Suchergebnisse - "фекальный кальпротектин"

  1. 1
  2. 2
  3. 3

    Quelle: Gastroenterologìa, Vol 51, Iss 1, Pp 56-63 (2017)
    GASTROENTEROLOGY; Том 51, № 1 (2017); 56-63
    Гастроэнтерология-Gastroenterologìa; Том 51, № 1 (2017); 56-63
    Гастроентерологія-Gastroenterologìa; Том 51, № 1 (2017); 56-63

    Dateibeschreibung: application/pdf

  4. 4

    Autoren: Chychula, Y. V.

    Quelle: Clinical Endocrinology and Endocrine Surgery. Клінічна ендокринологія та ендокринна хірургія; № 1 (2020); 77-82
    Clinical Endocrinology and Endocrine Surgery; № 1 (2020); 77-82
    Clinical Endocrinology and Endocrine Surgery. Клиническая эндокринология и эндокринная хирургия; № 1 (2020); 77-82

    Dateibeschreibung: application/pdf

  5. 5

    Quelle: Pediatric pharmacology; Том 20, № 1 (2023); 51-55 ; Педиатрическая фармакология; Том 20, № 1 (2023); 51-55 ; 2500-3089 ; 1727-5776

    Dateibeschreibung: application/pdf

    Relation: https://www.pedpharma.ru/jour/article/view/2263/1462; Singh DK, Miller CM, Orgel KA, et al. Necrotizing enterocolitis: Bench to bedside approaches and advancing our understanding of disease pathogenesis. Front Pediatr. 2023;10:1107404. doi: https://doi.org/10.1053/j.sempedsurg.2008.07.004; Neu J. Necrotizing enterocolitis. World Rev Nutr Diet. 2014;110:253–263. doi: https://doi.org/10.1159/000358474; Никитина И.В., Донников А.Е., Крог-Йенсен О.А. и др. Молекулярно-генетические предикторы некротизирующего энтероколита у новорожденных // Акушерство и гинекология. — 2020. — № 12. — С. 150–158. — doi: https://doi.org/10.18565/aig.2020.12.150-158; Castellanos MW, Claud EC. The microbiome, guard or threat to infant health. Trends Mol Med. 2021;27(12):1175–1186. doi: https://doi.org/10.1016/j.molmed.2021.08.002; Hunter CJ, Upperman JS, Ford HR, et al. Understanding the susceptibility of the premature infant to necrotizing enterocolitis (NEC). Pediatr Res. 2008;63(2):117–123. doi: https://doi.org/10.1203/pdr.0b013e31815ed64c; Gregory KE, Deforge CE, Natale KM, et al. Necrotizing enterocolitis in the premature infant: neonatal nursing assessment, disease pathogenesis, and clinical presentation. Crit Care Med. 2011;11(3):155–164. doi: https://doi.org/10.1097/anc.0b013e31821baaf4; Yoon JM, Park JY, Ko KO, et al. Fecal calprotectin concentration in neonatal necrotizing enterocolitis. Korean J Pediatr. 2014;57(8):351– 356. doi: https://doi.org/10.3345/kjp.2014.57.8.351; Josefsson S, Bunn SK, Domellof M. Fecal calprotectin in very low birth weight infants. J Pediatr Gastroenterol Nutr. 2007;44(4):407– 413. doi: https://doi.org/10.1097/mpg.0b013e3180320643; Mussap M, Noto A, Cibecchini F, et al. The importance of biomarkers in neonatology. Semin Fetal Neonatal Med. 2013;18(1):56–64. doi: https://doi.org/10.1016/j.siny.2012.10.006; Dale I, Brandtzaeg P, Fagerhol MK. et al. Distribution of a new myelomonocytic antigen (L1) in human peripheral blood leukocytes: immunofluorescence and immunoperoxidase staining features in comparison with lysozyme and lactoferrin. Am J Clin Pathol. 1985;84(1):24–34. doi: https://doi.org/10.1093/ajcp/84.1.24; Bohnhorst B. Usefulness of abdominal ultrasound in diagnosing necrotising enterocolitis. Arch Dis Child Fetal Neonatal Ed. 2013;98(5):F445–F450. doi: https://doi.org/10.1136/archdischild-2012-302848; Hanai H, Takeuchi K, Iida T, et al. Relationship between fecal calprotectin, intestinal inflammation, and peripheral blood neutrophils in patients with active ulcerative colitis. Dig Dis Sci. 2004;49(9):1438–1443. doi: https://doi.org/10.1023/b:ddas.0000042243.47279.87; Goold E, Pearson L, Johnson LM. Can fecal calprotectin serve as a screen for necrotizing enterocolitis in infants? Clin Biochem. 2020;84:51–54. doi: https://doi.org/10.1016/j.clinbiochem.2020.06.015; Campeotto F, Elie C, Rousseau C, et al. Faecal calprotectin and gut microbiota do not predict enteropathy in very preterm infants. Acta Paediatr. 2021;110(1):109–116. doi: https://doi.org/10.1111/apa.15354; Bell MJ, Ternberg JL, Feigin RD, et al. Neonatal necrotizing enterocolitis. Therapeutic decisions based upon clinical staging. Ann Surg. 1978;187(1):1–7. doi: https://doi.org/10.1097/00000658-197801000-00001; Walsh MC, Kliegman RM. Necrotizing Enterocolitis: Treatment Based on Staging Criteria. Pediatr Clin North Am. 1986;33(1):179– 201. doi: https://doi.org/10.1016/s0031-3955(16)34975-6; https://www.pedpharma.ru/jour/article/view/2263

