Search Results - "фактор фон Виллебранда"

Refine Results
  1. 1

    Source: FARMAKOEKONOMIKA. Modern Pharmacoeconomics and Pharmacoepidemiology; Vol 18, No 1 (2025); 71-79 ; ФАРМАКОЭКОНОМИКА. Современная фармакоэкономика и фармакоэпидемиология; Vol 18, No 1 (2025); 71-79 ; 2070-4933 ; 2070-4909

    File Description: application/pdf

    Relation: https://www.pharmacoeconomics.ru/jour/article/view/1182/608; Mahé I., Benarroch S., Djennaoui S., et al. Cancer-associated thrombosis: what is new? Curr Opin Oncol. 2025; 37 (2): 150–7. https://doi.org/10.1097/CCO.0000000000001125.; Falanga A., Marchetti M. Cancer-associated thrombosis: enhanced awareness and pathophysiologic complexity. J Thromb Haemost. 2023; 21 (6): 1397–408. https://doi.org/10.1016/j.jtha.2023.02.029.; Farge D., Frere C., Connors J.M., et al. 2022 international clinical practice guidelines for the treatment and prophylaxis of venous thromboembolism in patients with cancer, including patients with COVID-19. Lancet Oncol. 2022; 23 (7): e334–47. https://doi.org/10.1016/S1470-2045(22)00160-7.; Mahajan A., Brunson A., Adesina O., et al. The incidence of cancerassociated thrombosis is increasing over time. Blood Adv. 2022; 6 (1): 307–20. https://doi.org/10.1182/bloodadvances.2021005590.; Kim A.S., Khorana A.A., McCrae K.R. Mechanisms and biomarkers of cancer-associated thrombosis. Transl Res. 2020; 225: 33–53. https://doi.org/10.1016/j.trsl.2020.06.012.; Farge D., Le Maignan C., Doucet L., Frere C. Women, thrombosis, and cancer. Thromb Res. 2019; 181 (Suppl. 1): S47–53. https://doi.org/10.1016/S0049-3848(19)30367-6.; Khorana A.A., Kuderer N.M., Culakova E., et al. Development and validation of a predictive model for chemotherapy-associated thrombosis. Blood. 2008; 111 (10): 4902–7. https://doi.org/10.1182/blood-2007-10-116327.; Khorana A.A., Mackman N., Falanga A., et al. Cancer-associated venous thromboembolism. Nat Rev Dis Primers. 2022; 8 (1): 11. https://doi.org/10.1038/s41572-022-00336-y.; Pelzer U., Sinn M., Stieler J., Riess H. Primary pharmacological prevention of thromboembolic events in ambulatory patients with advanced pancreatic cancer treated with chemotherapy. Dtsch Med Wochenschr. 2013; 138 (41): 2084–8. https://doi.org/10.1055/s-0033-1349608.; Verso M., Agnelli G., Barni S., et al. A modified Khorana risk assessment score for venous thromboembolism in cancer patients receiving chemotherapy: the Protecht score. Intern Emerg Med. 2012; 7 (3): 291–2. https://doi.org/10.1007/s11739-012-0784-y.; Ay C., Dunkler D., Marosi C., et al. Prediction of venous thromboembolism in cancer patients. Blood. 2010; 116 (24): 5377–82. https://doi.org/10.1182/blood-2010-02-270116.; Gerotziafas G.T., Taher A., Abdel-Razeq H., et al. A predictive score for thrombosis associated with breast, colorectal, lung, or ovarian cancer: the prospective COMPASS-cancer-associated thrombosis study. Oncologist. 2017; 22 (10): 1222–31. https://doi.org/10.1634/theoncologist.2016-0414.; Cella C.A., Di Minno G., Carlomagno C., et al. Preventing venous thromboembolism in ambulatory cancer patients: the ONKOTEV study. Oncologist. 2017; 22 (5): 601–8. https://doi.org/10.1634/theoncologist.2016-0246.; Muñoz Martín A.J., Ortega I., Font C., et al. Multivariable clinicalgenetic risk model for predicting venous thromboembolic events in patients with cancer. Br J Cancer. 2018; 118 (8): 1056–61. https://doi.org/10.1038/s41416-018-0027-8.; van Es N., Di Nisio M., Cesarman G., et al. Comparison of risk prediction scores for venous thromboembolism in cancer patients: a prospective cohort study. Haematologica. 2017; 102 (9): 1494–501. https://doi.org/10.3324/haematol.2017.169060.; Григорьева К.Н., Гашимова Н.Р., Цибизова В.И. Коррекция гемостаза в лечении и реабилитации пациентов с COVID-19. Реабилитология. 2023; 1 (1): 49–59. https://doi.org/10.17749/2949-5873/rehabil.2023.3.; Бицадзе В.О., Хизроева Д.Х., Гри Ж. и др. Патогенетическое и прогностическое значение воспаления и нарушений в оси ADAMTS-13/vWF у больных тяжелой формой COVID-19. Акушерство, гинекология и репродукция. 2022; 16 (3): 228–43. https://doi.org/10.17749/2313-7347/ob.gyn.rep.2022.327.; Слуханчук Е.В., Бицадзе В.О., Солопова А.Г. и др. Иммунотромбоз у онкологических больных: вклад внеклеточных ловушек нейтрофилов, ADAMTS-13 и фактора фон Виллебранда. Акушерство, гинекология и репродукция. 2022; 16 (6): 648–63. https://doi.org/10.17749/2313-7347/ob.gyn.rep.2022.364.; Гашимова Н.Р., Григорьева К.Н., Бицадзе В.О. и др. Клиническое значение определения ADAMTS-13 и фактора фон Виллебранда у беременных после перенесенного COVID-19. Акушерство, гинекология и репродукция. 2023; 17 (1): 8–17. https://doi.org/10.17749/2313-7347/ob.gyn.rep.2023.386.; Григорьева К.Н., Гашимова Н.Р., Бицадзе В.О. и др. Функционирование оси ADAMTS-13/vWF и ее клиническое значение. Акушерство, гинекология и репродукция. 2023; 17 (1): 127–37. https://doi.org/10.17749/2313-7347/ob.gyn.rep.2023.388.; Григорьева К.Н., Гашимова Н.Р., Бицадзе В.О. и др. Клиническое значение состояния оси ADAMTS-13/vWF у беременных в различные триместры гестации. Акушерство, гинекология и репродукция. 2023; 17 (2): 221–30. https://doi.org/10.17749/2313-7347/ob.gyn.rep.2023.405.; Антонова А.С., Хизроева Д.Х., Бицадзе В.О. и др. Генетическая тромбофилия и антифосфолипидные антитела у женщин с ранней и поздней преэклампсией: ретроспективное когортное исследование. Акушерство, гинекология и репродукция. 2025; 19 (1): 14–25. https://doi.org/10.17749/2313-7347/ob.gyn.rep.2024.586.; Плохова Е.В., Дундуа Д.П. Проблема тромбоза у пациентов со злокачественными заболеваниями. Кардиология. 2018; 58 (9S): 19–28. https://doi.org/10.18087/cardio.2523.; Федоткина Ю.А., Панченко Е.П. Профилактика венозных тромбоэмболических осложнений у пациентов с активным онкологическим заболеванием, получающих медикаментозную противораковую химиотерапию в амбулаторных условиях. Роль апиксабана. Атеротромбоз. 2019; 2: 46–54. https://doi.org/10.21518/2307-1109-2019-2-46-54.; Слуханчук Е.В., Бицадзе В.О., Тян А.Г. и др. Факторы риска тромбозов у онкологических больных. Вестник Российской академии медицинских наук. 2021; 76 (5): 465–75. https://doi.org/10.15690/vramn1459.; Obermeier H.L., Riedl J., Ay C., et al. The role of ADAMTS-13 and von Willebrand factor in cancer patients: results from the Vienna Cancer and Thrombosis Study. Res Pract Thromb Haemost. 2019; 3 (3): 503– 14. https://doi.org/10.1002/rth2.12197.; Pépin M., Kleinjan A., Hajage D., et al. ADAMTS-13 and von Willebrand factor predict venous thromboembolism in patients with cancer. J Thromb Haemost. 2016; 14 (2): 306–15. https://doi.org/10.1111/jth.13205.; https://www.pharmacoeconomics.ru/jour/article/view/1182

  2. 2

    Source: Obstetrics, Gynecology and Reproduction; Vol 19, No 4 (2025); 514-523 ; Акушерство, Гинекология и Репродукция; Vol 19, No 4 (2025); 514-523 ; 2500-3194 ; 2313-7347

