Výsledky vyhľadávania - "функциональная магнитно-резонансная томография"

  1. 1
  2. 2

    Prispievatelia: M. B. Dolgushin A. P. Demyanov M. Yu. Martynov a ďalší

    Zdroj: Neurology, Neuropsychiatry, Psychosomatics; Vol 17, No 1 (2025); 41-48 ; Неврология, нейропсихиатрия, психосоматика; Vol 17, No 1 (2025); 41-48 ; 2310-1342 ; 2074-2711 ; 10.14412/2074-2711-2025-1

    Popis súboru: application/pdf

    Relation: https://nnp.ima-press.net/nnp/article/view/2447/1773; Zhang H, Ji D, Yin J, et al. Olfactory fMRI activation pattern across different concentrations changes in Alzheimer's disease. Front Neurosci. 2019 Jul 30;13:786. doi:10.3389/fnins.2019.00786; Zhang H, Chung TW, Wong FK, et al. Changes in the intranetwork and internetwork connectivity of the default mode network and olfactory network in patients with COVID-19 and olfactory dysfunction. Brain Sci. 2022 Apr 18;12(4):511. doi:10.3390/brainsci12040511; Poplawsky AJ, Fukuda M, Kim SG. Foundations of layer-specific fMRI and investigations of neurophysiological activity in the laminarized neocortex and olfactory bulb of animal models. Neuroimage. 2019 Oct 1;199:718-29. doi:10.1016/j.neuroimage.2017.05.023. Epub 2017 May 12.; Zou LQ, van Hartevelt TJ, Kringelbach ML, et al. The neural mechanism of hedonic processing and judgment of pleasant odors: An activation likelihood estimation meta-analysis. Neuropsychology. 2016 Nov;30(8):970-9. doi:10.1037/neu0000292. Epub 2016 May 19.; Uchida N, Poo C, Haddad R. Coding and transformations in the olfactory system. Annu Rev Neurosci. 2014;37:363-85. doi:10.1146/annurev-neuro-071013-013941. Epub 2014 Jun 2.; Sorokowski P, Karwowski M, Misiak M, et al. Sex differences in human olfaction: a meta-analysis. Front Psychol. 2019 Feb 13;10:242. doi:10.3389/fpsyg.2019.00242; Li W, Luxenberg E, Parrish T, Gottfried JA. Learning to smell the roses: experience-dependent neural plasticity in human piriform and orbitofrontal cortices. Neuron. 2006 Dec 21;52(6):1097-108. doi:10.1016/j.neuron.2006.10.026; Masuo Y, Satou T, Takemoto H, Koike K. Smell and stress response in the brain: review of the connection between chemistry and neuropharmacology. Molecules. 2021 Apr 28;26(9):2571. doi:10.3390/molecules26092571; Johnson BN, Mainland JD, Sobel N. Rapid olfactory processing implicates subcortical control of an olfactomotor system. J Neurophysiol. 2003 Aug;90(2):1084-94. doi:10.1152/jn.00115.2003. Epub 2003 Apr 23.; Zhou G, Lane G, Cooper SL, et al. Characterizing functional pathways of the human olfactory system. Elife. 2019 Jul 24;8:e47177. doi:10.7554/eLife.47177; Ciorba A, Hatzopoulos S, Cogliandolo C, et al. Functional magnetic resonance imaging in the olfactory perception of the same stimuli. Life (Basel). 2020 Dec 25;11(1):11. doi:10.3390/life11010011; Zhang ZH, Liu X, Jing B, et al. Cerebellar involvement in olfaction: an fMRI study. J Neuroimaging. 2021 May;31(3):517-23. doi:10.1111/jon.12843. Epub 2021 Mar 30.; Gottfried JA, Dolan RJ. The nose smells what the eye sees: crossmodal visual facilitation of human olfactory perception. Neuron. 2003 Jul 17;39(2):375-86. doi:10.1016/s0896-6273(03)00392-1; Plailly J, Howard JD, Gitelman DR, Gottfried JA. Attention to odor modulates thalamocortical connectivity in the human brain. J Neurosci. 2008 May 14;28(20):5257-67. doi:10.1523/JNEUROSCI.5607-07.2008; Lindquist MA, Meng Loh J, Atlas LY, Wager TD. Modeling the hemodynamic response function in fMRI: efficiency, bias and mis-modeling. Neuroimage. 2009 Mar;45(1 Suppl):S187-98. doi:10.1016/j.neuroimage.2008.10.065. Epub 2008 Nov 21.; Salek KE, Hassan IS, Kotrotsou A, et al. Silent sentence completion shows superiority localizing Wernicke's area and activation patterns of distinct language paradigms correlate with genomics: prospective study. Sci Rep. 2017 Sep 21;7(1):12054. doi:10.1038/s41598-017-11192-2; Sobel N, Prabhakaran V, Desmond JE, et al. Sniffing and smelling: separate subsystems in the human olfactory cortex. Nature. 1998 Mar 19;392(6673):282-6. doi:10.1038/32654; Gottfried JA, Zald DH. On the scent of human olfactory orbitofrontal cortex: metaanalysis and comparison to non-human primates. Brain Res Brain Res Rev. 2005 Dec 15;50(2):287-304. doi:10.1016/j.brainresrev.2005.08.004. Epub 2005 Oct 6.; Rolls ET, Huang CC, Lin CP, et al. Automated anatomical labelling atlas 3. Neuroimage. 2020 Feb 1;206:116189. doi:10.1016/j.neuroimage.2019.116189. Epub 2019 Sep 12.; Brodmann K. Brodmann’s: localisation in the cerebral cortex. New York: Springer; 2007.; Fjaeldstad A, Fernandes HM, Van Hartevelt TJ, et al. Brain fingerprints of olfaction: a novel structural method for assessing olfactory cortical networks in health and disease. Sci Rep. 2017 Feb 14;7:42534. doi:10.1038/srep42534; Wang J, Sun X, Yang QX. Early aging effect on the function of the human central olfactory system. J Gerontol A Biol Sci Med Sci. 2017 Aug 1;72(8):1007-14. doi:10.1093/gerona/glw104; Su M, Wang S, Fang W, et al. Alterations in the limbic/paralimbic cortices of Parkinson's disease patients with hyposmia under restingstate functional MRI by regional homogeneity and functional connectivity analysis. Parkinsonism Relat Disord. 2015 Jul;21(7):698- 703. doi:10.1016/j.parkreldis.2015.04.006. Epub 2015 Apr 18.; Steffener J, Motter JN, Tabert MH, Devanand DP. Odorant-induced brain activation as a function of normal aging and Alzheimer's disease: A preliminary study. Behav Brain Res. 2021 Mar 26;402:113078. doi:10.1016/j.bbr.2020.113078. Epub 2021 Jan 5.; Yunpeng Z, Han P, Joshi A, Hummel T. Individual variability of olfactory fMRI in normosmia and olfactory dysfunction. Eur Arch Otorhinolaryngol. 2021 Feb;278(2):379-87. doi:10.1007/s00405-020-06233-y. Epub 2020 Aug 14.; Kollndorfer K, Jakab A, Mueller CA, et al. Effects of chronic peripheral olfactory loss on functional brain networks. Neuroscience. 2015 Dec 3;310:589-99. doi:10.1016/j.neuroscience.2015.09.045. Epub 2015 Sep 28.; Reichert JL, Postma EM, Smeets PAM, et al. Severity of olfactory deficits is reflected in functional brain networks – An fMRI study. Hum Brain Mapp. 2018 Aug;39(8):3166-77. doi:10.1002/hbm.24067. Epub 2018 Mar 30.; Боголепова ИН, Малофеева ЛИ, Свешников АВ, Ловчицкая АО. Нейронная организация корковых полей как показатель межполушарной асимметрии мозга мужчин и женщин. Асимметрия. 2017;(11):5-16.; Zhang C, Cahill ND, Arbabshirani MR, et al. Sex and age effects of functional connectivity in early adulthood. Brain Connect. 2016 Nov;6(9):700-13. doi:10.1089/brain.2016.0429. Epub 2016 Sep 30.; Kong XZ, Mathias SR, Guadalupe T, et al; ENIGMA Laterality Working Group. Mapping cortical brain asymmetry in 17,141 healthy individuals worldwide via the ENIGMA Consortium. Proc Natl Acad Sci U S A. 2018 May 29;115(22):E5154-E5163. doi:10.1073/pnas.1718418115. Epub 2018 May 15.; Yousem DM, Maldjian JA, Siddiqi F, et al. Gender effects on odor-stimulated functional magnetic resonance imaging. Brain Res. 1999 Feb 13;818(2):480-7. doi:10.1016/s0006-8993(98)01276-1.

  3. 3
  4. 4

    Prispievatelia: M. A. Piradov K. A. Yatsko A. N. Cherkasova a ďalší

    Zdroj: Neurology, Neuropsychiatry, Psychosomatics; Vol 16, No 4 (2024); 28-34 ; Неврология, нейропсихиатрия, психосоматика; Vol 16, No 4 (2024); 28-34 ; 2310-1342 ; 2074-2711 ; 10.14412/2074-2711-2024-4