  6. 6
  7. 7

    Quelle: Сучасна педіатрія; № 1(97) (2019): Сучасна педіатрія; 26-29
    Современная педиатрия; № 1(97) (2019): Современная педиатрия; 26-29
    Sovremennaya pediatriya; № 1(97) (2019): Sovremennaya pediatriya; 26-29

    Dateibeschreibung: application/pdf

  8. 8

    Quelle: Ukrainian Journal of Perinatology and Pediatrics; No. 3(91) (2022): Ukrainian Journal of Perinatology and Pediatrics; 41-47
    Украинский журнал Перинатология и Педиатрия; № 3(91) (2022): Ukrainian Journal of Perinatology and Pediatrics; 41-47
    Український журнал Перинатологія і Педіатрія; № 3(91) (2022): Український журнал Перинатологія і Педіатрія; 41-47

    Dateibeschreibung: application/pdf

  9. 9

    Quelle: Rossiyskiy Vestnik Perinatologii i Pediatrii (Russian Bulletin of Perinatology and Pediatrics); Том 66, № 6 (2021); 71-76 ; Российский вестник перинатологии и педиатрии; Том 66, № 6 (2021); 71-76 ; 2500-2228 ; 1027-4065

    Dateibeschreibung: application/pdf

    Relation: https://www.ped-perinatology.ru/jour/article/view/1532/1180; Riordan J.R., Rommens J.M., Kerem B., Alon N., Rozmahel R., Grzelczak Z. et al. Identification of the cystic fibrosis gene: cloning and characterization of complementary DNA. Science 2010; 245: 1066–1073. DOI:10.1126/science.2475911; Garcia M.A., Yang N., Quinton P.M. Normal mouse intestinal mucus release requires cystic fibrosis transmembrane regulator dependent bicarbonate secretion. J Clin Invest 2009; 119: 2613–2622. DOI:10.1172/JCI38662; Brennan S. Innate immune activation and cystic fibrosis. Paediatr Respir Rev 2008; 9: 271–280. DOI:10.1016/j.prrv.2008.05.008; Stoltz D.A., Meyerholz D.K., Pezzulo A.A., Ramachandran S., Rogan M.P., Davis G.J. et al. Cystic fibrosis pigs develop lung disease and exhibit defective bacterial eradication at birth. Sci Transl Med 2010; 2:29ra31.6. DOI:10.1126/scitranslmed.3000928; O’Brien S., Mulcahy H., Fenlon H., O’Broin A., Casey M., Burke A. et al. Intestinal bile acid malabsorption in cystic fibrosis. Gut 2013; 34: 1137–1141.8. DOI:10.1136/gut.34.8.1137; Schippa S., Iebba V., Santangelo F., Gagliardi A., De Biase R.V., Stamato A. et al. CFTR allelic variants relate to shifts in fecal microbiota of cystic fibrosis patients. PLoS ONE. 2013; 8:e61176. DOI:10.1371/journal.pone.0061176; Selsted M.E., Miller S.I., Henschen A.H., Ouellette A.J. Enteric defensins: antibiotic peptide components of intestinal host defense. J Cell Biol 2015; 118: 929–936. DOI:10.1083/jcb.118.4.929; Pang T., Leach S.T., Katz T., Jaffe A., Day A.S., Ooi C.Y. Elevated fecal M2-pyruvate kinase in children with cystic fibrosis: A clue to the increased risk of intestinal malignancy in adulthood? J Gastroenterol Hepatol 2015; 30: 866–871. DOI:10.1111/jgh.12842; Bruzzese E., Callegari M.L., Raia V. Disrupted intestinal microbiota and intestinal inflammation in children with cystic fibrosis and its restoration with Lactobacillus GG: a randomized clinical trial. PLoS One 2014; 9: e87796. DOI:10.1371/journal.pone.0087796; Pang T., Leach S.T., Katz T., Day A.S., Ooi C.Y. Fecal biomarkers of intestinal health and disease in children. Front Pediatr 2014; 2: 6. DOI:10.3389/fped.2014.00006; Dhaliwal J., Leach S., Katz T., Nahidi L., Pang T., Lee J.M. et al. Intestinal inflammation