    File Description: application/pdf

    Relation: https://www.gynecology.su/jour/article/view/2551/1381; Khorana A.A., Connolly G.C. Assessing risk of venous thromboembolism in the patient with cancer. J Clin Oncol. 2009;27(29):4839–47. https://doi.org/10.1200/JCO.2009.22.3271.; Sørensen H.T., Pedersen L., van Es N. et al. Impact of venous thromboembolism on the mortality in patients with cancer: a population-based cohort study. Lancet Reg Health Eur. 2023;34:100739. https://doi.org/10.1016/j.lanepe.2023.100739.; Bertoletti L., Madridano O., Jiménez D. et al. Cancer-associated thrombosis: trends in clinical features, treatment, and outcomes from 2001 to 2020. JACC Cardio Oncol. 2023;5(6):758–72. https://doi.org/10.1016/j.jaccao.2023.09.003.; Abu Saadeh F., Norris L., O'Toole S., Gleeson N. Venous thromboembolism in ovarian cancer: incidence, risk factors and impact on survival. Eur J Obstet Gynecol Reprod Biol. 2013;170(1):214–8. https://doi.org/10.1016/j.ejogrb.2013.06.004.; Trugilho I.A., Renni M.J.P., Medeiros G.C. et al. Incidence and factors associated with venous thromboembolism in women with gynecologic cancer. Thromb Res. 2020;185:49–54. https://doi.org/10.1016/j.thromres.2019.11.009.; Lanting V.R., Takada T., Bosch F.T.M. et al. Risk of recurrent venous thromboembolism in patients with cancer: an individual patient data meta-analysis and development of a prediction model. Thromb Haemost. 2025;125(6):589–96. https://doi.org/10.1055/a-2418-3960.; van Hylckama Vlieg M.A.M., Nasserinejad K., Visser C. et al. The risk of recurrent venous thromboembolism after discontinuation of anticoagulant therapy in patients with cancer-associated thrombosis: a systematic review and meta-analysis. EClinicalMedicine. 2023;64:102194. https://doi.org/10.1016/j.eclinm.2023.102194.; Цветовская Г.А., Чикова Е.Д., Лифшиц Г.И. Генетические факторы риска тромбофилии у женщин репродуктивного возраста в Западно-Сибирском регионе. Фундаментальные исследования. 2010;(10):72–9.; Hamidpour M., Ghorbani M., Rezaei-Tavirani M. et al. Factor V Leiden, MTHFR C677T and prothrombin gene mutation G20210A in Iranian patients with venous thrombosis. IJBC. 2019;11(3):91–5.; Costa J., Araújo A. The contribution of inherited thrombophilia to venous thromboembolism in cancer patients. Clin Appl Thromb Hemost. 2024;30:10760296241232864. https://doi.org/10.1177/10760296241232864.; Lijfering W.M., Middeldorp S., Veeger N.J. et al. Risk of recurrent venous thrombosis in homozygous carriers and double heterozygous carriers of factor V Leiden and prothrombin G20210A. Circulation. 2010;121(15):1706–12. https://doi.org/10.1161/ CIRCULATIONAHA.109.906347.; Marchiori A., Mosena L., Prins M.H., Prandoni P. The risk of recurrent venous thromboembolism among heterozygous carriers of factor V Leiden or prothrombin G20210A mutation. A systematic review of prospective studies. Haematologica. 2007;92(8):1107–14. https://doi.org/10.3324/haematol.10234.; Zee R.Y., Bubes V., Shrivastava S. et al. Genetic risk factors in recurrent venous thromboembolism: A multilocus, population-based, prospective approach. Clin Chim Acta. 2009;402(1–2):189–92. https://doi.org/10.1016/j.cca.2009.01.011.; Ivanov P., Komsa-Penkova R., Kovacheva K. et al. Impact of thrombophilic genetic factors on pulmonary embolism: early onset and recurrent incidences. Lung. 2008;186(1):27–36. https://doi.org/10.1007/s00408-007-9061-7.; Dicks A.B., Moussallem E., Stanbro M. et al. A comprehensive review of risk factors and thrombophilia evaluation in venous thromboembolism. J Clin Med. 2024;13(2):362. https://doi.org/10.3390/jcm13020362.; Knight J.S., Kanthi Y. Mechanisms of immunothrombosis and vasculopathy in antiphospholipid syndrome. Semin Immunopathol. 2022;44(3):347–62. https://doi.org/10.1007/s00281-022-00916-w.; Poolen G.C., Urbanus R.T., Roest M. et al. Elevated levels of (active) von Willebrand factor during anticoagulation are associated with early recurrence of venous thromboembolism. J Thromb Haemost. 2025 May 13:S1538-7836(25)00313-7. https://doi.org/10.1016/j.jtha.2025.04.030.; Jara-Palomares L., Bikdeli B., Jiménez D. et al.; RIETE Investigators. Risk of recurrence after discontinuing anticoagulation in patients with COVID-19-associated venous thromboembolism: a prospective multicentre cohort study. EClinicalMedicine. 2024;73:102659. https://doi.org/10.1016/j.eclinm.2024.102659.; Demelo-Rodriguez P., Alonso-Beato R., Jara-Palomares L. et al.; RIETE Investigators. COVID-19-associated venous thromboembolism: risk of recurrence and major bleeding. Res Pract Thromb Haemost. 2023;7(7):102206. https://doi.org/10.1016/j.rpth.2023.102206.; Макацария А.Д. COVID-19 и системные тромботические синдромы. Акушерство, Гинекология и Репродукция. 2024;18(6):908–18. https://doi.org/10.17749/2313-7347/ob.gyn.rep.2024.590.; Воробьев А.В., Эйнуллаева С.Э., Бородулин А.С. и др. Влияние COVID-19 на тромботические осложнения у онкологических больных. Акушерство, Гинекология и Репродукция. 2024;18(3):286–99. https://doi.org/10.17749/2313-7347/ob.gyn.rep.2024.519.; https://www.gynecology.su/jour/article/view/2551

  3. 3
  4. 4

    Source: Obstetrics, Gynecology and Reproduction; Vol 18, No 5 (2024); 648–657 ; Акушерство, Гинекология и Репродукция; Vol 18, No 5 (2024); 648–657 ; 2500-3194 ; 2313-7347

    File Description: application/pdf

    Relation: https://www.gynecology.su/jour/article/view/2226/1256; Эндометриоз. Всемирная организация здравоохранения, 2023. Режим доступа: https://www.who.int/news-room/fact-sheets/detail/endometriosis. [Дата обращения: 12.09.2024].; Rogers P.A.W., D’Hooghe T.M., Fazleabas A. et al. Priorities for endometriosis research: recommendations from an international consensus workshop. Reprod Sci. 2009;16(4):335–46. https://doi.org/10.1177/1933719108330568.; Abbas S., Ihle P., Köster I., Schubert I. Prevalence and incidence of diagnosed endometriosis and risk of endometriosis in patients with endometriosis-related symptoms: findings from a statutory health insurance-based cohort in Germany. Eur J Obstet Gynecol Reprod Biol. 2012;160(1):79–83. https://doi.org/10.1016/j.ejogrb.2011.09.041.; Ballard K.D., Seaman H.E., de Vries C.S., Wright J.T. Can symptomatology help in the diagnosis of endometriosis? Findings from a national case-control study – Part 1. BJOG. 2008;115(11):1382–91. https://doi.org/10.1111/j.1471-0528.2008.01878.x.; Eisenberg V.H., Weil C., Chodick G., Shalev V. Epidemiology of endometriosis: a large population-based database study from a healthcare provider with 2 million members. BJOG. 2018;125(1):55–62. https://doi.org/10.1111/1471-0528.14711.; Pugsley Z., Ballard K. Management of endometriosis in general practice: the pathway to diagnosis. Br J Gen Pract. 2007;57(539):470–6.; Sampson J.A. Peritoneal endometriosis due to the menstrual dissemination of endometrial tissue into the peritoneal cavity. Am J Obstet Gynecol. 1927;14(4):422–69. https://doi.org/10.1016/S0002-9378(15)30003-X.; Brosens I., Benagiano G. Is neonatal uterine bleeding involved in the pathogenesis of endometriosis as a source of stem cells? Fertil Steril. 2013;100(3):622–3. https://doi.org/10.1016/j.fertnstert.2013.04.046.; Burney R.O., Giudice L.C. Pathogenesis and pathophysiology of endometriosis. Fertil Steril. 2012;98(3):511–9. https://doi.org/10.1016/j.fertnstert.2012.06.029.; Brosens I.A. Endometriosis – a disease because it is characterized by bleeding. Am J Obstet Gynecol. 1997;176(2):263–7. https://doi.org/10.1016/s0002-9378(97)70482-4.; Sharma R.P., Delly F., Marin H., Sturza S. Endometriosis causing lower extremity deep vein thrombosis – case report and review of the literature. Int J Angiol. 2011;18(4):199–202. https://doi.org/10.1055/s-0031-1278354.; Chiaramonte R., Castorina S., Castorina E.G. et al. Thrombosis of iliac vessels, a rare complication of endometriosis: Case report and review of literature. J Adv Res. 2017;8(1):1–5. https://doi.org/10.1016/j.jare.2016.10.007.; Ding D., Liu X., Guo S.W. Further evidence for hypercoagulability in women with ovarian endometriomas. Reprod Sci. 2018;25(11):1540–8. https://doi.org/10.1177/1933719118799195.; Ding S., Lin Q., Zhu T. et al. Is there a correlation between inflammatory markers and coagulation parameters in women with advanced ovarian endometriosis? BMC Womens Health. 2019;19:169. https://doi.org/10.1186/s12905-019-0860-9.; Chen Z.Y., Zhang L.F., Zhang Y.Q. et al. Blood tests for prediction of deep endometriosis: а case-control study. World J Clin Cases. 2021;9(35):10805–15. https://doi.org/10.12998/wjcc.v9.i35.10805.; Seckin B., Ates M.C., Kirbas A., Yesilyurt H. Usefulness of hematological parameters for differential diagnosis of endometriomas in adolescents/young adults and older women. Int J Adolesc Med Health. 2018;33(2). https://doi.org/10.1515/ijamh-2018-0078.; Turgut A., Hocaoglu M., Ozdamar O. et al. Could hematologic parameters be useful biomarkers for the diagnosis of endometriosis? Bratisl Lek Listy. 2019;120(12):912–8. https://doi.org/10.4149/BLL_2019_153.; Viganò P., Ottolina J., Sarais V. et al. Coagulation status in women with endometriosis. Reprod Sci. 2018;25(4):559–65. https://doi.org/10.1177/1933719117718273.; Wu Q., Ding D., Liu X., Guo S.W. Evidence for a hypercoagulable state in women with ovarian endometriomas. Reprod Sci. 2015;22(9):1107–14. https://doi.org/10.1177/1933719115572478.; Сорокина А.В. Эндометриоз. Медицинская сестра. 2010;(8):21–2.; Мягченкова К.И., Хащенко Е.П., Уварова Е.В. Психоэмоциональные особенности и болевая симптоматика у пациенток, страдающих генитальным эндометриозом в раннем репродуктивном возрасте. Репродуктивное здоровье детей и подростков. 2021;17(2):41–50. https://doi.org/10.33029/1816-2134-2020-17-2-41-50.; Chang H.-H., Chiang B.-L. The diagnosis and classification of autoimmune coagulopathy: an updated review. Autoimmun Rev. 2014;13(4–5):587–90. https://doi.org/10.1016/j.autrev.2014.01.032.; Bacon J.L. Abnormal uterine bleeding: current classification and clinical management. Obstet Gynecol Clin North Am. 2017;44(2):179–93. https://doi.org/10.1016/j.ogc.2017.02.012.; Williams B., Zou L., Pittet J.F., Chao W. Sepsis-induced coagulopathy: a comprehensive narrative review of pathophysiology, clinical presentation, diagnosis, and management strategies. Anesth Analg. 2024;138(4):696–711. https://doi.org/10.1213/ANE.0000000000006888.; Хасанова Ю.В., Нелаева А.А., Галкина А.Б., Медведева И.В. Роль коагуляции и воспаления в развитии диабетической нефропатии у больных сахарным диабетом 2 типа. Сахарный диабет. 2012;(1):31–4. https://doi.org/10.14341/2072-0351-5976.; Колосков А.В., Мангушло А.А. Металлопротеаза Adamts-13. Гематология и трансфузиология. 2019;64(4):471–82. https://doi.org/10.35754/0234-5730-2019-64-4-471-482.; Zhao K., Qu P. Noninvasive evaluation of ovarian endometriosis: a single-center experience. Ann Palliat Med. 2021;10(4):4728–35. https://doi.org/10.21037/apm-21-481.; Ling X., Wang T. Diagnostic and prognostic value of coagulation-related factors in endometriosis. Am J Transl Res. 2022;14(11):7924–31.; Metcalf R.L., Fry D.J., Swindell R. et al. Thrombosis in ovarian cancer: a case control study. Br J Cancer. 2014;110(5):1118–24. https://doi.org/10.1038/bjc.2014.3.; Greco P.S., Bazzi A.A., McLean K. et al. Incidence and timing of thromboembolic events in patients with ovarian cancer undergoing neoadjuvant chemotherapy. Obstet Gynecol. 2017;129(6):979–85. https://doi.org/10.1097/AOG.0000000000001980.; Мансурова А.С., Красильников С.Э., Войцицкий В.Е. Двойная угроза. Рак яичников и тромботические осложнения. Российский онкологический журнал. 2021;26(3):101–6. https://doi.org/10.17816/onco107326.; Луговской Э.В., Колесникова И.Н., Платонова Т.Н. и др. Одновременное количественное определение растворимого фибрина и D-димера в плазме крови для оценки угрозы тромбообразования. Клиническая медицина. 2013;91(11):38–44.; https://www.gynecology.su/jour/article/view/2226