    Popis súboru: application/pdf

    Relation: https://nnp.ima-press.net/nnp/article/view/2329/1710; https://nnp.ima-press.net/nnp/article/view/2329/1715; Schnakers C, Laureys S. Coma and Disorders of Consciousness. Springer International Publishing; 2018. 293 p. doi:10.1007/978-3-319-55964-3; Jennett B, Plum F. Persistent vegetative state after brain damage. A syndrome in search of a name. Lancet. 1972 Apr 1;1(7753):734-7. doi:10.1016/s0140-6736(72)90242-5; Giacino JT, Ashwal S, Childs N, et al. The minimally conscious state: definition and diagnostic criteria. Neurology. 2002 Feb 12;58(3):349-53. doi:10.1212/wnl.58.3.349; Fins JJ, Bernat JL. Ethical, palliative, and policy considerations in disorders of consciousness. Neurology. 2018 Sep 4;91(10):471-5. doi:10.1212/WNL.0000000000005927. Epub 2018 Aug 8.; Recommendations for use of uniform nomenclature pertinent to patients with severe alterations in consciousness. American Congress of Rehabilitation Medicine. Arch Phys Med Rehabil. 1995 Feb;76(2):205-9. doi:10.1016/s0003-9993(95)80031-x. Erratum in: Arch Phys Med Rehabil. 1995 Apr;76(4):397.; Пирадов МА, Супонева НА, Вознюк ИА и др.; Российская рабочая группа по проблемам хронических нарушений сознания. Хронические нарушения сознания: терминология и диагностические критерии. Результаты первого заседания Российской рабочей группы по проблемам хронических нарушений сознания. Анналы клинической и экспериментальной неврологии. 2020;14(1):5-16. doi:10.25692/ACEN.2020.1.1; Owen AM, Coleman MR, Boly M, et al. Using functional magnetic resonance imaging to detect covert awareness in the vegetative state. Arch Neurol. 2007 Aug;64(8):1098-102. doi:10.1001/archneur.64.8.1098; Owen AM, Coleman MR, Boly M, et al. Detecting awareness in the vegetative state. Science. 2006 Sep;313(5792):1402. doi:10.1126/science.1130197; Schiff ND. Cognitive Motor Dissociation Following Severe Brain Injuries. JAMA Neurol. 2015 Dec;72(12):1413-5. doi:10.1001/jamaneurol.2015.2899; Белкин ВА, Поздняков ДГ, Белкин АА. Диагностика феномена когнитивно-моторного разобщения у пациентов с хроническими нарушениями сознания. Неврология, нейропсихиатрия, психосоматика. 2019;11(Прил. 3):46-51. doi:10.14412/2074-2711-2019-3S-46-51; Kondziella D, Friberg CK, Frokjaer VG, et al. Preserved consciousness in vegetative and minimal conscious states : systematic review and meta-analysis. J Neurol Neurosurg Psychiatry. 2016 May;87(5):485-92. doi:10.1136/jnnp-2015-310958. Epub 2015 Jul 2.; Kondziella D, Bender A, Diserens K, et al. European Academy of Neurology guideline on the diagnosis of coma and other disorders of consciousness. Eur J Neurol. 2020 May;27(5):741-56. doi:10.1111/ene.14151. Epub 2020 Feb 23.; Черкасова АН, Яцко КА, Ковязина МС и др. Выявление феномена «скрытого сознания» у пациентов с хроническими нарушениями сознания : обзор данных фМРТ с парадигмами. Журнал высшей нервной деятельности им. И.П. Павлова. 2023;73(3):291-310. doi:10.31857/S0044467723030048; Черкасова АН, Яцко КА, Ковязина МС и др. Разработка комплекса парадигм фМРТ для выявления феномена «скрытого сознания»: нейропсихологические аспекты. Национальный психологический журнал. 2024;19(2):68-80. doi:10.11621/npj.2024.0206; Черкасова АН, Яцко КА, Ковязина МС и др. Апробация на выборке здоровых добровольцев комплекса парадигм фМРТ для выявления феномена «скрытого сознания». Вестник Московского университета. Серия 14. Психология. 2024;47(2):219-42. doi:10.11621/LPJ-24-22; Kim WH, Cho D, Lee B, et al. Changes in brain activation during sedation induced by dexmedetomidine. J Int Med Res. 2017 Jun;45(3):1158-67. doi:10.1177/0300060517705477. Epub 2017 May 8.; Coleman MR, Davis MN, Rodd JM, et al. Towards the routine use of brain imaging to aid the clinical diagnosis of disorders of consciousness. Brain. 2009 Sep;132(Pt 9):2541-52. doi:10.1093/brain/awp183; Boly M, Coleman MR, Davis MN, et al. When thoughts become action: an fMRI paradigm to study volitional brain activity in non-communicative brain injured patients. Neuroimage. 2007 Jul;36(3):979-92. doi:10.1016/j.neuroimage.2007.02.047. Epub 2007 Mar 13.

  5. 5
  6. 6

    Zdroj: Neurology, Neuropsychiatry, Psychosomatics; Vol 15, No 3 (2023); 27-34 ; Неврология, нейропсихиатрия, психосоматика; Vol 15, No 3 (2023); 27-34 ; 2310-1342 ; 2074-2711 ; 10.14412/2074-2711-2023-3

    Popis súboru: application/pdf

    Relation: https://nnp.ima-press.net/nnp/article/view/2026/1532; Sadock BJ, Sadock VA, Ruiz P, eds. Kaplan and Sadock’s comprehensive textbook of psychiatry. 10th ed. Philadelphia: Wolters Kluwer; 2017.; Gao B, Wang Y, Liu W, et al. Spontaneous Activity Associated with Delusions of Schizophrenia in the Left Medial Superior Frontal Gyrus: A Resting-State fMRI Study. PLoS One. 2015;10(7):e0133766. doi:10.1371/journal.pone.0133766; Vicens V, Radua J, Salvador R, et al. Structural and functional brain changes in delusional disorder. Br J Psychiatry. 2016;208(2):153-9. doi:10.1192/bjp.bp.114.159087; Li T, Wang Q, Zhang J, et al. Brain-Wide Analysis of Functional Connectivity in First-Episode and Chronic Stages of Schizophrenia. Schizophr Bull. 2017;43(2):436-48. doi:10.1093/schbul/sbw099; Ferri J, Ford JM, Roach BJ, et al. Restingstate thalamic dysconnectivity in schizophrenia and relationships with symptoms. Psychol Med. 2018;48(15):2492-9. doi:10.1017/S003329171800003X; Chen X, Duan M, He H, et al. Functional abnormalities of the right posterior insula are related to the altered self-experience in schizophrenia. Psychiatry Res Neuroimaging. 2016;256:26-32. doi:10.1016/j.pscychresns.2016.09.006; Orliac F, Naveau M, Joliot M, et al. Links among resting-state default-mode network, salience network, and symptomatology in schizophrenia. Schizophr Res. 2013;148(1-3):74-80. doi:10.1016/j.schres.2013.05.007; Csukly G, Szabo A, Polgar P, et al. Fronto-thalamic structural and effective connectivity and delusions in schizophrenia: a combined DTI/DCM study. Psychol Med. 2021 Sep;51(12):2083-93. doi:10.1017/S0033291720000859. Epub 2020 Apr 24.; Limongi R, Mackinley M, Dempster K, et al. Frontal-striatal connectivity and positive symptoms of schizophrenia: implications for the mechanistic basis of prefrontal rTMS. Eur Arch Psychiatry Clin Neurosci. 2021;271(1):3-15. doi:10.1007/s00406-02001163-6; Arjmand S, Kohlmeier KA, Behzadi M, et al. Looking into a Deluded Brain through a Neuroimaging Lens. Neuroscientist. 2021;27(1):73-87. doi:10.1177/1073858420936172; Joyce EM. Organic psychosis: The pathobiology and treatment of delusions. CNS Neurosci Ther. 2018;24(7):598-603. doi:10.1111/cns.12973; Darby RR, Laganiere S, Pascual-Leone A, et al. Finding the imposter: brain connectivity of lesions causing delusional misidentifications. Brain. 2017;140(2):497-507. doi:10.1093/brain/aww288; Gurin L, Blum S. Delusions and the Right Hemisphere: A Review of the Case for the Right Hemisphere as a Mediator of RealityBased Belief. J Neuropsychiatry Clin Neurosci. 2017;29(3):225-35. doi:10.1176/appi.neuropsych.16060118; Perianez JA, Lubrini G, Garcia-Gutierrez A, Rios-Lago M. Construct Validity of the Stroop Color-Word Test: Influence of Speed of Visual Search, Verbal Fluency, Working Memory, Cognitive Flexibility, and Conflict Monitoring. Arch Clin Neuropsychol. 2021;36(1):99-111. doi:10.1093/arclin/acaa034; Petrolini V. When emotion and cognition do (not) work together: Delusions as emotional and executive dysfunctions. Behav Brain Sci. 2015;38:e84. doi:10.1017/S0140525X14000995; Rotarska-Jagiela A, van de Ven V, Oertel-Knochel V, et al. Resting-state functional network correlates of psychotic symptoms in schizophrenia. Schizophr Res. 2010;117(1):21-30. doi:10.1016/j.schres.2010.01.001; Walker DA. JMASM9: Converting Kendall’s Tau For Correlational Or MetaAnalytic Analyses. J Modern Appl Stat Meth. 2003;2(2):525-30. doi:10.22237/jmasm/1067646360; Faul F, Erdfelder E, Lang AG, Buchner A. G*Power 3: a flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav Res Methods. 2007;39(2):175-91. doi:10.3758/bf03193146; Kay SR, Fiszbein A, Opler LA. The positive and negative syndrome scale (PANSS) for schizophrenia. Schizophr Bull. 1987;13(2):261-76. doi:10.1093/schbul/13.2.261; Eisen JL, Phillips KA, Baer L, et al. The Brown Assessment of Beliefs Scale: reliability and validity. Am J Psychiatry. 1998;155(1):102-8. doi:10.1176/ajp.155.1.102; Ассанович МВ, Ассанович МА. Оценка психометрических характеристик и минимально значимых клинических различий Браунской шкалы оценки убеждений (BABS – Brown Assessment of Beliefs Scale) при шизофрении. Психиатрия, психотерапия и клиническая психология. 2019;10(1):61-8.; Keefe RS, Goldberg TE, Harvey PD, et al. The Brief Assessment of Cognition in Schizophrenia: reliability, sensitivity, and comparison with a standard neurocognitive battery. Schizophr Res. 2004;68(2-3):283-97. doi:10.1016/j.schres.2003.09.011; Саркисян ГР, Гурович ИЯ, Киф РС. Нормативные данные для российской популяции и стандартизация шкалы «Краткая оценка когнитивных функций у пациентов с шизофренией» (BACS). Социальная и клиническая психиатрия. 2010;20(3):13-9.; Stangeland H, Orgeta V, Bell V. Poststroke psychosis: a systematic review. J Neurol Neurosurg Psychiatry. 2018;89(8):879-85. doi:10.1136/jnnp-2017-317327; Wang L, Mruczek RE, Arcaro MJ, Kastner S. Probabilistic Maps of Visual Topography in Human Cortex. Cereb Cortex. 2015;25(10):3911-31. doi:10.1093/cercor/bhu277; Grill-Spector K, Malach R. The human visual cortex. Annu Rev Neurosci. 2004;27:649-77. doi:10.1146/annurev.neuro.27.070203.144220; Nielsen KM, Nordgaard J, Henriksen MG. Delusional Perception Revisited. Psychopathology. 2022;55(6):325-34. doi:10.1159/000524642. Epub 2022 May 19.; Abdel-Hamid M, Brune M. Neuropsychological aspects of delusional disorder. Curr Psychiatry Rep. 2008;10(3):229-34. doi:10.1007/s11920-008-0038-x; DeCross SN, Farabaugh AH, Holmes AJ, et al. Increased amygdala-visual cortex connectivity in youth with persecutory ideation. Psychol Med. 2020;50(2):273-83. doi:10.1017/S0033291718004221; Orliac F, Delamillieure P, Delcroix N, et al. Network modeling of resting state connectivity points towards the bottom up theories of schizophrenia. Psychiatry Res Neuroimaging. 2017;266:19-26. doi:10.1016/j.pscychresns.2017.04.003; Maher BA. Delusional thinking and perceptual disorder. J Individ Psychol. 1974;30(1):98-113.; Hohwy J. Top-Down and Bottom-Up in Delusion Formation. Philosophy, Psychiatry, Psychology. 2004;11(1):65-70. doi:10.1353/ppp.2004.0043; Williams D. Hierarchical Bayesian models of delusion. Conscious Cogn. 2018;61:129-47. doi:10.1016/j.concog.2018.03.003

