-Ramfrez N, Kurukulaaratchy RJ, et al. Filaggrin loss-of-function mutations are associated with food allergy in childhood and adolescence. J Allergy Clin Immunol. 2014;134(4):876-882.e4. doi:10.1016/j.jaci.2014.07.033; Rodnguez E, Baurecht H, Herberich E, et al. Meta-analysis of filaggrin polymorphisms in eczema and asthma: robust risk factors in atopic disease. J Allergy Clin Immunol. 2009;123(6):1361-1370. e7. doi:10.1016/j.jaci.2009.03.036; Miajlovic H, Fallon PG, Irvine AD, Foster TJ. Effect of filag-grin breakdown products on growth of and protein expression by Staphylococcus aureus. J Allergy Clin Immunol. 2010;126(6):1184-1190. doi:10.1016/j.jaci.2010.09.015; Rabinowitz LG, Esterly NB. Atopic dermatitis and ichthyosis vulgaris. Pediatr Rev. 1994;15(6):220-226; quiz 226. doi:10.1542/pir.15-6-220; Sehgal VN, Khurana A, Mendiratta V, et al. Atopic dermatitis: Clinical connotations, especially a focus on concomitant atopic undertones in immunocompromised/susceptible genetic and metabolic disorders. Indian J Dermatol. 2016;(61):241-250. doi:10.4103/0019-5154.182433; Howell MD, Kim BE, Gao P, et al. Cytokine modulation of atopic dermatitis filaggrin skin expression. J Allergy Clin Immunol. 2007;120(1):150-155. doi:10.1016/j.jaci.2007.04.031; Arakawa H, Shimojo N, Katoh N, et al. Consensus statements on pediatric atopic dermatitis from dermatology and pediatrics practitioners in Japan: Goals of treatment and topical therapy. Allergol Int. 2020;69(1):84-90. doi:10.1016/j.alit.2019.08.006; Wollenberg A, Barbarot S, Bieber T, et al. Consensus-based European guidelines for treatment of atopic eczema (atopic dermatitis) in adults and children: part I. J Eur Acad Dermatol Venereol. 2018;32(5):657-682.; Reda AM, Ayman E, Ebraheem AI, et al. A practical algorithm for topical treatment of atopic dermatitis in the Middle East empha-sizing the importance of sensitive skin areas. J Dermatolog Treat. 2019;30(4):366-373. doi:10.1080/09546634.2018.1524823; Catherine M., Nebus J. Management of patients with atopic dermatitis: the role of emollient therapy. Dermatol Res Pract. 2012;2012:836931. doi:10.1155/2012/836931; Eichenfield LF, Tom WL, Berger TG, et al. Guidelines of care for the management of atopic dermatitis: section 2. Management and treatment of atopic dermatitis with topical therapies. J Am Acad Dermatol. 2014;71(1):116-132. doi:10.1016/j.jaad.2014.03.023; Hebert AA, Rippke, F, Weber TM, et al. Efficacy of Nonprescription Moisturizers for Atopic Dermatitis: An Updated Review of Clinical Evidence. Am J Clin Dermatol. 2020;21(5):641-655. doi:10.1007/s40257-020-00529-9; Simpson EL, Berry TM, Brown PA, Hanifin JM. A pilot study of emollient therapy for the primary prevention of atopic dermatitis. J Am Acad Dermatol. 2010;63(4):587-593. doi:10.1016/j.jaad.2009.11.011; Simpson EL, Chalmers JR, Hanifin JM, et al. Emollient enhancement of the skin barrier from birth offers effective atopic dermatitis prevention. J Allergy Clin Immunol. 2014;134(4):818-823. doi:10.1016/j.jaci.2014.08.005; Lowe A, Su J, Tang M, et al. PEBBLES study protocol: a randomised controlled trial to prevent atopic dermatitis, food allergy and sensitisation in infants with a family history of allergic disease using a skin barrier improvement strategy. BMJ Open. 2019;9(3):e024594. doi:10.1136/bmjopen-2018-024594; L0drup Carlsen KC, Rehbinder EM, Skjerven HO, et al. Preventing atopic dermatitis and ALLergies in children — the PreventADALL study. Allergy. 2018; 73(10):2063-2070. doi:10.1111/all.13468; Purnamawati S, Indrastuti N, Danarti R, Saefudin T. The Role of Moisturizers in Addressing Various Kinds of Dermatitis: A Review. Clin Med Res. 2017;15(3-4):75-87. doi:10.3121/cmr.2017.1363; Grimalt R, Mengeaud V, Cambazard F. The steroid-sparing effect of an emollient therapy in infants with atopic dermatitis: a randomized controlled study. Dermatology. 