  5. 5

    Source: Obstetrics, Gynecology and Reproduction; Vol 18, No 4 (2024); 514-524 ; Акушерство, Гинекология и Репродукция; Vol 18, No 4 (2024); 514-524 ; 2500-3194 ; 2313-7347

    File Description: application/pdf

    Relation: https://www.gynecology.su/jour/article/view/2171/1248; Ren K., Wei Y., Qiao R. et al. Changes in coagulation during twin pregnancies. Clin Appl Thromb Hemost. 2020;26:1076029620983898. https://doi.org/10.1177/1076029620983898.; Morikawa M., Yamada T., Turega N. et al. Coagulation-fibrinolysis is more enhanced in twin than in singleton pregnancies. J Perinat Med. 2006;34(5):392-7. https://doi.org/10.1515/JPM.2006.078.; Ягубова Ф.Э., Бицадзе В.О., Самбурова Н.В. и др. Клиническое значение оценки особенностей адаптационных изменений гемостаза при многоплодной беременности после экстракорпорального оплодотворения. Акушерство, Гинекология и Репродукция. 2024;18(2):189—99. https://doi.org/10.17749/2313-7347/ob.gyn.rep.2024.507.; Grandone E., DiMicco P.P., Villani M. et al. Venous thromboembolism in women undergoing assisted reproductive technologies: data from the RIETE Registry. Thromb Haemost. 2018;118(11):1962—8. https://doi.org/10.1055/s-0038-1673402.; Момот А.П., Николаева М.Г., Сердюк Г.В. и др. Оценка состояния системы гемостаза при физиологически протекающей беременности (методические рекомендации). Российский вестник акушера-гинеколога. 2018;18(3—2):2—37.; Хизроева Д.Х., Антонова А.С., Егорова Е.С., Макацария Н.А. Повторные неудачи ЭКО, тромбозы и тромбофилия. Акушерство, Гинекология и Репродукция. 2023;17(6):792-800. https://doi.org/10.17749/2313-7347/ob.gyn.rep.2023.467.; Lin L., Yang H., Xu Zh. et al. Explore the impact of abnormal coagulation test results on pregnancy complications and perinatal outcomes by establishing the trimester-specific reference intervals of singleton and twin pregnancies. Clin Chim Acta. 2023;541(Suppl 1):117265. https://doi.org/10.1016/j.cca.2023.117265.; Turecek P.L., Johnsen J.M., Pipe S.W et al. Biological mechanisms underlying inter-individual variation in factor VIII clearance in haemophilia. Haemophilia. 2020;26(4):575-83. https://doi.org/10.1111/hae.14078.; Григорьева К.Н., Гашимова Н.Р., Бицадзе В.О. и др. Функционирование оси ADAMTS-13/vWF и её клиническое значение. Акушерство, Гинекология и Репродукция. 2023;17(1):127-37. https://doi.org/10.17749/2313-7347/ob.gyn.rep.2023.388.; Fakhouri F., Roumenina L., Provot F. et al. Pregnancy-associated hemolytic uremic syndrome revisited in the era of complement gene mutations. J Am Soc Nephrol. 2010;21(5):859-67. https://doi.org/10.1681/ASN.2009070706.; Tsai H.-M. Thrombotic thrombocytopenic purpura: a thrombotic disorder caused by ADAMTS13 deficiency. Hematol Oncol Clin North Am. 2007;21(4):609-32. https://doi.org/10.1016/j.hoc.2007.06.003.; Molvarec A., Rigo J., Boze T. et al. Increased plasma von Willebrand factor antigen levels but normal von Willebrand factor cleaving protease (ADAMTS13) activity in preeclampsia. Thromb Haemost. 2009;101(2):305—11.; Sanchez-Luceros A., Farias C.E., Amaral M.M. et al. Von Willebrand factor-cleaving protease (ADAMTS13) activity in normal non-pregnant women, pregnant and post-delivery women. Thromb Haemost. 2004;92(6):1320-6. https://doi.org/10.1160/TH03-11-0683.; Ramadan M.K., Badr D.A., Hubeish M. et al. HELLP syndrome, thrombotic thrombocytopenic purpura or both: appraising the complex association and proposing a stepwise practical plan for differential diagnosis. JHematol. 2018;7(1):32-7. https://doi.org/10.14740/jh347w.; Grandone E., Vimercati A., Sorrentino F. et al. Obstetric outcomes in pregnant COVID-19 women: the imbalance of von Willebrand factor and ADAMTS13 axis. BMC Pregnancy Childbirth. 2022;22(1):142. https://doi.org/10.1186/s12884-022-04405-8.; Westerlund E., Antovic A., Hovatta O. et al. Changes in von Willebrand factor and ADAMTS13 during IVF. Blood Coagul Fibrinolysis. 2011;22(2):127-31. https://doi.org/10.1097/MBC.0b013e32834363ea.; https://www.gynecology.su/jour/article/view/2171

  6. 6

    Source: Obstetrics, Gynecology and Reproduction; Vol 17, No 2 (2023); 221-230 ; Акушерство, Гинекология и Репродукция; Vol 17, No 2 (2023); 221-230 ; 2500-3194 ; 2313-7347