and impact on growth in children with cystic fibrosis. J Pediatr Gastr Nutr 2015; 60: 521–526. DOI:10.1097/MPG.0000000000000683; Werlin S.L., Benuri-Silbiger I., Kerem E., Adler S.N., Goldin E., Zimmerman J. et al. Evidence of intestinal inflammation in patients with cystic fibrosis. J Pediatr Gastr Nutr 2010; 51: 304–308. DOI:10.1097/MPG.0b013e3181d1b013; Harder J., Bartels J., Christophers E. A peptide antibiotic from human skin. Nature 2007; 387: 861. DOI:10.1038/43088; Kolho K.L., Sipponen T., Valtonen E., Savilahti E. Fecal calprotectin, MMP-9, and human beta-defensin-2 levels in pediatric inflammatory bowel disease. Int J Colorectal Dis 2014; 29: 43–50. DOI:10.1007/s00384-013-1775-9; Рылова Н.В. Панкреатическая эластаза в диагностике функциональных и структурных изменений поджелудочной железы у детей. Практическая медицина 2018;2(113): 66–69.; WHO Multicentre Growth Reference Study Group. WHO Child Growth Standarts based on length/height, weight and age. Acta Padiatrica 2006; 450(Suppl): 76–8.5 DOI:10.1111/j.1651-2227.2006.tb02378.x; Шуматова Т.А., Шишацкая С.Н., Зернова Е.С., Катенкова Э.Ю., Оденбах Л.А., Приходченко Н.Г. Современные маркеры в диагностике пищевой непереносимости у детей грудного возраста. Тихоокеанский медицинский журнал 2015; 3: 55–55.; Ooi1 C.Y., Pang T., Leach S.T., Katz T., Day A.S., Adam J. Fecal Human b-Defensin 2 in Children with Cystic Fibrosis: Is There a Diminished Intestinal Innate Immune Response? Dig Dis Sci 2015; 60: 2946–2952. DOI:10.1007/s10620-015-3842-2; Kapel N., Benahmed N., Morali A., Svahn J., Canioni D., Goulet O., Ruemmele F.M. Fecal b-Defensin-2 in Children With Inflammatory Bowel Diseases. JPGN 2009; 48: 117–120. DOI:10.1097/MPG.0b013e318174e872; Kolho K.L., Sipponen T., Elsa Valtonen E.S. Fecal calprotectin, MMP-9, and human beta-defensin-2 levels in pediatric inflammatory bowel disease Int J Colorectal Dis 2014; 29: 43–50. DOI:10.1007/s00384-013-1775-9; Jenke A.C., Postberg J., Mariel B., Hensel K., Foell D., Dabritz J., Wirth S. S100A12 and hBD2 correlate with the composition of the fecal microflora in ELBW infants and expansion of E. coli is associated with NEC. Biomed Res Int 2013; 2013: 150372. DOI:10.1155/2013/150372; Shitrit A.B., Braverman D., Stankiewics H., Stankiewics H., Shitrit D., Peled N. et al. Fecal calprotectin as a predictor of abnormal colonic histology. Dis Colon Rectum 2007; 50: 2188–2193. DOI:10.1007/s10350-007-9038-x; Ohara T., Morishita T., Suzuki H., Masaoka T., Nishizawa T., Hibi T. Investigation of the possibility of human-beta defensin 2 (hBD2) as a molecular marker of gastric mucosal inflammation. Hepatogastroenterology 2005; 52: 1320–1324; Bauer B., Wax T., Kuester D., Meyer T., Malfertheiner P. Differential Expression of Human Beta Defensin 2 and 3 in Gastric Mucosa of Helicobacter pylori Infected Individuals. Helicobacter 2013; 18(1): 16–12. DOI:10.1111/hel.12000; Corebima B.I.R.V., Rohsiswatmo R., Gayatri P., Patole S. Fecal human β-defensin-2 (hBD-2) levels and gut microbiota patterns in preterm neonates with different feeding patterns. Iran J Microbiol 2019; 11(2): 151–159; Barker N. Adult intestinal stem cells: critical drivers of epithelial homeostasis and regeneration. Nat Rev Mol Cell Biol 2014; 15: 19–33. DOI:10.1038/nrm3721