2007;214(1):61-67. doi:10.1159/000096915; Hon KL, Pong NH, Wang SS, et al. Acceptability and efficacy of an emollient containing ceramide-precursor lipids and moisturizing factors for atopic dermatitis in pediatric patients. Drugs R D. 2013;13(1):37-42. doi:10.1007/s40268-013-0004-x; Wollenberg A, Folster-Holst R, Saint Aroman M, et al. Effects of a protein-free oat plantlet extract on microinflammation and skin barrier function in atopic dermatitis patients. J Eur Acad Dermatol Venereol. 2018;32 (Suppl 1):1-15. doi:10.1111/jdv.14846; Topical skin care compositions. Patent. Publication Number: WO 2018/198039 A1. Publication Date: 01.11.2018. International Application No: PCT/IB2018/052866. International Filing Date: 25.04.2018. Applicant: DR. REDDY'S LABORATORIES LIMITED.; Mohammed D, Crowther JM, Matts PJ, et al. Influence of niacinamide containing formulations on the molecular and biophysical properties of the stratum corneum. Int J Pharm. 2013;441(1-2):192-201. doi:10.1016/j.ijpharm.2012.11.043; Coderch L, Lopez O, de la Maza A, Parra JL. Ceramides and skin function. Am J Clin Dermatol. 2003;4(2):107-129. doi:10.2165/00128071-200304020-00004; Kim ME, Kim HK, Kim DH, et al. Glycyrrhetinic acid from licorice root impairs dendritic cells maturation and Th1 immune responses. Immunopharmacol Immunotoxicol. 2013;35(3):329-335. doi:10.3109/08923973.2013.768636; Akihisa T, Kojima N, Kikuchi T, et al. Anti- inflammatory and chemopreventive effects of triterpene cinnamates and acetates from shea fat. J Oleo Sci. 2010;59(6):273-280. doi:10.5650/jos.59.273; Scapagnini G, Davinelli S, Di Renzo L, et al. Cocoa bioactive compounds: significance and potential for the maintenance of skin health. Nutrients. 2014;6(8):3202-3213. doi:10.3390/nu6083202; Abril-Gil M, Massot-Cladera M, Perez-Cano FJ, et al. A diet enriched with cocoa prevents IgE synthesis in a rat allergy model. Pharmacol Res. 2012;65(6):603-608. doi:10.1016/j.phrs.2012.02.001; Mandawgade SD, Patravale VB. Formulation and evaluation of exotic fat based cosmeceuticals for skin repair. Indian J Pharm Sci. 2008;70(4):539-542. doi:10.4103/0250-474X.44615
-
7
Zdroj: ScienceRise: Biological Science; No. 2(27) (2021); 23-27
ScienceRise: Biological Science; № 2(27) (2021); 23-27Predmety: цераміди, віруси, sphingolipids, ceramides, вирусы, сфінголіпіди, митохондрии, apoptosis, сфинголипиды, 3. Good health, mitochondria, insulin resistance, апоптоз, інсулінорезистентність, мітохондрії, viruses, инсулинорезистентность, церамиды
Popis súboru: application/pdf
Prístupová URL adresa: http://journals.uran.ua/sr_bio/article/view/234699
-
8
Autori: a ďalší
Prispievatelia: a ďalší
Zdroj: Pediatric pharmacology; Том 15, № 4 (2018); 318-323 ; Педиатрическая фармакология; Том 15, № 4 (2018); 318-323 ; 2500-3089 ; 1727-5776
Predmety: пребиотики, children, vitamin F, ceramides, prebiotics, дети, витамин F, церамиды
Popis súboru: application/pdf
Relation: https://www.pedpharma.ru/jour/article/view/1652/1021; Eichenfield LF, Tom WL, Berger TG, et al. Guidelines of care for the management of atopic dermatitis: section 2. Management and treatment of atopic dermatitis with topical therapies. J Am Acad Dermatol. 2014;71(1):116–132. doi:10.1016/j.jaad. 2014.03.023.; Baron SE, Cohen SN, Archer CB, et al. Guidance on the diagnosis and clinical management of atopic eczema. Clin Exp Dermatol. 2012;37 Suppl 1:7–12. doi:10.1111/j.1365-2230.2012.04336.x.; Williams H, Flohr C. How epidemiology has challenged 3 prevailing concepts about atopic dermatitis. J Allergy Clin Immunol. 2006;118(1):209–213. doi:10.1016/j.jaci.2006.04.043.; Williams HC. Clinical practice. Atopic dermatitis. N Engl J Med. 2005;352(22):2314–2324. doi:10.1056/NEJMcp042803.; Bieber T. Atopic dermatitis 2.0: from the clinical phenotype to the molecular taxonomy and stratified medicine. Allergy. 2012; 67(12):1475–1482. doi:10.1111/all.12049.; Jordan HF, Todd G, Sinclair W, Green RJ. Aetiopathogenesis of atopic dermatitis. S Afr Med J. 2014;104(10):706–709. doi:10.7196/samj.8840.; Aberg KM, Man MQ, Gallo RL, et al. Co-regulation and interdependence of the mammalian epidermal permeability and antiСПИСОК ЛИТЕРАТУРЫ microbial barriers. J Invest Dermatol. 2008;128(4):917–925. doi:10.1038/sj.jid.5701099.; Biedermann T. Dissecting the role of infections in atopic dermatitis. Acta Derm Venereol. 