    File Description: application/pdf

    Relation: https://www.gynecology.su/jour/article/view/1655/1108; https://www.gynecology.su/jour/article/view/1655/1214; Moake J.L., Rudy C.K., Troll J.H. et al. Unusually large plasma factor VIII:von Willebrand factor multimers in chronic relapsing thrombotic thrombocytopenic purpura. N Engl J Med. 1982;(23)307:1432–5. https://doi.org/10.1056/NEJM198212023072306.; Tsai H.M. Physiologic cleavage of von Willebrand factor by a plasma protease is dependent on its conformation and requires calcium ion. Blood. 1996;87(10):4235–44.; Furlan M., Robles R., Lammle B. Partial purification and characterization of a protease from human plasma cleaving von Willebrand factor to fragments produced by in vivo proteolysis. Blood. 1996;87(10):4223–34.; Zhou Y.-F., Eng E.T., Zhu J. et al. Sequence and structure relationships within von Willebrand factor. Blood. 2012;120(2):449–58. https://doi.org/10.1182/blood-2012-01-405134.; Lenting P.J., Christophe O.D., Denis CV. von Willebrand factor biosynthesis, secretion, and clearance: connecting the far ends. Blood. 2015;125(13):2019–28. https://doi.org/10.1182/blood-2014-06-528406.; De Ceunynck K., De Meyer S.F., Vanhoorelbeke K. Unwinding the von Willebrand factor strings puzzle. Blood. 2013;121(2):270–7. https://doi.org/10.1182/blood-2012-07-442285.; Grandone E., Vimercati A., Sorrentino F. et al. Obstetric outcomes in pregnant COVID-19 women: the imbalance of von Willebrand factor and ADAMTS13 axis. BMC Pregnancy Childbirth. 2022;22(1):142. https://doi.org/10.1186/s12884-022-04405-8.; English F.A., Kenny L.C., McCarthy F.P. Risk factors and effective management of preeclampsia. Integr Blood Press Control. 2015;8:7–12. https://doi.org/10.2147/IBPC.S50641.; Gris J.-C., Bouvier S., Cochery-Nouvellon E. et al. The role of haemostasis in placenta-mediated complications. Thromb Res. 2019;181 Suppl 1:S10–S14. https://doi.org/10.1016/S0049-3848(19)30359-7.; Drury-Stewart D., Lannert K., Chung D. et al. Complex changes in von Willebrand factor-associated parameters are acquired during uncomplicated pregnancy. PLoS One. 2014;9(11):e112935. https://doi.org/10.1371/journal.pone.0112935.; Chen Y., Huang P., Han C. et al. Association of placenta-derived extracellular vesicles with pre-eclampsia and associated hypercoagulability: A clinical observational study. BJOG. 2020;128(6):1037–46. https://doi.org/10.1111/1471-0528.16552.; Gadisseur A., Berneman Z., Schroyens W., Michiels J.J. Laboratory diagnosis of von Willebrand disease type 1/2E (2A subtype IIE), type 1 Vicenza and mild type 1 caused by mutations in the D3, D4, B1-B3 and C1-C2 domains of the von Willebrand factor gene. Role of von Willebrand factor multimers and the von Willebrand factor propeptide/antigen ratio. Acta Haematol. 2009;121(2–3):128–38. https://doi.org/10.1159/000214853.; Hulstein J., Heimel P., Franx A. et al. Acute activation of the endothelium results in increased levels of active von Willebrand factor in hemolysis, elevated liver enzymes and low platelets (HELLP) syndrome. J Thromb Haemost. 2006;4(12):2569–75. https://doi.org/10.1111/j.1538-7836.2006.02205.x.; Stepanian A., Cohen-Moatti M., Sanglier T. et al. Von Willebrand factor and ADAMTS13: a candidate couple for preeclampsia pathophysiology. Arterioscler Thromb Vasc Biol. 2011;31(7):1703–9. https://doi.org/10.1161/ATVBAHA.111.223610.; Ramadan M., Badr D., Hubeish M. et al. HELLP syndrome, thrombotic thrombocytopenic purpura or both: appraising the complex association and proposing a stepwise practical plan for differential diagnosis. J Hematol. 2018;7(1):32–7. https://doi.org/10.14740/jh347w.; Sánchez-Luceros A., Farías C., Amaral M. et al. von Willebrand factor-cleaving protease (ADAMTS13) activity in normal non-pregnant women, pregnant and post-delivery women. Thromb Haemost. 2004;92(6):1320–6. https://doi.org/10.1160/TH03-11-0683.; Molvarec A., Rigó J., Bõze T. et al. Increased plasma von Willebrand factor antigen levels but normal von Willebrand factor cleaving protease (ADAMTS13) activity in preeclampsia. Thromb Haemost. 2009;101(2):305–11.; Joly B.S., Darmon M., Dekimpe C. et al. Imbalance of von Willebrand factor and ADAMTS13 axis is rather a biomarker of strong inflammation and endothelial damage than a cause of thrombotic process in critically ill COVID-19 patients. J Thromb Haemost. 2021;19(9):2193–8. https://doi.org/10.1111/jth.15445.; Favaloro E.J., Henry B.M., Lippi G. Increased VWF and decreased ADAMTS-13 in COVID-19: creating a milieu for (micro)thrombosis. Semin Thromb Hemost. 2021;47(4):400–18. https://doi.org/10.1055/s-0041-1727282.; Doevelaar A., Bachmann M., Hölzer B. et al. COVID-19 is associated with relative ADAMTS13 deficiency and VWF multimer formation resembling TTP (Preprint). medRxiv. August 25, 2020. https://doi.org/10.1101/2020.0.; https://www.gynecology.su/jour/article/view/1655

  7. 7

    Source: Obstetrics, Gynecology and Reproduction; Vol 17, No 1 (2023); 8-17 ; Акушерство, Гинекология и Репродукция; Vol 17, No 1 (2023); 8-17 ; 2500-3194 ; 2313-7347

    File Description: application/pdf

    Relation: https://www.gynecology.su/jour/article/view/1560/1085; https://www.gynecology.su/jour/article/view/1560/1095; Huang C., Wang Y., Li X. et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020;395(10223):497– 506. https://doi.org/10.1016/S0140-6736(20)30183-5.; Wang D., Hu B., Hu C. et al. Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirus-infected pneumonia in Wuhan, China. JAMA. 2020;323(11):1061–9. https://doi.org/10.1001/jama.2020.1585.; Kollias A., Kyriakoulis K.G., Dimakakos E. et al. Thromboembolic risk and anticoagulant therapy in COVID-19 patients: emerging evidence and call for action. Br J Haematol. 2020;189(5):846–7. https://doi.org/10.1111/bjh.16727.; Гашимова Н.Р., Бицадзе В.О., Панкратьева Л.Л. и др. Дисрегуляция функции тромбоцитов у больных COVID-19. Акушерство, Гинекология и Репродукция. 2022;16(6):692–705. https://doi.org/10.17749/2313-7347/ob.gyn.rep.2022.372.; Бицадзе В.О., Слуханчук Е.В., Хизроева Д.Х. и др. Внеклеточные ловушки нейтрофилов (NETs) в патогенезе тромбоза и тромбовоспалительных заболеваний. Вестник РАМН. 2021;76(1):75–85. https://doi.org/10.15690/vramn1395.; Gibson P.G., Qin L., Puah S.H. COVID-19 acute respiratory distress syndrome (ARDS): clinical features and differences from typical pre-COVID19 ARDS. Med J Aust. 2020;213(2):54–56.e1. https://doi.org/10.5694/mja2.50674.; Ribes A., Vardon-Bounes F., Mémier V. et al. Thromboembolic events and Сovid-19. Adv Biol Regul. 2020;77:100735. https://doi.org/10.1016/j.jbior.2020.100735.; Cardona-Perez ́ J.A., Villegas-Mota I., Helguera-Repetto A.C. et al. Prevalence, clinical features, and outcomes of SARS-CoV-2 infection in pregnant women with or without mild/moderate symptoms: results from universal screening in a tertiary care center in Mexico City, Mexico. PLoS One. 2021;16(4):e0249584. https://doi.org/10.1371/journal.pone.0249584.; Martinelli I., Ferrazzi E., Ciavarella A. et al. Pulmonary embolism in a young pregnant woman with COVID-19. Thromb Res. 2020;191:36–7. https://doi.org/10.1016/j.thromres.2020.04.022.; Varga Z., Flammer A.J., Steiger P. et al. Endothelial cell infection and endotheliitis in COVID-19. Lancet. 2020;395(10234):1417–8. https://doi.org/10.1016/S0140-6736(20)30937-5.; Makatsariya A.D., Slukhanchuk E.V., Bitsadze V.O. et al. Thrombotic microangiopathy, DIC-syndrome and COVID-19: link with pregnancy prothrombotic state. J Matern Neonatal Med. 2022;35(13):2536–44. https://doi.org/10.1080/14767058.2020.1786811.; Tiscia G., Favuzzi G., De Laurenzo A. et al. The prognostic value of adamts-13 and von willebrand factor in covid-19 patients: prospectiveevaluation by care setting. Diagnostics (Basel). 2021;11(9):1648. https://doi.org/10.3390/diagnostics11091648.; Бицадзе В.О., Хизроева Д.Х., Гри Ж. и др. Патогенетическое и прогностическое значение воспаления и нарушений в оси ADAMTS-13/vWF у больных тяжелой формой COVID-19. Акушерство, Гинекология и Репродукция. 2022;16(3):228–243. https://doi.org/10.17749/2313-7347/ob.gyn.rep.2022.327.; Fogarty H., Townsend L., Morrin H. et al. Persistent endotheliopathy in the pathogenesis of long COVID syndrome. J Thromb Haemost. 2021;19(10):2546–53. https://doi.org/10.1111/jth.15490.; Bonaventura A., VecchiéA., Dagna L. et al. Endothelial dysfunction and immunothrombosis as key pathogenic mechanisms in COVID-19. Nat Rev Immunol. 2021;21(5):319–29. https://doi.org/10.1038/s41577-021-00536-9.; Grandone E., Vimercati A., Sorrentino F. et al. Obstetric outcomes in pregnant COVID-19 women: the imbalance of von Willebrand factor and ADAMTS13 axis. BMC Pregnancy Childbirth. 2022;22(1):142. https://doi.org/10.1186/s12884-022-04405-8.; https://www.gynecology.su/jour/article/view/1560

  8. 8

    Source: Obstetrics, Gynecology and Reproduction; Vol 17, No 1 (2023); 127-137 ; Акушерство, Гинекология и Репродукция; Vol 17, No 1 (2023); 127-137 ; 2500-3194 ; 2313-7347