  10. 10
  11. 11
  12. 12

    Quelle: Journal Infectology; Том 13, № 4 (2021); 57-65 ; Журнал инфектологии; Том 13, № 4 (2021); 57-65 ; 2072-6732 ; 10.22625/2072-6732-2021-13-4

    Dateibeschreibung: application/pdf

    Relation: https://journal.niidi.ru/jofin/article/view/1270/937; Яковенко, Э.П. Патология пищеварительного тракта и печени при COVID-19 / Э.П. Яковенко [и др.] // Экспериментальная и клиническая гастроэнтерология. – 2020. – Т. 176, № 4. – С. 19–23.; Huang, C. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China / C. Huang, Y. Wang , X. Li [et al.] // Lancet. – 2020. – Vol. 395, №10223. – P. 497–506.; Giron, L. Plasma markers of disrupted gut permeability in severe COVID-19 patients / L. Giron, H. Dweep, X. Yin [et al.] // Front. Immunol. – 2021. – Vol. 12, N 686240. – P. 1-16.; Ahlawat, S. Immunological co-ordination between gut and lungs in SARS-CoV-2 infection / S. Ahlawat, Asha, K.K. Sharma // Virus Research. – 2020. – Vol. 286. – P. 1-10.; Troisi, J. COVID-19 and the gastrointestinal tract: Source of infection or merely a target of the inflammatory process following SARS-CoV-2 infection? / J. Troisi, G. Venutolo, M. P. Tanyà [et al.] // World J. Gastroenterol. – 2021. – Vol. 27, N 14. – P. 1406–1418.; Fasano, A. Intestinal permeability and its regulation by zonulin: diagnostic and therapeutic implications /A. Fasano // Clinical Gastroenterol. Hepatol. – 2012. – Vol. 10, N 8. – P. 1096-1100.; Llorens, S. Neurological symptoms of COVID-19: the zonulin hypothesis / S. Llorens, E. Nava, M. Mu oz-L pez [et al.] // Front. Immunol. – 2021. – Vol. 12. – N 665300. – P. 1-9; Di Micco, S. Peptide derivatives of the zonulin inhibitor larazotide (AT1001) as potential anti SARS-CoV-2: molecular modelling, synthesis and bioactivity evaluation / S. Di Micco, S. Musella, M. Sala [et al.] // Intern. J. Molec. Sci. – 2021. – Vol.22, N 17. – P. 9427.; Leffler, D. A. Larazotide acetate for persistent symptoms of celiac disease despite a gluten-free diet: a randomized controlled trial / D.A. Leffler, C.P. Kelly, P.H. Green [et al.] // Gastroenterol. – 2015. – Vol. 148, N 7. – P. 1311–1319.; Oliva, A. Low-grade endotoxemia and thrombosis in COVID-19 / A. Oliva, V. Cammisotto, R. Cangemi [et al.] // Clin. Translat. Gastroenterol. – 2021. – Vol. 12, N 6. – P. 1-6.; Giron, L. B. Severe COVID-19 is fueled by disrupted gut barrier integrity / L. B. Giron; H. Dweep; X. Yin [et al.] // Topics in Antiviral Medicine. – 2021. – Vol. 29, N 1. – P. 29-30.; Guan, W. J. Clinical characteristics of coronavirus disease 2019 in China / W.J. Guan, Z. Ni, Y. Hu [et al.] // J Emerg Med. – 2020. – Vol. 58, N 4. – P. 711-712.; Tao, Z. Alterations in gut microbiota of patients with COVID-19 during time of hospitalization / Z. Tao, F. Zhang, G. Lui [et al.] // Gastroenterol. – 2020. – Vol. 159, N 3. – P. 944–955.; Yeoh, K. Y. Gut microbiota composition reflects disease severity and dysfunctional immune responses in patients