  7. 7

    Prispievatelia: A. A. Savelov N. A. Khrushcheva K. V. Kalgin a ďalší

    Zdroj: Complex Issues of Cardiovascular Diseases; Том 12, № 1 (2023); 25-38 ; Комплексные проблемы сердечно-сосудистых заболеваний; Том 12, № 1 (2023); 25-38 ; 2587-9537 ; 2306-1278

    Popis súboru: application/pdf

    Relation: https://www.nii-kpssz.com/jour/article/view/1304/759; Мельников М.Е., Штарк М.Б., Савелов А.А., Брюль А. Биоуправление по сигналу фМРТ, регистрируемому в реальном времени: новое поколение нейротерапии. Журнал высшей нервной деятельности им. ИП Павлова. 2017; 67(1): 3-32. doi:10.7868/S0044467717010117; Khruscheva N.A. Mel'nikov, M.Y., Bezmaternykh D.D., Savelov A.A., Kalgin K.V., Petrovsky Y.D., Shtark M.B., Sokhadze, E. M. Interactive brain stimulation neurotherapy based on BOLD signal in stroke rehabilitation. NeuroRegulation. 2022; 9 (3): 147- 147. doi.org/10.15540/nr.9.3.147.; Paret C., Goldway N., Zich C., Keynan J.N., Hendler T., Linden D., Kadosh K.C. Current progress in real-time functional magnetic resonance-based neurofeedback: methodological challenges and achievements. NeuroImage. 2019; 202:116107. doi.org/10.1016/j.neuroimage.2019.116107.; Nudo R.J. Functional and structural plasticity in motor cortex: implications for stroke recovery. Physical Medicine and Rehabilitation Clinics. 2003; 14(1): S57-S76. doi.org/10.1016/S1047-9651(02)00054-2.; Feigin V.L., Stark B.A., Johnson C.O., Roth G.A., Bisignano C., Abady G.G. , Abbasifard M., Abbasi-Kangevari M., Abd-Allah F., Abedi V.; GBD 2019 Stroke Collaborators. Global, regional, and national burden of stroke and its risk factors, 1990–2019: A systematic analysis for the Global Burden of Disease Study 2019. Lancet Neurol. 2021;20(10):795-820. doi:10.1016/S1474-4422(21)00252-0.; Gauthier C.J., Fan A.P. BOLD signal physiology: models and applications. Neuroimage. 2019; 187: 116-127. doi.org/10.1016/j.neuroimage.2018.03.018.; Штарк М.Б., Коростышевская А.М., Резакова М.В., Савелов А.А. Функциональная магнитно-резонансная томография и нейронауки. Успехи физиологических наук. 2012; 43(1): 3-29.; Kamiya J. The first communications about operant conditioning of the EEG.Journal of Neurotherapy. 2011; 15(1): 65- 73. doi.org/10.1080/10874208.2011.545764; Kuhlman W.N. Functional topography of the human mu rhythm. Electroencephalogr Clin Neurophysiol. 1978;44(1):83-93. doi:10.1016/0013-4694(78)90107-4.; Evans J. R., Dellinger M. B., Russell H. L., editors. Neurofeedback: The First Fifty Years. Cambridge: Academic Press; 2019. 429 p. doi:10.1016/C2018-0-01638-2; da Silva Fernando L. EEG and MEG: Relevance to Neuroscience. Neuron. 2013; 80(5):1112-1128. doi:10.1016/j.neuron.2013.10.017.; Ritter P., Villringer A. Simultaneous EEG-fMRI. Neurosci Biobehav Rev. 2006;30(6):823-38. doi:10.1016/j.neubiorev.2006.06.008.; Huster R.J., Debener S., Eichele T., Herrmann C.S. Methods for simultaneous EEG-fMRI: an introductory review. J Neuroscience. 2012;32(18):6053-6060. DOI:10.1523/ JNEUROSCI.0447-12.2012.; Штарк М.Б., Веревкин Е.Г., Козлова Л.И., Мажирина К.Г., Покровский М.А. и др. Синергичное фМРТ-ЭЭГ картирование головного мозга в режиме произвольного управления альфа-ритмом. Бюллетень экспериментальной биологии и медицины. 2014; 158( 11):594-599.; Shtark M.B. Neurofeedback: A scarce resource at the mental market. In: Evans J.R., Dellinger M.B., Russell H.L. Neurofeedback. The first fifty years. Cambridge: Academic Press; 2019. P.353-358. doi: https://doi.org/10.1016/B978-0-12-817659-7.00046-4; Menon V. Large-scale brain networks and psychopathology: a unifying triple network model. Trends Cogn Sci. 2011;15(10):483- 506. doi:10.1016/j.tics.2011.08.003.; Siegel J.S., Ramsey L.E., Snyder A.Z., Metcalf N.V., Chacko R.V., Weinberger K., Baldassarre A., Hacker C.D., Shulman G.L., Corbetta M. Disruptions of network connectivity predict impairment in multiple behavioral domains after stroke. Proc Natl Acad Sci U S A. 2016;113(30):E4367-76. doi:10.1073/pnas.1521083113.; Baldassarre A., Ramsey L.E., Siegel J.S., Shulman G.L., Corbetta M. Brain connectivity and neurological disorders after stroke. Curr Opin Neurol. 2016;29(6):706-713. doi:10.1097/WCO.0000000000000396.; Fugl-Meyer A.R., Jääskö L., Leyman I., Olsson S., Steglind S. The post-stroke hemiplegic patient. 1. a method for evaluation of physical performance. Scand J Rehabil Med. 1975;7(1):13-31.; Malouin F., Richards C.L., Jackson P.L., Lafleur M.F., Durand A., Doyon J. The Kinesthetic and Visual Imagery Questionnaire (KVIQ) for assessing motor imagery in persons with physical disabilities: a reliability and construct validity study. J Neurol Phys Ther. 2007;31(1):20-9. doi:10.1097/01.npt.0000260567.24122.64.; Савелов А.А.а, Штарк М.Б., Козлова Л.И., Веревкин Е.Г., Петровский Е.Д., Покровский М.А., Рудыч П.Д., Циркин Г.М. Динамика взаимосвязей церебральных сетей, построенных на основе фМРТ-данных, и моторная реабилитация при инсультах //Бюллетень экспериментальной биологии и медицины. 2018; 166(9): 376-381.; Giulia L., Adolfo V., Julie C., Quentin D., Simon B., Fleury M., Leveque-Le Bars E., Bannier E., Lécuyer A., Barillot C., Bonan I. The impact of neurofeedback on effective connectivity networks in chronic stroke patients: an exploratory study. J Neural Eng. 2021;18(5). doi:10.1088/1741-2552/ac291e.; Sitaram R., Veit R., Stevens B., Caria A., Gerloff C., Birbaumer N., Hummel F. Acquired control of ventral premotor cortex activity by feedback training: an exploratory real-time FMRI and TMS study. Neurorehabil Neural Repair. 2012;26(3):256-65. doi:10.1177/1545968311418345.; Lioi G., Butet S., Fleury M., Bannier E., Lécuyer A., Bonan I., Barillot C. A Multi-Target Motor Imagery Training Using Bimodal EEG-fMRI Neurofeedback: A Pilot Study in Chronic Stroke Patients. Front Hum Neurosci. 2020;14:37. doi:10.3389/fnhum.2020.00037.; Sanders Z.B., Fleming M.K., Smejka T., Marzolla M.C., Zich C., Rieger S.W., Lührs M., Goebel R., Sampaio-Baptista C., Johansen-Berg H. Self-modulation of motor cortex activity after stroke: a randomized controlled trial. Brain. 2022;145(10):3391- 3404. doi:10.1093/brain/awac239.; Bajaj S., Butler A.J., Drake D, Dhamala M. Functional organization and restoration of the brain motor-execution network after stroke and rehabilitation. Front Hum Neurosci. 2015;9:173. doi:10.3389/fnhum.2015.00173.; Mehler D.M.A., Williams A.N., Whittaker J.R., Krause F., Lührs M., Kunas S., Wise R.G., Shetty H.G.M., Turner D.L., Linden D.E.J. Graded fMRI Neurofeedback Training of Motor Imagery in Middle Cerebral Artery Stroke Patients: A Preregistered Proof-of-Concept Study. Front Hum Neurosci. 2020;14:226. doi:10.3389/fnhum.2020.00226.; Liew S.L., Rana M., Cornelsen S., Fortunato de Barros Filho M., Birbaumer N., Sitaram R., Cohen L.G., Soekadar S.R. Improving Motor Corticothalamic Communication After Stroke Using Real-Time fMRI Connectivity-Based Neurofeedback. Neurorehabil Neural Repair. 2016;30(7):671-5. doi:10.1177/1545968315619699.; Zotev V., Phillips R., Yuan H., Misaki M., Bodurka J. Selfregulation of human brain activity using simultaneous real-time fMRI and EEG neurofeedback. NeuroImage. 2014; 85: 985-995. doi:10.1016/j.neuroimage.2013.04.126.; Савелов А.А.б, Штарк М.Б., Мельников М.Е., Козлова Л.И., Безматерных Д.Д., Веревкин Е.Г., Петровский Е.Д., Покровский М.А., Циркин Г.М., Рудыч П.Д. Перспективы синхронной фМРТ-ЭЭГ-записи как основы интерактивной стимуляции мозга (на примере последствий инсульта). Бюллетень экспериментальной биологии и медицины. 2018; 166(9):366-369.; Meir-Hasson Y., Keynan J.N., Kinreich S., Jackont G., Cohen A., Podlipsky-Klovatch I., Hendler T., Intrator N. One-Class FMRI-Inspired EEG Model for Self-Regulation Training. PLoS One. 20160;11(5):e0154968. doi:10.1371/journal.pone.0154968.; Keynan J.N., Cohen A., Jackont G., Green N., Goldway N., Davidov A., Meir-Hasson Y., Raz G., Intrator N., Fruchter E., Ginat K., Laska E., Cavazza M., Hendler T. Electrical fingerprint of the amygdala guides neurofeedback training for stress resilience. Nat Hum Behav. 2019;3(1):63-73. doi:10.1038/s41562-018-0484-3.; Rudnev V., Melnikov M., Savelov A., Shtark M., Sokhadze E.M. fMRI-EEG Fingerprint Regression Model for Motor Cortex. NeuroRegulation. 2021;8(3):162-172. doi.org/10.15540/nr.8.3.162.; Журавлёва К.В., Савелов А.А., Коростышевская А.М., Штарк М.Б. Исследование диффузионных характеристик мозгового вещества при перенесённом инсульте. Бюллетень экспериментальной биологии и медицины. 2021;172(10):406-411. doi:10.47056/0365-9615-2021-172-10-406-411.; Alves R., Henriques R.N., Kerkelä L., Chavarrías C., Jespersen S.N., Shemesh N. Correlation Tensor MRI deciphers underlying kurtosis sources in stroke. Neuroimage. 2022;247:118833. doi.org/10.1016/j.neuroimage.2021.118833.