    File Description: application/pdf

    Relation: https://www.gynecology.su/jour/article/view/1554/1079; Moschcowitz E. Hyaline thrombosis of the terminal arterioles and capillaries: a hitherto undescribed disease. Proc NY Pathol Soc. 1924;24:21–4.; Moschowitz E. An acute febrile pleiochromic anemia with hyaline thrombosis of the terminal arterioles and capillaries: an undescribed disease. Arch Intern Med. 1925;36(1):89–93.; Singer K., Bornstein F.P., Wile S.A. Thrombotic thrombocytopenic purpura; hemorrhagic diathesis with generalized platelet thromboses. Blood. 1947;2(6):542–54.; Amorosi E., Ultmann J. Thrombotic thrombocytopenic purpura: report of 16 cases and review of the literature. Medicine. 1966;45(2):139–60. https://doi.org/10.1097/00005792-196603000-00003.; Moake J.L., Rudy C.K., Troll J.H. et al. Unusually large plasma factor VIII:von Willebrand factor multimers in chronic relapsing thrombotic thrombocytopenic purpura. N Engl J Med. 1982;307(23):1432–5. https://doi.org/10.1056/NEJM198212023072306.; Furlan M., Robles R., Lämmle B. Partial purification and characterization of a protease from human plasma cleaving von Willebrand factor to fragments produced by in vivo proteolysis. Blood. 1996;87(10):4223–34.; Tsai H.M. Physiologic cleavage of von Willebrand factor by a plasma protease is dependent on its conformation and requires calcium ion. Blood. 1996;87(10):4235–44.; Gerritsen H.E., Robles R., Lämmle B., Furlan M. Partial amino acid sequence of purified von Willebrand factor-cleaving protease. Blood. 2001;98(6):1654–61. https://doi.org/10.1182/blood.v98.6.1654.; McGrath R.T., McKinnon T.A.J., Byrne B. et al. Expression of terminal alpha2-6-linked sialic acid on von Willebrand factor specifically enhances proteolysis by ADAMTS13. Blood. 2010;115(13):2666–73. https://doi.org/10.1182/blood-2009-09-241547.; Schaller M., Studt J.-D., Voorberg J., Hovinga J.A.K. Acquired thrombotic thrombocytopenic purpura. Development of an autoimmune response. Hamostaseologie. 2013;33(2):121–30. https://doi.org/10.5482/HAMO-12-12-0023.; Jian C., Xiao J., Gong L. et al. Gain-of-function ADAMTS13 variants that are resistant to autoantibodies against ADAMTS13 in patients with acquired thrombotic thrombocytopenic purpura. Blood. 2012;119(16):3836–43. https://doi.org/10.1182/blood-2011-12-399501.; Gao W., Anderson P.J., Majerus E.M. et al. Exosite interactions contribute to tension-induced cleavage of von Willebrand factor by the antithrombotic ADAMTS13 metalloprotease. Proc Natl Acad Sci U S A. 2006;103(50):19099–104. https://doi.org/10.1073/pnas.0607264104.; Voorberg J., Verbij F.C., Fijnheer R. Disappearing acts of ADAMTS13. EBioMedicine. 2015;2(8):800–1. https://doi.org/10.1016/j.ebiom.2015.07.013.; Zhou W., Inada M., Lee T.-P. et al. ADAMTS13 is expressed in hepatic stellate cells. Lab Invest. 2005;85(6):780–8. https://doi.org/10.1038/labinvest.3700275.; Turner N., Nolasco L., Tao Z. et al. Human endothelial cells synthesize and release ADAMTS-13. J Thromb Haemost. 2006;4(6):1396–404. https://doi.org/10.1111/j.1538-7836.2006.01959.x.; Shen L., Lu G., Dong N. et al. Simvastatin increases ADAMTS13 expression in podocytes. Thromb Res. 2013;132(1):94–9. https://doi.org/10.1016/j.thromres.2013.05.02.; Tauchi R., Imagama S., Ohgomori T. et al. ADAMTS-13 is produced by glial cells and upregulated after spinal cord injury. Neurosci Lett. 2012;517(1):1–6. https://doi.org/10.1016/j.neulet.2012.03.002.; Zeng M., Chen Q., Liang W. et al. Predictive value of ADAMTS-13 on concealed chronic renal failure in COPD patients. Int J Chron Obstruct Pulmon Dis. 2017;12:3495–501. https://doi.org/10.2147/COPD.S151983.; Singh K., Kwong A.C., Madarati H. et al. Characterization of ADAMTS13 and von Willebrand factor levels in septic and non-septic ICU patients. PLoS One. 2021;16(2):e0247017. https://doi.org/10.1371/journal.pone.0247017.; Moller C., Schutte A.E., Smith W., Botha-Le Roux S. Von Willebrand factor, its cleaving protease (ADAMTS13), and inflammation in young adults: the African-PREDICT study. Cytokine. 2020;136:155265. https://doi.org/10.1016/j.cyto.2020.155265.; Langholm L.L., Rønnow S.R., Sand J.M.B. et al. Increased von Willebrand factor processing in COPD, reflecting lung epithelium damage, is associated with emphysema, exacerbations and elevated mortality risk. Int J Chron Obstruct Pulmon Dis. 2020;15:543–52. https://doi.org/10.2147/COPD.S235673.; Frentzou G., Bradford C., Harkness KA. et al. IL-1beta down-regulates ADAMTS-13 mRNA expression in cells of the central nervous system. J Mol Neurosci. 2012;46(2):343–51. https://doi.org/10.1007/s12031-011-9591-6.; Shen L., Lu G., Dong N. et al. Simvastatin increases ADAMTS13 expression in podocytes. Thromb Res. 2013;132(1):94–9. https://doi.org/10.1016/j.thromres.2013.05.024.; Springer T.A. Biology and physics of von Willebrand factor concatamers. J Thromb Haemost. 2011;9 Suppl 1(0 1):130–43. https://doi.org/10.1111/j.1538-7836.2011.04320.x.; Hobbs W.E., Moore E.E., Penkala R.A. et al. Cocaine and specific cocaine metabolites induce von Willebrand factor release from endothelial cells in a tissue-specific manner. Arterioscler Thromb Vasc Biol. 2013;33(6):1230–7. https://doi.org/10.1161/ATVBAHA.113.301436.; Chang J.C. TTP-like syndrome: novel concept and molecular pathogenesis of endotheliopathy-associated vascular microthrombotic disease. Thromb J. 2018;16:20. https://doi.org/10.1186/s12959-018-0174-4.; Sadler J.E. Von Willebrand factor, ADAMTS-13, and thrombotic thrombocytopenic purpura. Blood. 2008;112(1):11–8. https://doi.org/10.1182/blood-2008-02-078170.; Eischer L., Kammer M., Traby L. et al. Risk of cancer after anticoagulation in patients with unprovoked venous thromboembolism: an observational cohort study. J Thromb Haemost. 2017;15(7):1368–74. https://doi.org/10.1111/jth.13702.; George J.N. The association of pregnancy with thrombotic thrombocytopenic purpura-hemolytic uremic syndrome. Curr Opin Hematol. 2003;10(5):339–44. https://doi.org/10.1097/00062752-200309000-00003.; Tsai H.M. Thrombotic thrombocytopenic purpura: a thrombotic disorder caused by ADAMTS13 deficiency. Hematol Oncol Clin North Am. 2007;21(4):609–32. https://doi.org/10.1016/j.hoc.2007.06.003.; Sakai K., Fujimura Y., Nagata Y. et al. Success and limitations of plasma treatment in pregnant women with congenital thrombotic thrombocytopenic purpura. J Thromb Haemost. 2020;18(11):2929–41. https://doi.org/10.1111/jth.15064.; Nonaka T., Yamaguch, M., Nishijima K. et al. A successfully treated case of an acute presentation of congenital thrombotic thrombocytopenic purpura (Upshaw-Schulman syndrome) with decreased ADAMTS13 during late stage of pregnancy. J Obstet Gynaecol Res. 2021;47(5):1892– 7. https://doi.org/10.1111/jog.14737.; Roose E., Tersteeg C., Demeersseman R. et al. Anti-ADAMTS13 antibodies and a novel heterozygous p.R1177Q mutation in a case of pregnancyonset immune-mediated thrombotic thrombocytopenic purpura. TH Open. 2018;2(1):e8–e15. https://doi.org/10.1055/s-0037-1615252.; Al-Husban N., Al-Kuran O. Post-partum thrombotic thrombocytopenic purpura (TTP) in a patient with known idiopathic (immune) thrombocytopenic purpura: a case report and review of the literature. J Med Case Rep. 2018;12(1):147. https://doi.org/10.1186/s13256-018-1692-1.; Ferrari B., Peyvandi F. How I treat thrombotic thrombocytopenic purpura in pregnancy. Blood. 2020;136(19):2125–32. https://doi.org/10.1182/blood.2019000962.; Sié P., Caron C., Azam J. et al. Reassessment of von Willebrand factor (VWF), VWF propeptide, factor VIII:C and plasminogen activator inhibitors 1 and 2 during normal pregnancy. Br J Haematol. 2003;121(6):897–903. https://doi.org/10.1046/j.1365-2141.2003.04371.x.; Drury-Stewart D.N., Lannert K.W., Chung D. et al. Complex changes in von Willebrand factor-associated parameters are acquired during uncomplicated pregnancy. PLoS One. 2014;9(11):e112935. https://doi.org/10.1371/journal.pone.0112935.; Chen Y., Huang P., Han C. et al. Association of placenta-derived extracellular vesicles with pre-eclampsia and associated hypercoagulability: A clinical observational study. BJOG. 2020;128(6):1037–46. https://doi.org/10.1111/1471-0528.16552.; Yoshida Y., Matsumoto M., Yagi H. et al. Severe reduction of free-form ADAMTS13, unbound to von Willebrand factor, in plasma of patients with HELLP syndrome. Blood Adv. 2017;1(20):1628–31. https://doi.org/10.1182/bloodadvances.2017006767.; Molvarec A., Rigó J., Bõze T. et al. Increased plasma von Willebrand factor antigen levels but normal von Willebrand factor cleaving protease (ADAMTS13) activity in preeclampsia. Thromb Haemost. 