2006;86(2):99–109. doi:10.2340/ 00015555-0047.; Breuer K, Wittmann M, Bosche B, et al. Severe atopic dermatitis is associated with sensitization to Staphylococcal enterotoxin B (SEB). Allergy. 2000;55(6):551–555. doi:10.1034/j.1398- 9995.2000.00432.x.; Leung DY, Guttman-Yassky E. Deciphering the complexities of atopic dermatitis: shifting paradigms in treatment approaches. J Allergy Clin Immunol. 2014;134(4):769–779. doi:10.1016/j. jaci.2014.08.008.; De Benedetto A, Agnihothri R, McGirt LY, et al. Atopic Dermatitis: a disease caused by innate immune defects? J Invest Dermatol. 2009;129(1):14–30. doi:10.1038/jid.2008.259.; Niebuhr M, Werfel T. Innate immunity, allergy and atopic dermatitis. Curr Opin Allergy Clin Immunol. 2010;10(5):463–468. doi:10.1097/ACI.0b013e32833e3163.; Кудрявцева А.В., Катосова Л.К., Балаболкин И.П., Асеева В.Г. Роль золотистого стафилококка при атопическом дерматите у детей. Педиатрия. Журнал им. Г.Н. Сперанского. — 2003. — Т.82. — №6 — С. 32–36. [Kudryavtseva AV, Katosova LK, Balabolkin II, Aseeva VG. Role of Staphylococcus aureus in pediatric atopic dermatitis. Pediatriia. 2003;82(6):32–36. (In Russ).]; Kedzierska A, Kapinska-Mrowiecka M, Czubak-Macugowska M, et al. Susceptibility testing and resistance phenotype detection in Staphylococcus aureus strains isolated from patients with atopic dermatitis, with apparent and recurrent skin colonization. Br J Dermatol. 2008;159(6):1290–1299. doi:10.1111/j.1365- 2133.2008.08817.x.; Pinchuk IV, Beswick EJ, Reyes VE. Staphylococcal enterotoxins. Toxins (Basel). 2010;2(8):2177–2197. doi:10.3390/toxins2082177.; Pastuszka M, Matych M, Kaszuba A, et al. Microorganisms in the etiopathogenesis of atopic dermatitis. Postep Derm Alergol. 2012;29(3):215–221.; Boguniewicz M, Leung DY. Recent insights into atopic dermatitis and implications for management of infectious complications. J Allergy Clin Immunol. 2010;125(1):4–13. doi:10.1016/j. jaci.2009.11.027.; Ng JP, Liew HM, Ang SB. Use of emollients in atopic dermatitis. J Eur Acad Dermatol Venereol. 2015;29(5):854–857. doi:10.1111/ jdv.12864.; Намазова-Баранова Л.С., Баранов А.А., Кубанова А.А., и др. Атопический дерматит у детей: современные клинические рекомендации по диагностике и терапии // Вопросы современной педиатрии. — 2016. — Т.15. — №3 — С. 279–294. [Namazova-Baranova LS, Baranov AA, Kubanova AA, et al. Atopic Dermatitis in Children: Current Clinical Guidelines for Diagnosis and Therapy. Current pediatrics. 2016;15(3):279–294. (In Russ).] doi:10.15690/vsp.v15i3.1566.; Мурашкин Н.Н., Глузмин М.И., Материкин А.И., Хотко А.А. Корнеотерапия как метод коррекции эпидермальных нарушений при хронических дерматозах у детей // Эффективная фармакотерапия. — 2012. — №31 — С. 26–31. [Murashkin NN, Gluzmin MI, Materikin AI, Khotko AA. Korneoterapiya kak metod korrektsii epidermal'nykh narushenii pri khronicheskikh dermatozakh u detei. Effektivnaya farmakoterapiya. 2012;(31):26–31. (In Russ).]; Boisnic S, Branchet-Gumila MC, Segard C. Inhibitory effect of Avene spring water on vasoactive intestinal peptide-induced inflammation in surviving human skin. Int J Tissue React. 2001;23(3):89–95.; https://www.pedpharma.ru/jour/article/view/1652
-
9
Zdroj: Family Medicine; № 3 (2018); 81-84
Семейная медицина; № 3 (2018); 81-84
Сімейна медицина; № 3 (2018); 81-84Predmety: 03 medical and health sciences, 0302 clinical medicine, неалкогольна жирова хвороба печінки, цераміди, апоптоз, інсулінорезистентність, неалкогольная жировая болезнь печени, церамиды, инсулинорезистентность, nonalcoholic fatty liver disease, ceramide, apoptosis, insulin resistance, 616.36-003.826, 3. Good health
Popis súboru: application/pdf
Prístupová URL adresa: http://family-medicine.com.ua/article/view/146737
-
10
-
11
Predmety: межклеточное распознавание, когнитивная функция, инфекция, мембраны энтероцитов, нарушения обмена веществ, нейрогенез, микробиота, грудное молоко, синаптогенез, иммунитет, мембрана жировой глобулы молока, ожирение, ганглиозиды, церебральный паралич, фосфолипиды, цереброзиды, воспаление, церамиды, сфингомиелин, энтеротоксин, нейрональные сети
Nájsť tento článok vo Web of Science