  8. 8

    Zdroj: Russian Sklifosovsky Journal "Emergency Medical Care"; Том 10, № 4 (2021); 800-807 ; Журнал им. Н.В. Склифосовского «Неотложная медицинская помощь»; Том 10, № 4 (2021); 800-807 ; 2541-8017 ; 2223-9022

    Popis súboru: application/pdf

    Relation: https://www.jnmp.ru/jour/article/view/1286/1008; https://www.jnmp.ru/jour/article/view/1286/1110; Bokhari MR, Bokhari SRA. Arteriovenous Malformation of The Brain. Stat Pearls Treasure Island (FL); 2019. PMID: 28613495 Bookshelf ID: NBK430744; Abecassis IJ, Xu DS, Batjer HH, Bendok BR. Natural history of brain arteriovenous malformations: a systematic review. Neurosurgical Focus. 2014;37(3):E7. PMID: 25175445 https://doi.org/10.3171/2014.6.FOCUS14250; Stapf C, Mohr JP, Pile-Spellman J, Solomon RA, Sacco RL, Connolly ES Jr. Epidemiology and natural history of arteriovenous malformations. Neurosurgical Focus. 2001;11(5):e1. PMID: 16466233 https://doi.org/10.3171/foc.2001.11.5.2; Inoue HK, Ohye C. Hemorrhage risks and obliteration rates of arteriovenous malformations after gamma knife radiosurgery. J Neurosurg. 2002;97(5 Suppl):474–476. PMID: 12507079 https://doi.org/10.3171/jns.2002.97.supplement; Szeifert GT, Levivier M, Lorenzoni J, Nyáry I, Major O, Kemeny AA. Morphological observations in brain arteriovenous malformations after gamma knife radiosurgery. Prog Neurol Surg. 2013;27:119–129. PMID: 23258516 https://doi.org/10.1159/000341772; Маряшев С.А. Стереотаксическое облучение артериовенозных мальформаций головного мозга: дис. д-ра мед. наук. Науч.- исслед. ин-т нейрохирургии им. Н.Н. Бурденко. Москва; 2016. URL: https://docplayer.ru/41342176-Maryashev-sergey-alekseevichstereotaksicheskoe-obluchenie-arteriovenoznyh-malformaciygolovnogo-mozga.html [Дата обращения 19 ноября 2021 г.]; Yen CP, Ding D, Cheng CH, Starke RM, Shaffrey M, Sheehan J. Gamma Knife surgery for incidental cerebral arteriovenous malformations. J Neurosurg. 2014;121(5):1015-1021. PMID: 25148009 https://doi.org/10.3171/2014.7.JNS131397; Kano H, Kondziolka D, Flickinger JC, Park KJ, Parry PV, Yang HC, et al. Stereotactic radiosurgery for arteriovenous malformations, Part 6: multistaged volumetric management of large arteriovenous malformations. J Neurosurg. 2012;116(1):54–65. PMID: 22077447 https://doi.org/10.3171/2011.9.JNS11177; Izawa M, Hayashi M, Chernov M, Nakaya K, Ochiai T, Murata N, et al. Long-term complications after gamma knife surgery for arteriovenous malformations. J Neurosurg. 2005;102(Suppl):34–37. PMID: 15662777 https://doi.org/10.3171/jns.2005.102.s_supplement.0034; Chang JH, Chang JW, Park YG, Chang SS. Factors related to complete occlusion of arteriovenous malformations after gamma knife radiosurgery. J Neurosurg. 2000;93(Suppl 3):96–101. PMID: 11143271 https://doi.org/10.3171/sup.2000.93.supplement3.0096; Pollock BE, Gorman DA, Brown PD. Radiosurgery for arteriovenous malformations of the basal ganglia, thalamus, and brainstem. J Neurosurg. 2004;100(2):210–214. PMID: 15086226 https://doi.org/10.3171/jns.2004.100.2.0210; Hadizadeh DR, von Falkenhausen M, Gieseke J, Meyer B, Urbach H, Hoogeveen R, et al. Cerebral arteriovenous malformation: Spetzler-Martin classification at subsecond-temporal-resolution fourdimensional MR angiography compared with that at DSA. Radiology. 2008;246(1):205– 213. PMID: 17951352 https://doi.org/10.1148/radiol.2453061684; Radiosurgery Practice Guideline Initiative. Stereotactic Radiosurgery for Patients with Intracranial Arteriovenous Malformations (AVM) Radiosurgery Practice Guideline Report #2-03. Issued March 2009. URL: https://pdf4pro.com/view/radiosurgery-practice-guideline-initiativestereotactic-32d2f5.html [Дата обращения 19 ноября 2021 г.]; Abdelaziz O, Shereen A, Inoue T, Hirai H, Shima A. Correlation of Appearance of MRI Perinidal T2 Hyperintensity Signal and Eventual Nidus Obliteration Following Photon Radiosurgery of Brain AVMs: Combined Results of LINAC and Gamma Knife Centers. J Neurol Surg A Cent Eur Neurosurg. 2019;80(3):187–197. PMID: 30895568 https://doi.org/10.1055/s-0039-1678710; https://www.jnmp.ru/jour/article/view/1286

  9. 9

    Zdroj: Neurology, Neuropsychiatry, Psychosomatics; Vol 13, No 1 (2021); 67-73 ; Неврология, нейропсихиатрия, психосоматика; Vol 13, No 1 (2021); 67-73 ; 2310-1342 ; 2074-2711 ; 10.14412/2074-2711-2021-1

    Popis súboru: application/pdf

    Relation: https://nnp.ima-press.net/nnp/article/view/1509/1187; https://nnp.ima-press.net/nnp/article/view/1509/1188; Riedl L, Mackenzie IR, Förstl H, et al. Frontotemporal lobar degeneration: current perspectives. Neuropsychiatr Dis Treat. 2014 Feb 13;10:297-310. doi:10.2147/NDT.S38706. eCollection 2014.; Neary D, Snowden JS, Gustafson L, et al. Frontotemporal lobar degeneration: A consensus on clinical diagnostic criteria. Neurology. 1998 Dec;51(6):1546-54. doi:10.1212/wnl.51.6.1546; Josephs KA, Hodges JR, Snowden JS, et al. Neuropathological background of phenotypical variability in frontotemporal dementia. Acta Neuropathol. 2011 Aug;122(2):137-53. doi:10.1007/s00401-011-0839-6. Epub 2011 May 26.; Waldö LM, Santillo FA, Passant U, et al. Cerebrospinal fluid neurofilament light chain protein levels in subtypes of frontotemporal dementia. BMC Neurol. 2013 May 29;13:54. doi:10.1186/1471-2377-13-54; Miller B, Llibre Guerra JJ. Frontotemporal dementia. Handb Clin Neurol. 2019;165:33-45. doi:10.1016/B978-0-444-64012-3.00003-4; Михайлов ВА, Коцюбинская ЮВ, Сафонова НЮ и др. Первичная прогрессирующая афазия. Неврология, нейропсихиатрия, психосоматика. 2019;11(1):4-11. doi:10.14412/2074-2711-2019-1-4-11; Neumann M, Mackenzie IRA. Review: Neuropathology of non-tau frontotemporal lobar degeneration. Neuropathol Appl Neurobiol. 2019 Feb;45(1):19-40. doi:10.1111/nan.12526; Johnson JK, Diehl J, Mendez MF, et al. Frontotemporal lobar degeneration: demographic characteristics of 353 patients. Arch Neurol. 2005 Jun;62(6):925-30. doi:10.1001/archneur.62.6.925; Whitwell JL, Przybelski SA, Weigand SD, et al. Distinct anatomical subtypes of the behavioural variant of frontotemporal dementia: a cluster analysis study. Brain. 2009 Nov;132 (Pt 11):2932-46. doi:10.1093/brain/awp232. Epub 2009 Sep 17.; Eslinger PJ, Moore P, Antani S, et al. Apathy in frontotemporal dementia: behavioral and neuroimaging correlates. Behav Neurol. 2012;25(2):127-36. doi:10.3233/BEN-20110351; Pressman PS, Miller BL. Diagnosis and management of behavioral variant frontotemporal dementia. Biol Psychiatry. 2014 Apr 1;75(7):574-81. doi:10.1016/j.biopsych.2013.11.006. Epub 2013 Nov 13.; Левин ОС, Штульман ДР. Неврология: справочник практического врача. 10-е изд. Москва: МЕДпресс-информ; 2016. 1024 с. ISBN 978-5 00030 335-1; Тиганов АС, редактор. Психиатрия: Руководство для врачей: В 2-х т. Москва: ОАО «Издательство «Медицина»; 2012. Т. II. С. 56. ISBN 978-5-225-10017-9; De la Monte SM, Kril JJ. Human alcoholrelated neuropathology. Acta Neuropathologica. 2014 Jan;127(1):71-90. doi:10.1007/s00401013-1233-3. Epub 2013 Dec 27.; Cosseddu M, Benussi A, Gazzina S, et al. Progression of behavioural disturbances in frontotemporal dementia: a longitudinal observational study. Eur J Neurol. 2020 Feb;27(2):265-72. doi:10.1111/ene.14071. Epub 2019 Sep 18.; Захаров ВВ, Вахнина НВ. Сосудистые и нейродегенеративные когнитивные нарушения: описание клинического случая. Неврология, нейропсихиатрия, психосоматика. 2016;8(2):55-61. doi:10.14412/2074-27112016-2-55-61; Rascovsky K, Hodges JR, Knopman D, et al. Sensitivity of revised diagnostic criteria for the behavioural variant of frontotemporal dementia. Brain. 2011 Sep;134(Pt 9):2456-77. doi:10.1093/brain/awr179. Epub 2011 Aug 2.; Bartchowski Z, Gatla S, Khoury S, et al. Empathy changes in neurocognitive disorders: a review. Ann Clin Psychiatry. 2018 Aug;30(3):220-32.; Meyer S, Mueller K, Stuke K, et al. Predicting behavioral variant frontotemporal dementia with pattern classification in multicenter structural MRI data. Neuroimage Clin. 2017 Feb 6;14:656-62. doi:10.1016/j.nicl.2017.02.001. eCollection 2017.; Caminiti SP, Ballarini T, Sala A, et al. FDG-PET and CSF biomarker accuracy in prediction of conversion to different dementias in a large multicentre MCI cohort. BIOMARKAPD Project. Neuroimage Clin. 2018 Jan 28;18:167-77. doi:10.1016/j.nicl.2018.01.019. eCollection 2018.; Parmar A, Sarkar S. Neuroimaging Studies in Obsessive Compulsive Disorder: A Narrative Review. Indian J Psychol Med. Sep-Oct 2016;38(5):386-94. doi:10.4103/02537176.191395; Zhou Z, Li X, Jin Y, et al. Regional cerebral blood flow correlates eating abnormalities in frontotemporal dementia. Neurol Sci. 2019 Aug;40(8):1695-700. doi:10.1007/s10072-01903910-7. Epub 2019 Apr 30.; Ahmed RM, Latheef S, Bartley L, et al. Eating behavior in frontotemporal dementia: Peripheral hormones vs hypothalamic pathology. Neurology. 2015 Oct 13;85(15):1310-7. doi:10.1212/WNL.0000000000002018. Epub 2015 Sep 16.; Butler PM, Chiong W. Neurodegenerative disorders of the human frontal lobes. Handb Clin Neurol. 2019;163:391-410. doi:10.1016/B978-0-12-804281-6.00021-5