2009;101(2):305–11.; Ramadan M., Badr D., Hubeish M. et al. HELLP Syndrome, thrombotic thrombocytopenic purpura or both: appraising the complex association and proposing a stepwise practical plan for differential diagnosis. J Hematol. 2018;7(1):32–7. https://doi.org/10.14740/jh347w.; Sánchez-Luceros A., Farías C.E., Amaral M.M. et al. von Willebrand factorcleaving protease (ADAMTS13) activity in normal non-pregnant women, pregnant and post-delivery women. Thromb Haemost. 2004;92(6):1320– 6. https://doi.org/10.1160/TH03-11-0683.; Ramlakhan K.P., Johnson M.R., Roos-Hesselink J.W. Pregnancy and cardiovascular disease. Nat Rev Cardiol. 2020;17(11):718–31. https://doi.org/10.1038/s41569-020-0390-z.; Aref S., Goda H. Increased VWF antigen levels and decreased ADAMTS13 activity in preeclampsia. Hematology. 2013;18(4):237–41. https://doi.org/10.1179/1607845412Y.0000000070.; Regal J.F., Gilbert J.S., Burwick R.M. The complement system and adverse pregnancy outcomes. Mol Immunol. 2015;67(1):56–70. https://doi.org/10.1016/j.molimm.2015.02.030.; Opichka M., Rappelt M., Gutterman D.D. et al. Vascular dysfunction in preeclampsia. Cells. 2021;10(11):3055. https://doi.org/10.3390/cells10113055.; Sánchez-Aranguren L.C., Prada C.E., Riaño-Medina C.E., Lopez M. Endothelial dysfunction and preeclampsia: role of oxidative stress. Front Physiol. 2014;5:372. https://doi.org/10.3389/fphys.2014.00372.; Lamarca B. Endothelial dysfunction. An important mediator in the pathophysiology of hypertension during pre-eclampsia. Minerva Ginecol. 2012;64(4):309–20.; Gadisseur A., Berneman Z., Schroyens W., Michiels J.J. Laboratory diagnosis of von Willebrand disease type 1/2E (2A subtype IIE), type 1 Vicenza and mild type 1 caused by mutations in the D3, D4, B1-B3 and C1-C2 domains of the von Willebrand factor gene. Role of von Willebrand factor multimers and the von Willebrand factor propeptide/antigen ratio. Acta Haematol. 2009;121(2–3):128–38. https://doi.org/10.1159/000214853.; Hulstein J.J.J., Heimel P.J.V.R., Franx A. et al. Acute activation of the endothelium results in increased levels of active von Willebrand factor in hemolysis, elevated liver enzymes and low platelets (HELLP) syndrome. J Throm. Haemost. 2006;4(12):2569–75. https://doi.org/10.1111/j.1538-7836.2006.02205.x.; Stepanian A., Cohen-Moatti M., Sanglier T. et al.Von Willebrand factor and ADAMTS13: a candidate couple for preeclampsia pathophysiology. Arter Thromb Vasc Biol. 2011;31(7):1703–9. https://doi.org/10.1161/ATVBAHA.111.223610.; Sabau L.,Terriou L., Provot F. et al. Are there any additional mechanisms for haemolysis in HELLP syndrome? Thromb Res. 2016;142:40-3. https://doi.org/10.1016/j.thromres.2016.03.014.; Krogh A.-S., Hovinga J.A.K., Romundstad P.R. et al. ADAMTS13 gene variants and function in women with preeclampsia: a population-based nested case-control study from the HUNT Study. Thromb Res. 2015;136(2):282–8. https://doi.org/10.1016/j.thromres.2015.06.022.; Ehrenforth S., Junker R., Koch H.G. et al. Multicentre evaluation of combined prothrombotic defects associated with thrombophilia in childhood. Childhood Thrombophilia Study Group. Eur J Pediatr. 1999;158 Suppl 3:S97–104. https://doi.org/10.1007/pl00014359.; Lisman T., Platto M., Meijers J.C.M. et al. The hemostatic status of pediatric recipients of adult liver grafts suggests that plasma levels of hemostatic proteins are not regulated by the liver. Blood. 2011;117(6):2070–2. https://doi.org/10.1182/blood-2010-08-300913.; Strauss T., Elisha N., Ravid B. et al. Activity of Von Willebrand factor and levels of VWF-cleaving protease (ADAMTS13) in preterm and full term neonates. Blood Cells Mol Dis. 2017;67:14–7. https://doi.org/10.1016/j.bcmd.2016.12.013.; Hunt R., Hoffman C.M., Emani S. et al. Elevated preoperative von Willebrand factor is associated with perioperative thrombosis in infants and neonates with congenital heart disease. J Thromb Haemost. 2017;15(12):2306–16. https://doi.org/10.1111/jth.13860.; Kulkarni A.A., Osmond M., Bapir M. et al. The effect of labour on the coagulation system in the term neonate. Haemophilia. 2013;19(4):533–8. https://doi.org/10.1111/hae.12115.; Kavakli K., Canciani M.T., Mannucci P.M. Plasma levels of the von Willebrand factor-cleaving protease in physiological and pathological conditions in children. Pediatr Hematol Oncol. 2002;19(7):467–73. https://doi.org/10.1080/08880010290097288.; Feys H.B., Canciani M.T., Peyvandi F. et al. ADAMTS13 activity to antigen ratio in physiological and pathological conditions associated with an increased risk of thrombosis. Br J Haematol. 2007;138(4):534–40. https://doi.org/10.1111/j.1365-2141.2007.06688.x; Schmugge M., Dunn M.S., Amankwah K.S. et al. The activity of the von Willebrand factor cleaving protease ADAMTS-13 in newborn infants. J Thromb Haemost. 2004;2(2):228–33. https://doi.org/10.1046/j.1538-7933.2003.00575.x.; Tsai H.M., Sarode R., Downes K.A. Ultralarge von Willebrand factor multimers and normal ADAMTS13 activity in the umbilical cord blood. Thromb Res. 2002;108(2–3):121–5. https://doi.org/10.1016/s0049-3848(02)00396-1.; Thomas K.B., Sutor A.H., Altinkaya N. et al. von Willebrand factor-collagen binding activity is increased in newborns and infants. Acta Paediatr. 1995;84(6):697–9. https://doi.org/10.1111/j.1651-2227.1995.tb13733.x.; Blasi A., von Meijenfeldt F.A., Adelmeijer J. et al. In vitro hypercoagulability and ongoing in vivo activation of coagulation and fibrinolysis in COVID-19 patients on anticoagulation. J Thromb Haemost. 2020;18(10):2646–53. https://doi.org/10.1111/jth.15043.; von Meijenfeldt F.A., Havervall S., Adelmeijer J. et al. Prothrombotic changes in patients with COVID-19 are associated with disease severity and mortality. Res Pract Thromb Haemost. 2021;5(1):132–41. https://doi.org/10.1002/rth2.12462.; Sui J., Noubouossie D.F., Gandotra S., Cao L. Elevated plasma fibrinogen is associated with excessive inflammation and disease severity in COVID19 patients. Front Cell Infect Microbiol. 2021;11:734005. https://doi.org/10.3389/fcimb.2021.734005.; Lopez-Castaneda S., García-Larragoiti N., Cano-Mendez A. et al. Inflammatory and prothrombotic biomarkers associated with the severity of COVID-19 infection. Clin Appl Thromb Hemost. 2021;27:107602962199909. https://doi.org/10.1177/1076029621999099.; Hanff T.C., Mohareb A.M., Giri J. et al. Thrombosis in COVID-19. Am J Hematol. 2020;95(12):1578–89. https://doi.org/10.1002/ajh.25982.; Malas M.B., Naazie I.N., Elsayed N. et al. Thromboembolism risk of COVID-19 is high and associated with a higher risk of mortality: a systematic review and meta-analysis. EClinicalMedicine. 2020;29:100639. https://doi.org/10.1016/j.eclinm.2020.100639.; Bazzan M., Montaruli B., Sciascia S. et al. Low ADAMTS 13 plasma levels are predictors of mortality in COVID-19 patients. Intern Emerg Med. 2020;15(5):861–3. https://doi.org/10.1007/s11739-020-02394-0.; Huisman A., Beun R., Sikma M. et al. Involvement of ADAMTS13 and von Willebrand factor in thromboembolic events in patients infected with SARS-CoV-2. Int J Lab Hematol. 2020;42(5):e211–e212. https://doi.org/10.1111/ijlh.13244.; Favaloro E.J., Henry B.M., Lippi G. Increased VWF and decreased ADAMTS-13 in COVID-19: creating a milieu for (micro)thrombosis. Semin Thromb Hemost. 2021;47(4):400–18. https://doi.org/10.1055/s-0041-1727282.; Xu X., Feng Y., Jia Y. et al. Prognostic value of von Willebrand factor and ADAMTS13 in patients with COVID-19: A systematic review and metaanalysis. Thromb Res. 2022;218:83–98. https://doi.org/10.1016/j.thromres.2022.08.017.; Bitsadze V.O., Khizroeva J.K., Gris J. et al. Pathogenetic and prognostic significance of inflammation and altered ADAMTS-13/vWF axis in patients with severe COVID-19. Obstetrics, Gynecology and Reproduction. 2022;16(3):228–43. https://doi.org/10.17749/2313-7347/ob.gyn.rep.2022.327.; Seth R., McKinnon T.A.J., Zhang X.F. Contribution of the von Willebrand factor/ADAMTS13 imbalance to COVID-19 coagulopathy. Am J Physiol Heart Circ Physiol. 2022;322(1):H87–H93. https://doi.org/10.1152/ajpheart.00204.2021.; Latimer G., Corriveau C., DeBiasi R.L. et al. Cardiac dysfunction and thrombocytopenia-associated multiple organ failure inflammation phenotype in a severe paediatric case of COVID-19. Lancet Child Adolesc Health. 2020;4(7):552–4. https://doi.org/10.1016/S2352-4642(20)30163-2.; Doevelaar A., Bachmann M., Hölzer B. et al. COVID-19 is associated with relative ADAMTS13 deficiency and VWF multimer formation resembling TTP (Preprint). medRxiv. August 25, 2020. https://doi.org/10.1101/2020.08.23.20177824.; https://www.gynecology.su/jour/article/view/1554