with COVID-19 / K. Y. Yeoh, T. Zuo, G. C. Lui [et al.] // Gut. – 2021. – Vol. 70, N 4. – P. 698–706.; Временные методические рекомендации. Профилактика, диагностика и лечение новой коронавирусной инфекции (COVID-19). Версия-7 (03.06.2020). – Москва: МЗ РФ, 2020. – 166 с.; Kordzadeh-Kermani, E. Pathogenesis, clinical manifestations and complications of coronavirus disease 2019 (COVID-19) / E. Kordzadeh-Kermani, H. Khalili, I. Karimzadeh // Future Microbiol. – 2020. – Vol. 15, N 5. – P. 1287-1305.; Zhou, Z. Effect of gastrointestinal symptoms in patients with COVID-19 / Z. Zhou, N. Zhao, Y. Shu [et al.] // Gastroenterology. – 2020. – Vol. 158, N 8. – P. 2294-2297.; Zheng, M. Functional exhaustion of antiviral lymphocytes in COVID-19 patients / M. Zheng, Y. Gao, G. Wang [et al.] // Cell. Mol. Immunol. – 2020. – Vol. 17, N 5. – P. 533–535.; Wang, W. Definition and Risks of Cytokine Release Syndrome in 11 Critically Ill COVID-19 Patients With Pneumonia: Analysis of Disease Characteristics / W. Wang, X. Liu, S. Wu // J Infect Dis. – 2020. – Vol. 222, N 9. – P. 1444-1451.; Gao, Q. Y. 2019 novel coronavirus infection and gastrointestinal tract / Q. Y. Gao, Y. X. Chen, J. Y. Fang // J. Dig. Dis. – 2020. – Vol. 21, N 3. – P. 125–126.; He, Y. Gut–lung axis: the microbial contributions and clinical implications / Y. He, Q. Wen, F. Yao [et al.] // Crit. Rev. Microbiol. – 2017. – Vol. 43, N 1. – P. 81-95.; Симаненков, В.И. Синдром повышенной эпителиальной проницаемости в клинической практике. Мультидисциплинарный национальный консенсус / В.И. Симаненков [и др.] // Кардиоваскулярная терапия и профилактика. – 2021. – Т. 20, №1 – С. 121–278.; Ahlawat, S. Gut–organ axis: a microbial outreach and networking / S. Ahlawat, Asha, K. K. Sharma // Lett. Appl. Microbiol. – 2020. – Vol. 72, N 6. – P. 636-668.; Foster, J. A. Gut-brain axis: how the microbiome influences anxiety and depression / J. A. Foster, K. A. M. Neufeld // Trends Neurosci. – 2013. – Vol. 36, N 5. – P. 305–312.; Carabotti, M. The gut-brain axis: interactions between enteric microbiota, central and enteric nervous systems / M. Carabotti, A. Scirocco, M. A. Maselli [et al.] // Ann. Gastroenterol. – 2015. – Vol. 28, N 2. – P. 203–209.; Hillman, E. T. Microbial ecology along the gastrointestinal tract / E. T. Hillman, H. Lu, T. Yao [et al.] // Microbes Environ. – 2017. – Vol. 32, N 4. – P. 300–313.; Duboc, H. Connecting dysbiosis, bile-acid dysmetabolism and gut inflammation in inflammatory bowel diseases / H. Duboc, S. Rajca, D. Rainteau [et al.] // Gut. – 2013. – Vol. 62, N 4. – P. 531–539.; Dhar, D. Gut microbiota and Covid-19 – possible link and implications / D. Dhar, A. Mohanty // Virus Res. – 2020. – Vol. 285, N 198018. – P. 1-5.; Савушкина, О.И. Функциональные нарушения системы дыхания в период раннего выздоровления после COVID-19 / О.И. Савушкина [и др.] // Медицинский алфавит. – 2020. – № 25. – С. 7–12.; https://journal.niidi.ru/jofin/article/view/1270