  10. 10

    Zdroj: Works on Intellectual Property ; Vol 36 No 3-4 (2020): SCIENTIFIC JOURNAL OF UNESCO CHAIR ON COPYRIGHT, RELATED, CULTURAL AND INFORMATION RIGHTS; 5-23 ; Труды по Интеллектуальной Собственности; Том 36 № 3-4 (2020): НАУЧНЫЙ ЖУРНАЛ КАФЕДРЫ ЮНЕСКО ПО АВТОРСКОМУ ПРАВУ, СМЕЖНЫМ, КУЛЬТУРНЫМ И ИНФОРМАЦИОННЫМ ПРАВАМ; 5-23 ; 2713-1270 ; 2225-3475 ; 10.17323/tis.2020.v36

    Popis súboru: application/pdf

  11. 11

    Prispievatelia: M. V. Matveeva Yu. G. Samoilova N. G. Zhukova a ďalší

    Zdroj: Neurology, Neuropsychiatry, Psychosomatics; Vol 12, No 3 (2020); 42-46 ; Неврология, нейропсихиатрия, психосоматика; Vol 12, No 3 (2020); 42-46 ; 2310-1342 ; 2074-2711 ; 10.14412/2074-2711-2020-3

    Popis súboru: application/pdf

    Relation: https://nnp.ima-press.net/nnp/article/view/1362/1053; Xia W, Chen YC, Luo Y, et al. Decreased Spontaneous Brain АСгуйу and Functional Connectivity in Type 1 Diabetic Patients Without Microvascular Complications. Cell Physiol Biochem. 2018;51(6):2694-2703. doi:10.1159/000495960. Epub 2018 Dec 12.; Ryan CM, van Duinkerken E, Rosano C. Neurocognitive consequences of diabetes. Am Psychol.2016 Oct;71(7):563-576. doi:10.1037/a0040455.; Ruis C, Biessels GJ, Gorter KJ, et al. Cognition in the early stage of type 2 diabetes. Diabetes Care.2009 Jul;32(7):1261-5. doi:10.2337/dc08-2143. Epub 2009 Apr 14.; Захаров ВВ, Вахнина НВ. Практические алгоритмы ведения пациентов с когнитивными нарушениями. Медицинский Совет. 2019;(6):27-33.; Franc DT, Kodl CT, Mueller ВА, et al. High connectivity between reduced cortical thickness and disrupted white matter tracts in long-standing type 1 diabetes. Diabetes. 2011 Jan;60(1): 315-9. doi:10.2337/db10-0598. Epub 2010 Oct 27.; Ferguson SC, Blane А, Wardlaw J, et al. Influence of an early-onset age of type 1 diabetes on cerebral structure and cognitive function. Diabetes Care.2005 Jun;28(6):1431-7. doi:10.2337/diacare.28.6.1431.; Van Harten B, de Leeuw FE, Weinstein HC, et al. Brain imaging in patients with diabetes: a systematic review. Diabetes Care.2006 Nov; 29(11):2539-48. doi:10.2337/dc06-1637.; Kooistra M, Geerlings MI, Mali WP, et al; SMART-MR Study Group. Diabetes mellitus and progression of vascular brain lesions and brain atrophy in patients with symptomatic atherosclerotic disease. The SMART-MR study. J Neurol Sci. 2013 Sep 15;332(1-2):69-74. doi:10.1016/j.jns.2013.06.019. Epub 2013 Jul 6.; Espeland МА, Bryan RN, Goveas JS, et al; WHIMS-MRI Study Group. Influence of type 2 diabetes on brain volumes and changes in brain volumes: results from the Women's Health Initiative Magnetic Resonance Imaging studies. Diabetes Care.2013 Jan;36(1):90-7. doi:10.2337/dc12-0555. Epub 2012 Аод 29.; De Bresser J, Tiehuis АМ, van den Berg E, et al; Utrecht Diabetic Encephalopathy Study Group. Progression of cerebral atrophy and white matter hyperintensities in patients with type 2 diabetes. Diabetes Care. 2010 Jun;33(6): 1309-14. doi:10.2337/dc09-1923. Epub 2010 Mar 18.; Гацких ИВ, Веселова ОФ, Брикман ИН и др. Когнитивные нарушения при сахарном диабете 2 типа. http://science-education.ru/ru/article/view?id=20805; Munshi MN. Cognitive dysfunction in oldery adults with diabetes: what a clinician needs to know. Diabetes Care. 2017 Apr; 40(4):461-67. doi:10.2337/dc16-1229.; Biessels GJ, Despa F. Cognitive decline and dementia in diabetes mellitus: mechanisms and clinical implications. Nat Rev Endocrinol. 2018 Oct;14(10):591-604. doi:10.1038/s41574-018-0048-7.; Li W, Huang E, Gao S. Type 1 Diabetes Mellitus and Cognitive Impairments: А Systematic Review. J Alzheimers Dis. 2017;57(1):29-36. doi:10.3233/1АР-161250.; Самойлова ЮГ, Матвеева МВ, Жукова НГ, Ротканк МА. Вариабельность гликемии и когнитивные нарушения у пациентов с сахарным диабетом 1-го типа. Клиническая медицина. 2018;96(8):741-5.; He J, Ryder AG, Li S, et al. Glycemic extremes are related to cognitive dysfunction in children with type 1 diabetes: А meta-analysis. J Diabetes Investig. 2018;9(6):1342-1353. doi:10.1111/jdi.12840; Lee S, Han K, Cho H, et al. Variability in metabolic parameters and risk of dementia: a nationwide population-based study. Alzheimers Res Ther. 2018 Oct 27;10(1):110. doi:10.1186/s13195-018-0442-3.; Van Bussel FC, Backes WH, van Veenen-daal TM, et al. Functional Brain Networks Аге Altered in Type 2 Diabetes and Prediabetes: Signs for Compensation of Cognitive Decrements? The Maastricht Study. Diabetes. 2016 Aug;65(8):2404-13. doi:10.2337/db16-0128. Epub 2016 May 23.; Lyoo IK, Yoon S, Renshaw PF, et al. Network-level structural abnormalities of cerebral cortex in type 1 diabetes mellitus. PLoS One. 2013 Ана 23;8(8):e71304. doi:10.1371/journal.pone.0071304. eCollection 2013.; Matveeva M, Samoilova YG, Zhukova NG, et al. Antidiabetic drugs and cognitive impairment in type 2 diabetes. Medical Science. 2019; 23:369-74; Li J, Zhang W, Wang X, et al. Functional magnetic resonance imaging reveals differences in brain activation in response to thermal stimuli in diabetic patients with and without diabetic peripheral neuropathy. PLoS One. 2018 Jan 5; 13(1):e0190699. doi:10.1371/journal.pone.0190699. eCollection 2018.; Koekkoek PS, Kappelle LJ, van den Berg E, et al. Cognitive function in patients with diabetes mellitus: guidance for daily care. Lancet Neurol.2015 Mar;14(3):329-40. doi:10.1016/S1474-4422(14)70249-2. Epub 2015 Feb 16.; Van Duinkerken E, Ijzerman RG, Klein M, et al. Disrupted subject-specific gray matter network properties and cognitive dysfunction in type 1 diabetes patients with and without proliferative retinopathy. Hum Brain Mapp. 2016 Mar;37(3):1194-208. doi:10.1002/hbm.23096. Epub 2015 Dec 23.; Antenor-Dorsey JA, Meyer E, Rutlin J, et al. White matter microstructural integrity in youth with type 1 diabetes. Diabetes. 2013 Feb; 62(2):581-9. doi:10.2337/db12-0696. Epub 2012 Nov 8.; Musen G, Lyoo IK, Sparks CR, et al. Effects of type 1 diabetes on gray matter density as measured by voxel-based morphometry. Diabetes. 2006 Feb;55(2):326-33. doi:10.2337/diabetes.55.02.06.db05-0520.; Northam БА, Rankins D, Lin А, et al. Central nervous system function in youth with type 1 diabetes 12 years after disease onset. Diabetes Care. 2009 Mar;32(3):445-50. doi:10.2337/dc08-1657. Epub 2009 Jan 16.; Choi J, Chandrasekaran K, Demarest TG, et al. Brain diabetic neurodegeneration segregates with low intrinsic aerobic capacity. Ann Clin TranslNeurol. 2014 Aug;1(8):589-604. doi:10.1002/acn3.86. Epub 2014 ,'ug 19.; Hershey T, Perantie DC, Wu J, et al. Hippocampal volumes in youth with type 1 diabetes. Diabetes. 2010 Jan;59(1):236-41. doi:10.2337/db09-1117. Epub 2009 Oct 15.; Erus G, Battapady H, Zhang T, et al. Spatial patterns of structural brain changes in type 2 diabetic patients and their longitudinal progression with intensive control of blood glucose. Diabetes Care. 2015 Jan;38(1):97-104. doi:10.2337/dc14-1196. Epub 2014 Oct 21.