  9. 9

    Source: Obstetrics, Gynecology and Reproduction; Vol 17, No 6 (2023); 718-728 ; Акушерство, Гинекология и Репродукция; Vol 17, No 6 (2023); 718-728 ; 2500-3194 ; 2313-7347

    File Description: application/pdf

    Relation: https://www.gynecology.su/jour/article/view/1843/1166; Xue Y., Yang N., Gu X. et al. Risk prediction model of early-onset preeclampsia based on risk factors and routine laboratory indicators. Life (Basel). 2023;13(8):1648. https://doi.org/10.3390/life13081648.; Jiao Y., Liu Y., Li H. et al. Value of proteinuria in evaluating the severity of HELLP and its maternal and neonatal outcomes. BMC Pregnancy Childbirth. 2023;23(1):591. https://doi.org/10.1186/s12884-023-05862-5.; van Eerden L., de Groot C.J.M., Zeeman G.G. et al. Subsequent pregnancy outcome after mid-trimester termination of pregnancy for preeclampsia. Aust N Z J Obstet Gynaecol. 2018;58(2):204–9. https://doi.org/10.1111/ajo.12691.; Gottardi E., Lecarpentier E., Villette C. et al. Preeclampsia before 26 weeks of gestation: Obstetrical prognosis for the subsequent pregnancy. J Gynecol Obstet Hum Reprod. 2021;50(3):102000. https://doi.org/10.1016/j.jogoh.2020.102000.; Nguyen T.P.H., Patrick C.J., Parry L.J., Familari M. Using proteomics to advance the search for potential biomarkers for preeclampsia: A systematic review and meta-analysis. PLoS One. 2019;14(4):e0214671. https://doi.org/10.1371/journal.pone.0214671.; Sandvik M.K., Leirgul E., Nygård O. et al. Preeclampsia in healthy women and endothelial dysfunction 10 years later. Am J Obstet Gynecol. 2013;209(6):569.e1–569.e10. https://doi.org/10.1016/j.ajog.2013.07.024.; Фадеева Н.И., Суворова А.В., Малюга О.М. Фактор Виллебранда – как маркер эндотелиальной дисфункции у беременных женщин с гестозом и родившихся у них новорожденных. Сибирский медицинский журнал (Иркутск). 2001;24(1):28–32.; Nishikawa S., Miyamoto A., Yamamoto H. et al. The relationship between serum nitrate and endothelin-1 concentrations in preeclampsia. Life Sci. 2000;67(12):1447–54. https://doi.org/10.1016/S0024-3205(00)00736-0.; Булавенко О.В., Васькив О.В. Плазменные концентрации эндотелина-1 и С-натрийуретического пептида у беременных с гестационной гипертензией. Перинатология и педиатрия. 2017;(1):46–50.; Simanjuntak M.K., Idris I., Sunarno I. et al. Mean arterial pressure and the endothelin-1 levels in preeclampsia. Gac Sanit. 2021;35(Suppl 2):S242– S244. https://doi.org/10.1016/j.gaceta.2021.07.016.; Aref S., Goda H. Increased VWF antigen levels and decreased ADAMTS13 activity in preeclampsia. Hematology. 2013;18(4):237–41. https://doi.org/10.1179/1607845412Y.0000000070.; Brown S.A., Eldridge A., Collins P.W., Bowen D.J. Increased clearance of von Willebrand factor antigen post-DDAVP in Type 1 von Willebrand disease: is it a potential pathogenic process? J Thromb Haemost. 2003;1(8):1714-7. https://doi.org/10.1046/j.1538-7836.2003.00359.x.; Davidesko S., Pikovsky O., Al-Athamen K. et al. von Willebrand factor antigen: a biomarker for severe pregnancy complications in women with hereditary thrombotic thrombocytopenic purpura? J Thromb Haemost. 2023;21(6):1623-1629. https://doi.org/10.1016/j.jtha.2023.02.022.; Коротчаева Ю.В., Козловская Н.Л., Шифман Е.М. и др. Атипичный гемолитико-уремический синдром и преэклампсия: причина или следствие? Вопросы гинекологии, акушерства и перинатологии. 2021;20(4):55–63.; Gardikioti A., Venou T.M., Gavriilaki E. et al. Molecular advances in preeclampsia and HELLP syndrome. Int J Mol Sci. 2022;23(7):3851. https://doi.org/10.3390/ijms23073851.; Клинические рекомендации – Преэклампсия. Эклампсия. Отеки, протеинурия и гипертензивные расстройства во время беременности, в родах и послеродовом периоде – 2021-2022-2023 (24.06.2021). М.: Министерство здравоохранения Российской Федерации, 2021. 54 с. Режим доступа: http://disuria.ru/_ld/10/1046_kr21O10O16MZ.pdf. [Дата обращения: 16.10.2023].; Григорьева К.Н., Гашимова Н.Р., Бицадзе В.О. и др. Клиническое значение состояния оси ADAMTS-13/vWF у беременных в различные триместры гестации. Акушерство, Гинекология и Репродукция. 2023;17(2):221–30. https://doi.org/10.17749/2313-7347/ob.gyn.rep.2023.405.; Момот А.П., Тараненко И.А., Белозеров Д.Е. и др. Инициация свертывания крови в разные сроки физиологически протекающей беременности. Бюллетень Сибирского отделения Российской академии медицинских наук. 2014;34(5):58–66. https://doi.org/10.18411/d-2016-064.; Scully M., Neave L. Etiology and outcomes: Thrombotic microangiopathies in pregnancy. Res Pract Thromb Haemost. 2023;7(2):100084. https://doi.org/10.1016/j.rpth.2023.100084.; Alpoim P.N., Gomes K.B., Godoi L.C. et al. ADAMTS13, FVIII, von Willebrand factor, ABO blood group assessment in preeclampsia. Clin Chim Acta. 2011;412(23–24):2162–6. https://doi.org/10.1016/j.cca.2011.07.030.; Yoshida Y., Matsumoto M., Yagi H. et al. Severe reduction of free-form ADAMTS13, unbound to von Willebrand factor, in plasma of patients with HELLP syndrome. Blood Adv. 2017;1(20):1628–31. https://doi.org/10.1182/bloodadvances.2017006767.; Коленко О.В., Помыткина Н.В., Сорокин Е.Л. и др. О взаимосвязи между биохимическими факторами эндотелиальной дисфункции, свободнорадикального окисления и морфометрическими показателями макулярной зоны при преэклампсии. Вестник офтальмологии. 2019;135(2):39–47. https://doi.org/10.17116/oftalma201913502139.; Feys H.B., Canciani M.T., Peyvandi F. et al. ADAMTS13 activity to antigen ratio in physiological and pathological conditions associated with an increased risk of thrombosis. Br J Haematol. 2007;138(4):534–40. https://doi.org/10.1111/j.1365-2141.2007.06688.x.; Stepanian A., Cohen-Moatti M., Sanglier T. et al.; ECLAXIR Study Group. Von Willebrand factor and ADAMTS13: a candidate couple for preeclampsia pathophysiology. Arterioscler Thromb Vasc Biol. 2011;31(7):1703–9. https://doi.org/10.1161/ATVBAHA.111.223610.; Molvarec A., Rigó J., Bõze T. et al. Increased plasma von Willebrand factor antigen levels but normal von Willebrand factor cleaving protease (ADAMTS13) activity in preeclampsia. Thromb Haemost. 2009;101(2):305–11.; Qu H., Khalil R.A. Role of ADAM and ADAMTS disintegrin and metalloproteinases in normal pregnancy and preeclampsia. Biochem Pharmacol. 2022;206:115266. https://doi.org/10.1016/j.bcp.2022.115266.; Franchini M., Montagnana M., Targher G., Lippi G. Reduced von Willebrand factor-cleaving protease levels in secondary thrombotic microangiopathies and other diseases. Semin Thromb Hemost. 2007;33(8):787–97. https://doi.org/10.1055/s-2007-1000365.; Zander C.B., Cao W., Zheng X.L. ADAMTS13 and von Willebrand factor interactions. Curr Opin Hematol. 2015;22(5):452–9. https://doi.org/10.1097/MOH.0000000000000169.; https://www.gynecology.su/jour/article/view/1843

  10. 10

    Source: Obstetrics, Gynecology and Reproduction; Vol 16, No 6 (2022); 648-663 ; Акушерство, Гинекология и Репродукция; Vol 16, No 6 (2022); 648-663 ; 2500-3194 ; 2313-7347