  13. 13
  14. 14
  15. 15

    Quelle: Clinical and experimental pathology; Vol. 19 No. 3 (2020) ; Клиническая и экспериментальная патология; Том 19 № 3 (2020) ; Клінічна та експериментальна патологія; Том 19 № 3 (2020) ; 2521-1153 ; 1727-4338

    Dateibeschreibung: application/pdf

  16. 16

    Quelle: Rossiyskiy Vestnik Perinatologii i Pediatrii (Russian Bulletin of Perinatology and Pediatrics); Том 59, № 5 (2014); 82-86 ; Российский вестник перинатологии и педиатрии; Том 59, № 5 (2014); 82-86 ; 2500-2228 ; 1027-4065 ; undefined

    Dateibeschreibung: application/pdf

    Relation: https://www.ped-perinatology.ru/jour/article/view/241/280; Lodge C.J., Allen K.J., Lowe A.J. Overview of evidence in prevention and aetiology of food allergy: a review of systematic reviews. Int J Environ Res Public Health 2013; 10:11:5781-5806.; Ebisawa M., Nishima S., Ohnishi H. et al. Pediatric allergy and immunology in Japan. Pediat Allergy Immunol 2013; 24: 7: 704-714.; Ramirez,-Del-Poz,o M.E., Gomez-Vera J., Lopez-Tiro J. Risk factors associated with the development of atopic march. Case-control study. Rev Alerg Мех 2012; 59: 4: 199—203.; Thygarajan A., Burks A.W. American Academy of Pediatric recommendations on the effect of early nutrirional interventions on the development of atopic disease. Curr Opin Pediat 2008; 6: 698—702.; NentwichL., PazdhrovA., LoraiJ. et al. Early feeding in infancy and atopic dermatitis — a prospective observations study. Klin Padiat2009; 221: 78-82.; Урсова Н.И. Детские молочные смеси и состояние иммунитета. Рос педиат журн 2007; 2:50—52. (Ursova N.I. Infant formulas and state immunity. Ros pediat zhurn 2007; 2:50-52.); Barbi E., Berti Т., Longo G. Food allergy: from the of loss oftolerance induced by exclusion diets to specific oral tolerance induction. Recent Pat Inflamm Allergy Drug Discov 2008; 2: 3: 212-214.; Cho H.N., Hong S., Lee S.H. et al. Nutritional Status According to Sensitized Food Allergens in Children With Atopic Dermatitis. Allergy Asthma Immunol Res 2011; 3: 1: 53-57.; Scurlock A.M., Vickery B.P., Hourihane J.O. Pediatric food allergy and mucosal tolerance. Mucosal Immunol 2010; 3: 4: 345-354.; Suh K.Y. Food allergy and atopic dermatitis: separating fact; from fiction. Semin Cutan Med Surg 2010; 29: 2: 72—78.; Steele L., Mayer L., Berin M.C. Mucosal immunology oftolerance and allergy in the gastrointestinal tract. Immunol Res 2012; 54: 1:75-82.; Berin M.C, Sampson H.A. Mucosal immunology of food allergy. Curr Biol 2013; 6: 23: 389-400.; Корниенко Е.А., Ломакина Е.А., Калинина Н.М., Чине-нова Л.В. Иммунологические особенности воспалительных заболеваний кишечника у детей и их клиническое значении. Вопр практ педиат 2008; 3: 1: 42—47. (KornienkoE.A., LomakinaE.A., KalininaN.M., Chinenova L.V. Immunologic features of inflammatory bowel disease in children and its clinical significance. Vopr prakt pediat 2008; 3: 1: 42-47.); Вохмянина Н.В. Целиакия и метаболические нарушения. Клинико-лабораторный консилиум 2011; 1: 15—19. (Vohmjanina N.V. Celiac disease and metabolic disorders. Clinical and laboratory consultation. Kliniko-laboratornyj konsilium2011; 1: 15—19).; Татьянина О.Ф., Потапов АС, Намазова Л.С. и др. Фекальный калыгротектин — маркер кишечного воспаления при заболеваниях кишечника у детей. Педиатрическая фармакология 2008; 5: 3: 13—19. (Tat'janina O.E, Potapov A.S., Namazova L.S. et al. Fecal calprotectin — a marker of intestinal inflammation in intestinal diseases in children. Pediatricheskajafarmakologija2008; 5: 3: 13—19.); Шуматова Т.А., Приходченко Н.Т., Ефремова И.В. и др. Клинико-лабораторный анализ энтеральной нутритив-ной поддержки детей с тяжелыми формами нарушения кишечного всасывания. ТМЖ 2013; 1: 38—41. (Shumatova Т.А., Prihodchenko N.G., Efremova I.V. et al. Clinical and laboratory analysis of enteral nutritional support for children with severely compromised intestinal absorption. TMZh 2013; 1:38-41.); undefined