  12. 12

    Zdroj: Medical Visualization; Том 24, № 2 (2020); 131-137 ; Медицинская визуализация; Том 24, № 2 (2020); 131-137 ; 2408-9516 ; 1607-0763

    Popis súboru: application/pdf

    Relation: https://medvis.vidar.ru/jour/article/view/919/605; Stein S.C., Spettell C. The Head Injury Severity Scale (HISS): a practical classification of closed-head injury. Brain Injury. 1995; 9 (5): 437–444. https://doi.org/10.3109/02699059509008203; Levin H.S., Diaz-Arrastia R.R. Diagnosis, prognosis, and clinical management of mild traumatic brain injury. The Lancet Neurology. 2015; 14 (5): 506–517. https://doi.org/10.1016/s1474-4422(15)00002-2; Hunter J.V., Wilde E.A., Tong K.A., Holshouser B.A. Emerging Imaging Tools for Use with Traumatic Brain Injury Research. J. Neurotrauma. 2012; 29 (4): 654–671. https://doi.org/10.1089/neu.2011.1906; Shenton M.E., Hamoda H.M., Schneiderman J.S., Bouix S., Pasternak O., Rathi Y., Vu M.-A., Purohit M.P., Helmer K., Koerte I., Lin A.P., Westin C.-F., Kikinis R., Kubicki M., Stern R.A., ZafonteR. A review of magnetic resonance imaging and diffusion tensor imaging findings in mild traumatic brain injury. Brain Imaging Behav. 2012; 6: 137–192. https://doi.org/10.1007/s11682-012-9156-5; Rutland-Brown W., Langlois J.A., Thomas K.E., Xi Y.L. Incidence of traumatic brain injury in the United States, 2003. J. Head Trauma Rehabil. 2006; 21 (6): 544–548.; Zhou Y., Milham M.P., Lui Y.W., Miles L., Reaume J., Sodick son D.K., Grossman R.I., Ge Y. Default-mode network disruption in mild traumatic brain injury. Radiology. 2012; 265 (3): 882–892. https://doi.org/10.1148/radiol.12120748; Cordes D., Haughton V.M., Arfanakis K., Carew J.D., Turski P.A., Moritz C.H., Quigley M.A., Meyerand M. E. Frequencies contributing to functional connectivity in the cerebral cortex in “resting-state” data. Am. J. Neuroradiol. 2001; 22 (7): 1326–1333.; Gusnard D.A., Raichle M.E. Searching for a baseline: functional imaging and the resting human brain. Nat. Rev. Neurosci. 2001; 2 (10): 685. https://doi.org/10.1038/35094500; Raichle M.E., Snyder A.Z. A default mode of brain function: a brief history of an evolving idea. Neuroimage. 2007; 37 (4): 1083–1090. https://doi.org/10.1016/j.neuroimage.2007.02.041; Gilbert D.T., Wilson T.D. Prospection: Experiencing the future. Science. 2007; 317 (5843): 1351–1354. https://doi.org/10.1126/science.1144161; Buckner R.L., Andrews Hanna J.R., Schacter D.L. The brain's default network. Ann. N.Y. Acad. Sci. 2008; 1124 (1): 1–38. https://doi.org/10.1196/annals.1440.011; Sharp D.J., Beckmann C.F., Greenwood R., Kinnunen K.M., Bonnelle V., De Boissezon X., Powell J.H., Counsell S.J., Patel M.C., Leech R. Default mode network functional and structural connectivity after traumatic brain injury. Brain. 2011; 134 (8): 2233–2247. https://doi.org/10.1093/brain/awr175; Fife T.D. Persistent vertigo and dizziness after mild traumatic brain injury. Ann. N.Y. Acad. Sci. 2015; 1343: 97–105. https://doi.org/10.1111/nyas.12678; Park E., Ai J., Baker A.J. Cerebellar injury: clinical relevance and potential in traumatic brain injury research. Prog. Brain Res. 2007; 161: 327–338. https://doi.org/10.1016/s0079-6123(06)61023-6; Potts M.B., Adwanikar H., Noble-Haeusslein L.J. Models of traumatic cerebellar injury. Cerebellum. 2009; 8 (3): 211–221. https://doi.org/10.1007/s12311-009-0114-8; Spanos G.K., Wilde E.A., Bigler E.D., Cleavinger H.B., Fearing M.A., Levin H.S., Li X., Hunter J.V. Cerebellar atrophy after moderate-to-severe pediatric traumatic brain injury. Am. J. Neuroradiol. 2007; 28 (3): 537–542.; Mayer A.R., Mannell M.V., Ling J., Elgie R., Gasparovic C., Phillips J.P., Doezema D., aYeo R.A. Auditory orienting and inhibition of return in mild traumatic brain injury: A FMRI study. Hum. Brain Mapp. 2009; 30: 4152–4166. https://doi.org/10.1002/hbm.20836; Yang Z., Yeo R., Pena A., Ling J., Klimaj S., Campbell R., Doezema D., Mayer A. A fMRI Study of Auditory Orienting and Inhibition of Return in Pediatric Mild Traumatic Brain Injury. J. Neurotrauma. 2012; 26: 2124–2136. https://doi.org/10.1089/neu.2012.2395.; Mayer A.R., Yang Z., Yeo R.A., Pena A., Ling J.M., Mannell M.V., Stippler M.,Mojtahed K. A functional MRI study of multimodal selective attention following mild traumatic brain injury. Brain Imaging Behav. 2012; 6: 343–354. https://doi.org/10.1007/s11682-012-9178-z; ShumskayaE., AndriessenT.M., Norris D.G., VosP.E. Abnormal whole-brain functional networks in homo geneous acute mild traumatic brain injury. Neurology. 2012; 79 (2): 175–182. https://doi.org/10.1212/wnl.0b013e31825f04fb; Bonnelle V., Leech R., Kinnunen K.M., Ham T.E., Beckmann C.F., Boissezon X., Greenwood R.J., Sharp D.J. Default mode network connectivity predicts sustained attention deficits after traumatic brain injury. J. Neurosci. 2011; 31 (38): 13442–13451. https://doi.org/10.1523/jneurosci.1163-11.2011; Arenivas A., Diaz-Arrastia R., Spence J., Cullum C.M., Krishnan K., Bosworth C., Culver C., Kennard B., Marquez de la Plata C. Three approaches to investigating functional compromise to the default mode network after traumatic axonal injury. Brain Imaging Behav. 2014; 8 (3): 407–419. https://doi.org/10.1007/s11682-012-9191-2; Horak F.B., Diener H.C. Cerebellar control of postural scaling and central set in stance. J. Neurophysiol. 1994; 72 (2): 479–493. https://doi.org/10.1152/jn.1994.72.2.479; Eierud C., Craddock R.C., Fletcher S., Aulakh M., King-Casas B., Kuehl D., LaConte S.M. Neuroimaging after mild traumatic brain injury: review and meta-analysis. NeuroImage: Clinical. 2014; 4: 283–294. https://doi.org/10.1016/j.nicl.2013.12.009; Guskiewicz K. M., Mihalik J.P., Shankar V., Marshall S.W., Crowell D.H., Oliaro S.M., Ciocca M.F., Hooker D.N. Measurement of head impacts in collegiate football players: relationship between head impact biomechanics and acute clinical outcome after concussion. Neurosurgery. 2007; 61 (6): 1244–1253. https://doi.org/10.1097/scs.0b013e31816a2e83; McCrea M., Guskiewicz K.M., Marshall S.W., Barr W., Randolph C., Cantu R.C., Onate J.A., Yang J., Kelly J.P. Acute effects and recovery time following concussion in collegiate football players: the NCAA Concussion Study. JAMA. 2003; 290 (19): 2556–2563. https://doi.org/10.1001/jama.290.19.2556.; Tsai F.Y., Teal J.S., Itabashi H.H., Huprich J.E., Hieshima G.B., Segall H.D. Computed tomography of posterior fossa trauma. J. Comput. Assist. Tomogr. 1980; 4 (3): 291–305.; Soto-Ares G., Vinchon M., Delmaire C., Abecidan E., Dhelle mes P., Pruvo J.P. Cerebellar atrophy after severe traumatic head injury in children. Childs Nerv. Syst. 2001; 17 (4–5): 263–269. https://doi.org/10.1007/s003810000411; Fiez J.A., Petersen S.E., Cheney M.K., Raichle M.E. Impaired non-motor learning and error detection associated with cerebellar damage. A single case study. Brain. 1992; 115 (Pt 1): 155–178. https://doi.org/10.1093/brain/115.1.155; Middleton F.A., Strick P.L. Anatomical evidence for cerebellar and basal ganglia involvement in higher cognitive function. Science. 1994; 266 (5184): 458–461. https://doi.org/10.1126/science.7939688; Riga D., Matos M.R., Glas A., Smit A.B., Spijker S., Van den Oever M.C. Optogenetic dissection of medial prefrontal cortex circuitry. Frontiers Syst. Neurosci. 2014; 8: 230. https://doi.org/10.3389/fnsys.2014.00230; Van den Oever M.C., Spijker S., Smit A.B., De Vries T.J. Prefrontal cortex plasticity mechanisms in drug seeking and relapse. Neurosci. Biobehav. Rev. 2010; 35: 276–228. https://doi.org/10.1016/j.neubiorev.2009.11.016; Ito M. Cerebellar Control of the Vestibulo-Ocular Reflex-Around the Flocculus Hypothesis. Annual Rev. Neurosci. 1982; 5: 275–296. https://doi.org/10.1146/annurev.ne.05.030182.001423; Lisberger S. The neural basis for learning of simple motor skills. Science. 1988; 242 (4879): 728–735. https://doi.org/10.1126/science.3055293; https://medvis.vidar.ru/jour/article/view/919

  13. 13
  14. 14

    Zdroj: Diagnostic radiology and radiotherapy; № 3 (2019); 60-70 ; Лучевая диагностика и терапия; № 3 (2019); 60-70 ; 2079-5343 ; 10.22328/2079-5343-2019-3