  17. 17

    Quelle: Acta Biomedica Scientifica; Том 1, № 4 (2016); 145-149 ; 2587-9596 ; 2541-9420

    Dateibeschreibung: application/pdf

    Relation: https://www.actabiomedica.ru/jour/article/view/259/260; Blaser M.J., Falkow S. Исчезающая микробиота // Клиническая фармакология и терапия. - 2014. -№ 23 (4). - С. 7-16; Голощапов О.В., Вавилов В.Н., Зубаровская Л.С., Казанцев И.В., Васильева Ю.Г., Клементьева Р.В., Алянский А.Л., Байков В.В., Паина О.В., Семёнова Е.В., Афанасьев Б.В. Фекальный кальпротектин - новый количественный биомаркер острой и хронической реакции «трансплантат против хозяина» с вовлечением кишечника после аллогенной трансплантации гемопоэтических стволовых клеток // Клиническая онкогематология. - 2011. - № 4 (1). - С. 3-7; Долгих Т.И. Фекальный кальпротектин - неинвазивный биомаркер воспалительного процесса в кишечнике // Лаборатория. Спецвыпуск. - 2013. -№ 2. - С. 44-46; Каштанова Д.А., Ткачева О.Н., Бойцов С.А. Микробиота кишечника и факторы кардиоваскулярного риска. Часть 1. Микробиота кишечника, возраст и пол // Кардиоваскулярная терапия и профилактика. - 2015. - № 14 (4). - С. 92-95; Каштанова Д.А., Ткачева О.Н., Бойцов С.А. Микробиота кишечника и факторы кардиоваскулярного риска. Часть 2. Микробиота кишечника и ожирение // Кардиоваскулярная терапия и профилактика. - 2015. - № 14 (5). - С. 83-86; Кучумова С.Ю., Полуэктова Е.А., Шептулин А.А., Ивашкин В.Т. Физиологическое значение кишечной микрофлоры // РЖГГП. - 2011. - № 21 (5). - С. 17-27; Михайлова Е.И., Пиманов С.И., Воропаев Е.В., Тимашова В.Р. Фекальный маркер язвенного колита // РЖГГП. - 2007. - № 17 (5). - С. 60-63; Полуэктова Е.А., Ляшенко О.С., Королёв А.В., Шифрин О.С., Ивашкин В.Т. Механизмы, обеспечивающие взаимодействие бактериальных клеток с организмом хозяина, и их нарушение у пациентов с воспалительными заболеваниями кишечника // РЖГГП. - 2014. - № 24 (5). - С. 42-53; Татьянина О.Ф., Егорова М.В., Цимбалова Е.Г. Диагностика воспалительных заболеваний толстой кишки у детей // РЖГГП. - 2007. - № 17 (5, Прил. 30). - С. 117; Татьянина О.Ф., Потапов А.С., Намазова Л.С., Цимбалова Е.Г., Кучеренко А.Г., Лохматов М.М. Новые возможности неинвазивной диагностики воспалительных заболеваний кишечника у детей // Педиатрическая фармакология. - 2008. - № 5 (3). - С. 20-24; Ткачева О.Н., Каштанова Д.А., Бойцов С.А. Микробиота кишечника и факторы кардиоваскулярного риска. Часть 3. Липидный профиль, углеводный обмен и микробиота кишечника // Кардиоваскулярная терапия и профилактика. - 2015. - № 14 (6). - С. 83-86; Aagaard K, Ma J, Antony KM, Petrosino J, Versalo-vic J (2014). The placenta harbors a unique microbiome. Sci. Transl. Med. 6 (237), 237ra65.; Bergstrom A, Skov TH, Bahl ML, Roager HM, Christensen LB, Ejlerskov KT, M0lgaard C, Michaelsen KF, Licht TR (2014). Establishment of intestinal microbiota during early life: a longitudinal explorative study of a large cohort of Danish infants. Appl. Environ. Microbiol. 