    Popis súboru: application/pdf

    Relation: https://radiag.bmoc-spb.ru/jour/article/view/433/358; О системе работы должностных лиц и органов военного управления по сохранению и укреплению психического здоровья военнослужащих Вооруженных Сил Российской Федерации: Приказ Министра обороны Российской Федерации от 4 августа 2014 г. № 533. [On the system of work of officials and bodies of the military administration for the preservation and strengthening of mental health of servicemen of the Armed Forces of the Russian Federation: Order of the Minister of Defense of the Russian Federation of August 4, 2014, No. 533. (In Russ.)].; Шамрей В.К. и др. Перспективы объективного мониторинга и прогноза психического здоровья военнослужащих // Доктор.Ру. 2018. № 1 (145). С. 27–33. [Shamrey V.K. Prospects for objective monitoring and prediction of the mental health of servicemen. Doctor.Ru, 2018, No. 1 (145), рp. 27–33. (In Russ.)].; Алексеев В.В. и др. Мониторинг аддиктивного поведения военнослужащих: опыт использования методов химико-токсикологического исследования // Воен.-мед. журн. 2016. Т. 337, № 3. С. 14–21. [Alekseev V.V. et al. Monitoring addictive behavior of military personnel: experience of using methods of chemical-toxicological research. Voyen.-med. zhurn., 2016, Vol. 337, No. 3, рр. 14–21. (In Russ.)].; Кувшинов К.Э. и др. Прогнозирование отклоняющегося поведения у военнослужащих, проходящих военную службу по призыву // Воен.-мед. журн. 2017. Т. 338, № 9. С. 4–10. [Kuvshinov K.E. et al. Prediction of deviating behavior among servicemen undergoing military service. Voyen.-med. zhurn., 2017, Vol. 338, No. 9, рр. 4–10. (In Russ.)].; Lytell M.C., Robson S., Schulker D. et al. Training success for U.S. air force special operations and combat support specialties: An analysis of recruiting, screening, and development processes. Santa Monica, Calif.: RAND Corporation, 2018. 116 p.; Самохвалов В.П. Эволюционная психиатрия. ИМИС: НПФ «Движение», 1993. 286 с. [Samokhvalov V.P. Evolutionary Psychiatry. IMIS: NPF «Dvizheniye», 1993, 286 p. (In Russ.)].; Вальтер Х. Функциональная визуализация в психиатрии и психотерапии. М.: Астрель, Полиграфиздат, 2010. 432 с. [Walter H. Functional visualization in psychiatry and psychotherapy. Moscow: Izdatel’stvo Astrel, Poligrafizdat, 2010, 432 p. (In Russ.)].; Селиверстова Е.В. и др. Реорганизация сети пассивного режима работы головного мозга у пациентов с болезнью Паркинсона: анализ индивидуальных компонент по данным фМРТ покоя // Анналы неврологии. 2015. Т. 9, № 2. С. 4–9. [Seliverstova E.V. et al. Reorganization of the network of passive mode of the brain in patients with Parkinson’s disease: analysis of individual components according to fMRI data of rest. Annali nevrologii, 2015, Vol. 9, No. 2, рp. 4–9. (In Russ.)].; Denier N. et al. Abnormal functional integration of thalamic low frequency oscillation in the BOLD signal after acute heroin treatment // Hum. Brain Mapp. 2015. Vol. 36. P. 5287–5300. 10. Haber S., Calzavara R. The cortico-basal ganglia integrative network. The role of the Thalamus // Brain Res. Bull. 2009. Vol. 78. P. 69–74.; Peters S.K., Dunlop K., Downar J. Cortico-Striatal-Thalamic Loop Circuits of the Salience Network: A Central Pathway in Psychiatric Disease and Treatment // Frontiers in Systems Neuroscience. 2016. Vol. 10, No. 12. Р. 104.; Марченко А.А. и др. Расстройства адаптации у военнослужащих: Проблемы диагностики и экспертизы // 3-й Азиатско-тихоокеанский конгресс по военной медицине: сборник трудов. СПб., 2016. 216 с. [Marchenko A.A. et al. Adaptation disorders in the military: Problems of diagnosis and examination. 3rd Asia-Pacific Congress on Military Medicine. Collection of works. St. Petersburg, 2016. 216 с. (In Russ.)].; Purves D. Principles of Cognitive Neuroscience // Sunderland: Sinauer Associates. 2013. No. 601. P. 38–39.; Zhang Y. et al. Distinct resting-state brain activities in heroindependent individuals // Brain Res. 2011. Vol. 1402. P. 46–53.; Tekin S., Cummings J.L. Frontal-subcortical neuronal circuits and clinical neuropsychiatry: an update // J. Psychosom Res. 2002. Vol. 53, No. 2. P. 647–654.

  15. 15

    Zdroj: Rheumatology Science and Practice; Vol 57, No 6 (2019); 612-617 ; Научно-практическая ревматология; Vol 57, No 6 (2019); 612-617 ; 1995-4492 ; 1995-4484

    Popis súboru: application/pdf

    Relation: https://rsp.mediar-press.net/rsp/article/view/2795/1896; Насонов ЕЛ, редактор. Российские клинические рекомендации. Ревматология. Москва: ГЭОТАР-Медиа; 2017. 464 с.ISBN 978-5-9704-4261-6; Пирадов МА, Танашян ММ, Кротенкова МВ и др. Передовые технологии нейровизуализации. Клиническая неврология. 2015;9(4):11-8; Штарк МБ, Коростышевская АМ, Резакова МВ и др. Функциональная магнитно-резонансная томография и нейронауки. Успехи физиологических наук. 2012;43(1):3-29; Ogawa S, Lee TM. Magnetic resonance imaging of blood vessels at high fields: In vivo and in vitro measurements and image simulation. Magn Reson Med. 1990;16(1):9-18. doi:10.1002/mrm.1910160103; Glover GH, Lai S. Self-navigated spiral fMRI: Interleaved versus single-shot. Magn Reson Med. 1998;39:361-8. doi:10.1002/mrm.1910390305; Treede RD, Kenshalo DR, Gracely RH, et al. The cortical representation of pain. Pain. 1999;79:105-11. doi:10.1016/S0304-3959(98)00184-5; Melzack R. From the gate to the neuromatrix. Pain. 1999;6:121-6. doi:10.1016/S0304-3959(99)00145-1; Bowsher D. Termination of the central pain pathway in man: the conscious appreciation of pain. Brain. 1957;80(4):606-22. doi:10.1093/brain/80.4.606; Kulkarni B, Bentley DE, Elliott R, et al. Attention to pain localization and unpleasantness discriminates the functions of themedi-al and lateral pain systems. Eur JNeurosci. 2005;21:3133-42. doi:10.1111/j.1460-9568.2005.04098.x; Porro CA, Cettolo V, Francescato MP, et al. Temporal and intensity coding of pain in human cortex. J Neurophysiol. 1998;80(6):3312-20. doi:10.1152/jn.1998.80.6.3312; Apkarian AV, Bushnell MC, Treede R-D, et al. Human brain mechanisms of pain perception and regulation in health and disease. Eur J Pain. 2005;9(4):463-84. doi:10.1016/j.ejpain.2004.11.001; Seifert F, Maihafner C. Central mechanisms of experimental and chronic neuropathic pain: Findings from functional imaging studies. Cell Mol Life Sci. 2009;66:375-90. doi:10.1007/s00018-008-8428-0; Baron R, Baron Y, Disbrow E, et al. Brain processing of capsaicin-induced secondary hyperalgesia: a functional MRI study. Neurology. 1999;53:548-57. doi:10.1212/WNL.53.3.548; Maihofner C, Schmelz M, Forster C, et al. Neural activation during experimental allodynia: a functional magnetic resonance imaging study. Eur J Neurosci. 2004;19:3211-8. doi:10.1111/j.1460-9568.2004.03437.x; Maihofner C, Handwerker HO. Differential coding of hyperalgesia in the human brain: a functional MRI study. Neuroimage. 2005;28:996-1006. doi:10.1016/j.neuroimage.2005.06.049; Zambreanu L, Wise RG, Brooks JC, et al. A role for the brainstem in central sensitisation in humans. Evidence from functional magnetic resonance imaging. Pain. 2005;114:397-407. doi:10.1016/j.pain.2005.01.005; Baliki MN, Geha PY, Apkarian AV, et al. Beyond feeling: chronic pain hurts the brain, disrupting the default-mode network dynamics. JNeurosci. 2008;28:1398-403. doi:10.1523/JNEU-ROSCI.4123-07.2008; Каратеев АЕ, Насонов ЕЛ. Хроническая боль и центральная сенситизация при иммуновоспалительных ревматических заболеваниях: патогенез, клинические проявления, возможность применения таргетных базисных противовоспалительных препаратов. Научно-практическая ревматология. 2019;57(2):197-209 doi:10.14412/1995-4484-2019-197-209; Kidd BL. Osteoarthritis and joint pain. Pain. 2006 Jul;123(1-2):6-9. doi:10.1016/j.pain.2006.04.009; Jones AK, Friston K, Frackowiak RS. Localization of responses to pain in human cerebral cortex. Science. 1992;255:215-6. doi:10.1126/science.1553549; Jones AK, Brown WD, Friston KJ, et al. Cortical and subcortical localization of response to pain in man using positron emission tomography. Proc R Soc Lond B Biol Sci. 1991;244:39-44. doi:10.1098/rspb.1991.0048; Kennedy DP, Courchesne E. Functional abnormalities of the default network during self- and other-reflection in autism. Soc Cogn Affect Neurosci. 2008;3:177-90. doi:10.1093/scan/nsn011; Kalk NJ, Schweinhardt P, et al. Functional magnetic resonance imaging of central processing of clinical and experimental pain in rheumatoid arthritis. Abstracts 11th World Congress on Pain. August 21-26. Sydney: N.S.W.; 2005. P. 108.; Seifert F, Jungfer I, Schmelz M, et al. Representation of UV-B-induced thermal and mechanical hyperalgesia in the human brain: A functional MRI study. Hum Brain Mapp. 2008;29(12):1327-42. doi:10.1002/hbm.20470; Bickel A, Dorfs S, Schmelz M, et al. Effects of antihyperalgesic drugs on experimentally induced hyperalgesia in man. Pain. 1998;76:317-25. doi:10.1016/S0304-3959(98)00062-1; Wasner G, Schattschneider J, Binder A, et al. Topical menthol — a human model for cold pain by activation and sensitization of C nociceptors. Brain. 2004;127:1159-71. doi:10.1093/brain/awh134; Seifert F, Maihofner C. Representation of cold allodynia in the human brain — a functional MRI study. Neuroimage. 2007;35:1168-80. doi:10.1016/j.neuroimage.2007.01.021; Jones AKP, Derbyshire SWG. Reduced cortical responses to noxious heat in patients with rheumatoid arthritis. Ann Rheum Dis. 1997;56:601-7. doi:10.1136/ard.56.10.601; Keefe FJ, Caldwell DS, Martinez S, et al. Analyzing pain in rheumatoid arthritis patients. Pain coping strategies in patients who have had knee replacement surgery. Pain. 1991;46(2):153-60. doi:10.1016/0304-3959(91)90070-E; Насонов ЕЛ, Олюнин ЮА, Лила АМ. Ревматоидный артрит: проблемы ремиссии и резистентности к терапии. Научно-практическая ревматология. 2018;56(3):263-71 doi:10.14412/1995-4484-2018-263-271; Schweinhardt P, Kalk N, Wartolowska K, et al. Investigation into the neural correlates of emotional augmentation of clinical pain. Neuroimage. 2008;40(2):759-66. doi:10.1016/j.neuroim-age.2007.12.016; Nahit ES, Pritchard CM, Cherry NM, et al. The influence of work related psychosocial factors and psychological distress on regional musculoskeletal pain: a study of newly employed workers. J Rheumatol. 2001;28(6):1378-84.; Flodin P, Martinsen S, Altawil R, et al. Intrinsic Brain Connectivity in Chronic Pain: A resting-state fMRI Study in patients with rheumatoid arthritis. Front Hum Neurosci. 2016;10:107. doi:10.3389/fnhum.2016.00107; Boettger MK, Hensellek S, Richter F, et al. Antinociceptive effects of tumor necrosis factor alpha neutralization in a rat model of antigen-induced arthritis: evidence of a neuronal target. Arthritis Rheum. 2008;58:2368-78. doi:10.1002/art.23608; Hess A, Axmannb R, Rechb J, et al. Blockade of TNF-a rapidly inhibits pain responses in the central nervous system. Proc Natl Acad Sci. 2011;108(9):3731-6. doi:10.1073/pnas.1011774108; Rech J, Hess A, Finzel S, et al. Association of brain functional magnetic resonance activity with response to tumor necrosis factor inhibition in rheumatoid arthritis. Arthritis Rheum. 2013;65(2):325-33. doi:10.1002/art.37761; Basu N, Kaplan CM, Ichesco E, et al. Neurobiologic features of fibromyalgia are also present among rheumatoid arthritis patients. Arthritis Rheum. 2018;70:1000-7. doi:10.1002/art.40451; Kaplan CM, Schrepf A, Ichesco E, et al. Inflammation is associated with pro-nociceptive brain connections in rheumatoid arthritis patients with concomitant fibromyalgia. Arthritis Rheum. 2019 Aug 5. doi:10.1002/art.41069; Basu N, Kaplan CM, Ichesco E, et al. Functional and structural magnetic resonance imaging correlates of fatigue in patients with rheumatoid arthritis. Rheumatology (Oxford). 2019 Oct 1;58(10):1822-30. doi:10.1093/rheumatology/kez132; Schrepf A, Kaplan CM, Ichesco E, et al. A multi-modal MRI study of the central response to inflammation in rheumatoid arthritis. Nat Commun. 2018 Jun 8;9(1):2243. doi:10.1038/s41467-018-04648-0; Gibson S, Littlejohn G, Gorman M, et al. Altered heat pain thresholds and cerebral event-related potentials following painful CO2 laser stimulation in subjects with fibromyalgia syndrome. Pain. 1994;58(2):185-93. doi:10.1016/0304-3959(94)90198-8; Lorenz J, Grasedyck K, Bromm B. Middle and long latency somatosensory evoked potentials after painful laser stimulation in patients with fibromyalgia syndrome. Electroencephalogr Clin Neurophysiol. 1996;100(2):165-8. doi:10.1016/0013-4694(95)00259-6; Stevens A, Batra A, Ko tter I, et al. Both pain and EEG response to cold pressor stimulation occurs faster in fibromyalgia patients than in control subjects. Psychiatry Res. 2000;97(2-3):237-47. doi:10.1016/S0165-1781(00)00223-7; Cook DB, Lange G, Ciccone DS, et al. Functional imaging of pain in patients with primary fibromyalgia. J Rheumatol. 2004;31(2):364-78.; Staud R, Smitherman ML. Peripheral and central sensitization in fibromyalgia: pathogenetic role. Curr Pain Headache Rep. 2002;6(4):259-66. doi:10.1007/s11916-002-0046-1; Jones AKP, Huneke NTM, Lloyd DM, et al. Role of Functional Brain Imaging in Understanding Rheumatic Pain. Curr Rheumatol Rep. 2012;14:557. doi:10.1007/s11926-012-0287-x; Wik G, Fischer H, Finer B, et al. Retrospenial cortical deactivation during painful stimulation of fibromyalgia patients. Int J Neurosci. 2006;116(1):1-8. doi:10.1080/00207450690962208; Jensen KB, Kosek E, Petzke F, et al. Evidence of dysfunctional pain inhibition in fibromyalgia reflected in rACC during provoked pain. Pain. 2009;144(1-2):95-100. doi:10.1016/j.pain.2009.03.018; Pujol J, Lopez-Sola M, Ortiz H, et al. Mapping brain response to pain in fibromyalgia patients using temporal analysis of FMRI. PLoSOne. 2009;4(4):5224. doi:10.1371/journal.pone.0005224; Crombez G, Eccleston C, van den Broeck A, et al. Hypervigilance to pain in fibromyalgia: the mediating role of pain intensity and catastrophic thinking about pain. Clin J Pain. 2004;20:98-102. doi:10.1097/00002508-200403000-00006; Gracely RH, Geisser ME, Giesecke T, et al. Pain catastrophizing and neural responses to pain among persons with fibromyalgia. Brain. 2004;127(4):835-43. doi:10.1093/brain/awh098; Robinson ME, Craggs JG, Price DD, et al. Gray matter volumes of pain-related brain areas are decreased in fibromyalgia syndrome. J Pain. 2011;12(4):436-43. doi:10.1016/j.jpain.2010.10.003