80 (9), 2889-2900.; Cani PD, Bibiloni R, Knauf C, Waget A, Ney-rinck AM, Delzenne NM, Burcelin R (2008). Changes in gut microbiota control metabolic endotoxemia-induced inflammation in high-fat diet-induced obesity and diabetes in mice. Diabetes. 57 (6), 1470-1481.; Coorevits L, Baert FJ, Vanpoucke HJ (2013). Faecal calprotectin comparative study of the Quantum Blue rapid test and an established ELISA method. Clin. Chem. Lab. Med., 51 (4), 825-831.; Dale I, Brandtzaeg P, Fagerhol MK, Scott H (1985). Distribution of new myelomonocytic antigen (L1) in human peripheral blood leukocytes. Immunofluorescence and immunoperoxidase staining features in comparison with lysozyme and lactoferrin. Amer. J. Clin. Pathol., 84 (1), 24-34.; Fagerhol MK, Andersson KB, Naess-Andresen CF, Brandtzaeg P, Dale I (1990). Calprotectin (the L1 leucocyte protein). In: Smith VL, Dedman JR., eds. Stimulus response coupling: the role of intracellular calcium-binding proteins, 187-210.; Ghoshal S, Witta J, Zhong I, de Villiers W, Eckhardt E (2009). Chylomicrons promote intestinal absorption of lipopolysaccharides. J. Lipid. Res., 50 (1), 90-97.; Haq K, McElhaney JE (2014). Immunosenescence: Influenza vaccination and the elderly. Curr. Opin. Immunol., 29, 38-42.; Krishnan S, Ramakrishna BS, Binder HJ (1999). Stimulation of sodium chloride absorption from secreting rat colon by shot-chain fatty acids. Dig. Dis. Sci., 44 (9), 1924-1930.; Roediger WE, Duncan A, Kapaniris O, Millard S (1993). Reducing sulfur compounds of the colon impair colonocyte nutrition: implications for ulcerative colitis. Gastroenterology, 104 (3), 802-809.; Schwartz M, Regueiro M (2011). Prevention and treatment of postoperative Crohn's disease recurrence: an update for a new decade. Curr. Gastroenterol. Rep., 13 (1), 95-100.; Shen TY, Qin HL, Gao ZG, Fan XB, Hang XM, Jiang YQ (2006). Influences of enteral nutrition combined with probiotics on gut microflora and barrier function of rats with abdominal infection. World. J. Gastroenterol., 12 (27), 4352-4358.; Sudan D, Vargas L, Sun Y, Bok L, Dijkstra G, Lan-gnas A (2007). Calprotectin: a novel noninvasive marker for intestinal allograft monitoring. Ann. Surg., 246 (2), 311-315.; Suzuki T, Yoshida S, Hara H (2008). Physiological concentration of short-chain fatty acids immediately suppress colonic epithelial permeability. Br. J. Nutr., 100 (2), 297-305.; Tiihonen K, Tynkkynen S, Ouwehand A, Ahlroos T, Rautonen N (2008). The effect of ageing with and without non-steroidal anti-inflammatory drugs on gastrointestinal microbiology and immunology. Br. J. Nutr., 100 (1), 130-137.; https://www.actabiomedica.ru/jour/article/view/259

  18. 18
  19. 19
  20. 20