  16. 16

    Zdroj: Neurology, Neuropsychiatry, Psychosomatics; Vol 11, No 4 (2019); 44-50 ; Неврология, нейропсихиатрия, психосоматика; Vol 11, No 4 (2019); 44-50 ; 2310-1342 ; 2074-2711 ; 10.14412/2074-2711-2019-4

    Popis súboru: application/pdf

    Relation: https://nnp.ima-press.net/nnp/article/view/1208/962; WHO. Depression and other common mental disorders: global health estimates. CC BY-NC-SA 3.0 IGO. 2017. https://apps.who.int/iris/handle/10665/254610; Мосолов СН, Костюкова ЕГ. Лечение больных с рекуррентным депрессивным расстройством. В кн.: Александровский ЮА, Незнанова НГ, редакторы. Психиатрия: национальное руководство. Москва: ГЭОТАР-Медиа; 2018. С. 347-78.; Rush AJ, Trivedi MH, Wisniewski SR, et al. Acute and longer-term outcomes in depressed outpatients requiring one or several treatment steps: A STAR*D report. Am J Psychiatry. 2006 Nov 1;163(11):1905. doi:10.1176/appi.ajp.163.11.1905; Nemeroff CB. Prevalence and management of treatment-resistant depression. J Clin Psychiatry. 2007;68 Suppl 8:17-25.; Perera T, George MS, Grammer G, et al. The Clinical TMS Society Consensus Review and Treatment Recommendations for TMS Therapy for Major Depressive Disorder. Brain Stimul. 2016 May-Jun;9(3):336-346. doi:10.1016/j.brs.2016.03.010. Epub 2016 Mar 16.; Chervyakov AV, Chernyavsky AY, Sinitsyn DO, Piradov MA. Possible Mechanisms Underlying the Therapeutic Effects of Transcranial Magnetic Stimulation. Front Hum Neurosci. 2015 Jun 16;9:303. doi:10.3389/fnhum.2015.00303. eCollection 2015.; Цукарзи ЭЭ, Ильин СА, Мосолов СН. Применение транскраниальной магнитной стимуляции и электросудорожной терапии при терапевтически резистентных депрессиях. Современная терапия психических расстройств. 2015;(4):25–32.; Lefaucheur JP, Andre-Obadia N, Antal A, et al. Evidence-based guidelines on the therapeutic use of repetitive transcranial magnetic stimulation (rTMS). Clin Neurophysiol. 2014 Nov;125(11):2150-2206. doi:10.1016/j.clinph.2014.05.021. Epub 2014 Jun 5.; Berlim MT, Van Den Eynde F, TovarPerdomo S, Daskalakis ZJ. Response, remission and drop-out rates following high-frequency repetitive transcranial magnetic stimulation (rTMS) for treating major depression: A systematic review and meta-analysis of randomized, double-blind and sham-controlled trials. Psychol Med. 2013 Mar 18;44(2):225–39. doi:10.1017/s0033291713000512; Herwig U, Padberg F, Unger J, et al. Transcranial magnetic stimulation in therapy studies: Examination of the reliability of «standard» coil positioning by neuronavigation. Biol Psychiatry. 2001 Jul;50(1):58–61. doi:10.1016/s0006-3223(01)01153-2; Fitzgerald PB, Hoy K, McQueen S, et al. A randomized trial of rTMS targeted with MRI based neuro-navigation in treatment-resistant depression. Neuropsychopharmacology. 2009 Jan 14;34(5):1255–62. doi:10.1038/npp.2008.233; Fox MD, Buckner RL, White MP, et al. Efficacy of transcranial magnetic stimulation targets for depression is related to intrinsic functional connectivity with the subgenual cingulate. Biol Psychiatry. 2012 Oct 1;72(7): 595-603. doi:10.1016/j.biopsych.2012.04.028. Epub 2012 Jun 1.; Семенова ОВ, Тимербаева СЛ, Коновалов РН. Возможности метода функциональной магнитно-резонансной томографии покоя в изучении патофизиологии первичной фокальной дистонии. Анналы клинической и экспериментальной неврологии. 2017;11(2): 44-50.; Hasler G. Pathophysiology of depression: Do we have any solid evidence of interest to clinicians? World Psychiatry. 2010 Oct;9(3):155–6. doi:10.1002/j.2051-5545.2010.tb00298.x; Fox MD, Liu H, Pascual-Leone A. Identification of reproducible individualized targets for treatment of depression with TMS based on intrinsic connectivity. Neuroimage. 2013 Feb 1;66:151-60. doi:10.1016/j.neuroimage.2012.10.082. Epub 2012 Nov 7.; Riedel M, Mü ller HJ, Obermeier M, et al. Response and remission criteria in major depression – a validation of current practice. J Psychiatr Res. 2010 Nov;44(15):1063-8. doi:10.1016/j.jpsychires.2010.03.006. Epub 2010 May 5.; Мосолов СН. Современные биологические гипотезы рекуррентной депрессии (обзор). Журнал неврологии и психиатрии им. С.С. Корсакова. 2012;112(11):29-40.; Morishita T, Fayad SM, Higuchi M, et al. Deep Brain Stimulation for Treatment-resistant Depression: Systematic Review of Clinical Outcomes. Neurotherapeutics. 2014 May 28; 11(3):475–84. doi:10.1007/s13311-014-0282-1; Salomons TV, Dunlop K, Kennedy SH, et al. Resting-state cortico-thalamic-striatal connectivity predicts response to dorsomedial prefrontal rTMS in major depressive disorder. Neuropsychopharmacology. 2013 Sep 13;39(2): 488–98. doi:10.1038/npp.2013.222; Levkovitz Y, Isserles M, Padberg F, et al. Efficacy and safety of deep transcranial magnetic stimulation for major depression: A prospective multicenter randomized controlled trial. World Psychiatry. 2015 Feb;14(1):64-73. doi:10.1002/wps.20199; Ning L, Makris N, Camprodon JA, Rathi Y. Limits and reproducibility of resting-state functional MRI definition of DLPFC targets for neuromodulation. Brain Stimul. 2019 Jan–Feb; 12(1):129-138. doi:10.1016/j.brs.2018.10.004; Wang J, Han J, Nguyen VT, et al. Improving the test-retest reliability of resting state fMRI by removing the impact of sleep. Front Neurosci. 2017 May 8;11:249. doi:10.3389/fnins.2017.00249; Razza LB, Moffa AH, Moreno ML, et al. A systematic review and meta-analysis on placebo response to repetitive transcranial magnetic stimulation for depression trials. Prog Neuropsychopharmacol Biol Psychiatry. 2018 Feb 2;81:105-113. doi:10.1016/j.pnpbp.2017.10.016

  17. 17
  18. 18
  19. 19

    Zdroj: The Banking University Bulletin; № 1(22) (2015); 158-161
    Вестник Университета банковского дела; № 1(22) (2015); 158-161
    Вісник Університету банківської справи; № 1(22) (2015); 158-161

    Popis súboru: application/pdf

  20. 20