    File Description: application/pdf

    Relation: https://www.gynecology.su/jour/article/view/1516/1067; Brinkmann V., Reichard U., Goosmann C. et al. Neutrophil extracellular traps kill bacteria. Science. 2004;303(5663):1532–5. https://doi.org/10.1126/science.1092385.; Bernardo A., Ball C., Nolasco L. et al. Platelets adhered to endothelial cellbound ultra-large von Willebrand factor strings support leukocyte tethering and rolling under high shear stress. J Thromb Haemost. 2005;3(3):562–70. https://doi.org/10.1111/j.1538-7836.2005.01122.x.; Albrengues J., Shields M.A., Ng D. et al. Neutrophil extracellular traps produced during inflammation awaken dormant cancer cells in mice. Science. 2018;361(6409):eaao4227. https://doi.org/10.1126/science.aao4227.; Delgado-Rizo V., Martínez-Guzmán M.A., Iñiguez-Gutierrez L. et al. Neutrophil extracellular traps and its implications in inflammation: an overview. Front Immunol. 2017;8:81. https://doi.org/10.3389/fimmu.2017.00081.; Cao W., Pham H.P., Williams L.A. et al. Human neutrophil peptides and complement factor Bb in pathogenesis of acquired thrombotic thrombocytopenic purpura. Haematologica. 2016;101(11):1319–26. https://doi.org/10.3324/haematol.2016.149021.; Petretto A., Bruschi M., Pratesi F. et al. Neutrophil extracellular traps (NET) induced by different stimuli: A comparative proteomic analysis. PLoS One. 2019;14(7):e0218946. https://doi.org/10.1371/journal.pone.0218946.; Staessens S., Denorme F., Francois O. et al. Structural analysis ofischemic stroke thrombi: histological indications for therapy resistance. Haematologica. 2020;105(2):498–507. https://doi.org/10.3324/haematol.2019.219881.; Brill A., Fuchs T., Savchenko A. et al. Neutrophil extracellular traps promote deep vein thrombosis in mice. J Thromb Haemost. 2012;10(1):136–44. https://doi.org/10.1111/j.1538-7836.2011.04544.x.; Thålin C., Hisada Y., Lundström S. et al. Neutrophil extracellular traps: villains and targets in arterial, venous, and cancer-associated thrombosis. Arterioscler Thromb Vasc Biol. 2019;39(9):1724–38. https://doi.org/10.1161/ATVBAHA.119.312463.; Thiam H.R., Wong S.L., Qiu R. et al. NETosis proceeds by cytoskeleton and endomembrane disassembly and PAD4-mediated chromatin decondensation and nuclear envelope rupture. Proc Natl Acad Sci U S A. 2020;117(13):7326–37. https://doi.org/10.1073/pnas.1909546117.; Yipp B.G., Kubes P. NETosis: how vital is it? Blood. 2013;122(16):2784–94. https://doi.org/10.1182/blood-2013-04-457671.; Yousefi S., Mihalache C., Kozlowski E. et al. Viable neutrophils release mitochondrial DNA to form neutrophil extracellular traps. Cell Death Differ. 2009;16(11):1438–44. https://doi.org/10.1038/cdd.2009.96.; Laridan E., Martinod K., De Meyer S.F. Neutrophil extracellular traps in arterial and venous thrombosis. Semin Thromb Hemost. 2019;45(1):86–93. https://doi.org/10.1055/s-0038-1677040.; Hounkpe B.W., Fiusa M.M.L., Colella M.P. et al. Role of innate immunitytriggered pathways in the pathogenesis of Sickle Cell Disease: a meta-analysis of gene expression studies. Sci Rep. 2015;5:17822. https://doi.org/10.1038/srep17822.; Gould T.J., Vu T.T., Swystun L.L. et al. Neutrophil extracellular traps promote thrombin generation through platelet-dependent and plateletindependent mechanisms. Arterioscler Thromb Vasc Biol. 2014;34(9):1977–84. https://doi.org/10.1161/ATVBAHA.114.304114.; Fuchs T.A., Bhandari A.A., Wagner D.D. Histones induce rapid and profound thrombocytopenia in mice. Blood. 2011;118(13):3708–14. https://doi.org/10.1182/blood-2011-01-332676.; Massberg S., Grahl L., von Bruehl M.-L. et al. Reciprocal coupling of coagulation and innate immunity via neutrophil serine proteases. Nat Med. 2010;16(8):887–96. https://doi.org/10.1038/nm.2184.; Frangou E., Vassilopoulos D., Boletis J., Boumpas D.T. An emerging role of neutrophils and NETosis in chronic inflammation and fibrosis in systemic lupus erythematosus (SLE) and ANCA-associated vasculitides (AAV): Implications for the pathogenesis and treatment. Autoimmun Rev. 2019;18(8):751–60. https://doi.org/10.1016/j.autrev.2019.06.011.; Denning N.-.L, Aziz M., Gurien S.D., Wang P. DAMPs and NETs in sepsis. Front Immunol. 2019;10:2536. https://doi.org/10.3389/fimmu.2019.02536.; Doring Y., Soehnlein O., Weber C. Neutrophil extracellular traps in atherosclerosis and atherothrombosis. Circ Res. 2017;120(4):736–43. https://doi.org/10.1161/CIRCRESAHA.116.309692.; Grover S.P., Nigel M. Tissue factor: an essential mediator of hemostasis and trigger of thrombosis. Arterioscler Thromb Vasc Biol. 2018;38(7):709–25. https://doi.org/10.1161/ATVBAHA.117.309846.; Darbousset R., Thomas G.M., Mezouar S. et al. Tissue factor-positive neutrophils bind to injured endothelial wall and initiate thrombus formation. Blood. 2012;120(10):2133–43. https://doi.org/10.1182/blood-2012-06-437772.; Jewkes R., Sikweyiya Y., Morrell R., Dunkle K. Gender inequitable masculinity and sexual entitlement in rape perpetration South Africa: findings of a cross-sectional study. PloS One. 2011;6(12):e29590. https://doi.org/10.1371/journal.pone.0029590.; Zhou J., Qu F., Sang X. et al. Acupuncture and auricular acupressure in relieving menopausal hot flashes of bilaterally ovariectomized chinese women: a randomized controlled trial. Evid Based Complement Alternat Med. 2011;2011:713274. https://doi.org/10.1093/ecam/nep001.; Skendros P., Mitsios A., Chrysanthopoulou A. et al. Complement and tissue factor-enriched neutrophil extracellular traps are key drivers in COVID-19 immunothrombosis. J Clin Invest. 2020;130(11):6151–7. https://doi.org/10.1172/JCI141374.; Frangou E., Chrysanthopoulou A., Kambas K. et al. FP098REDD1/autophagy pathway promotes thromboinflammation and fibrosis in human systemic lupus erythematosus (SLE) by the release of neutrophil extracellular traps (NETs). Nephrol Dial Transplant. 2018;33(suppl_1):i80–i80. https://doi.org/10.1093/ndt/gfy104.FP098.; Lisman T. Platelet-neutrophil interactions as drivers of inflammatory and thrombotic disease. Cell Tissue Res. 2018;371(3):567–76. https://doi.org/10.1007/s00441-017-2727-4.; Carestia A., Kaufman T., Rivadeneyra L. et al. Mediators and molecular pathways involved in the regulation of neutrophil extracellular trap formation mediated by activated platelets. J Leukoc Biol. 2016;99(1):153–62. https://doi.org/10.1189/jlb.3A0415-161R.; Maugeri N., Campana L., Gavina M. et al. Activated platelets present high mobility group box 1 to neutrophils, inducing autophagy and promoting the extrusion of neutrophil extracellular traps. J Thromb Haemost. 2014;12(12):2074–88. https://doi.org/10.1111/jth.12710.; Gol S., Pena R.N., Rothschild M.F. et al. A polymorphism in the fatty acid desaturase-2 gene is associated with the arachidonic acid metabolism in pigs. Sci Rep. 2018;8(1):14336. https://doi.org/10.1038/s41598-018-32710-w.; Semeraro F., Ammollo C.T., Morrissey J.H. et al. Extracellular histones promote thrombin generation through platelet-dependent mechanisms: involvement of platelet TLR2 and TLR4. Blood. 2011;118(7):1952–61. https://doi.org/10.1182/blood-2011-03-343061.; Zhou Y.-F., Eng E.T., Zhu J. et al. Sequence and structure relationships within von Willebrand factor. Blood. 2012;120(2):449–58. https://doi.org/10.1182/blood-2012-01-405134.; Löf A., Müller J.P., Brehm M.A. A biophysical view on von Willebrand factor activation. J Cell Physiol. 2018;233(2):799–810. https://doi.org/10.1002/jcp.25887.; Pendu R., Terraube V., Christophe O.D. et al. P-selectin glycoprotein ligand 1 and β2-integrins cooperate in the adhesion of leukocytes to von Willebrand factor. Blood. 2006;108(12):3746–52. https://doi.org/10.1182/blood-2006-03-010322.; Fuchs T.A., Brill A., Duerschmied D. et al. Extracellular DNA traps promote thrombosis. Proc Natl Acad Sci U S A. 2010;107(36):15880–5. https://doi.org/10.1073/pnas.1005743107.; Lancellotti S., Basso M., De Cristofaro R. Proteolytic processing of von Willebrand factor by adamts13 and leukocyte proteases. Mediterr J Hematol Infect Dis. 2013;5(1):e2013058. https://doi.org/10.4084/MJHID.2013.058.; Weber C., Jenke A., Chobanova V., et al. Targeting of cell-free DNA by DNase I diminishes endothelial dysfunction and inflammation in a rat model of cardiopulmonary bypass. Sci Rep. 2019;9(1):19249. https://doi.org/10.1038/s41598-019-55863-8.; South K., Lane D.A. ADAMTS-13 and von Willebrand factor: a dynamic duo. J Thromb Haemost. 2018;16(1):6–18. https://doi.org/10.1111/jth.13898.; Scully M., Cataland S.R., Peyvandi F. et al. Caplacizumab treatment for acquired thrombotic thrombocytopenic purpura. N Engl J Med. 2019;380(4):335–46. https://doi.org/10.1056/NEJMoa1806311.; Soejima K., Mimura N., Hiroshima M. et al. A novel human metalloprotease synthesized in the liver and secreted into the blood: possibly, the von Willebrand factor-cleaving protease? J Biochem. 2001;130(4):475–80. https://doi.org/10.1093/oxfordjournals.jbchem.a003009.; Dong J.-f. Structural and functional correlation of ADAMTS13. Curr Opin Hematol. 2007;14(3):270–6. https://doi.org/10.1097/MOH.0b013e3280d35820.; Tao Z., Wang Y., Choi H. et al. Cleavage of ultralarge multimers of von Willebrand factor by C-terminal-truncated mutants of ADAMTS-13 under flow. Blood. 2005;106(1):141–3. https://doi.org/10.1182/blood-2004-11-4188.; Huang R.-H., Fremont D.H., Diener J.L. et al. A structural explanation for the antithrombotic activity of ARC1172, a DNA aptamer that binds von Willebrand factor domain A1. Structure. 2009;17(11):1476–84. https://doi.org/10.1016/j.str.2009.09.011.; Grässle S., Huck V., Pappelbaum K.I. et al. von Willebrand factor directly interacts with DNA from neutrophil extracellular traps. Arterioscler Thromb Vasc Biol. 2014;34(7):1382–9. https://doi.org/10.1161/ATVBAHA.113.303016.; Edwards J.V., Howley P.S. Human neutrophil elastase and collagenase sequestration with phosphorylated cotton wound dressings. J Biomed Mater Res A. 2007;83(2):446–54. https://doi.org/10.1002/jbm.a.31171.; Urisono Y., Sakata A., Matsui H. et al. Von Willebrand factor aggravates hepatic ischemia-reperfusion injury by promoting neutrophil recruitment in mice. Thromb Haemost. 2018;118(4):700–8. https://doi.org/10.1055/s-0038-1636529.; Gragnano F., Sperlongano S., Golia E. et al. The role of von Willebrand factor in vascular inflammation: from pathogenesis to targeted therapy. Mediators Inflamm. 2017;2017:5620314. https://doi.org/10.1155/2017/5620314.; Honda M., Kubes P. Neutrophils and neutrophil extracellular traps in the liver and gastrointestinal system. Nat Rev Gastroenterol Hepatol. 2018;15(4):206–21. https://doi.org/10.1038/nrgastro.2017.183.; Farkas P., Csuka D., Mikes B. et al. Complement activation, inflammation and relative ADAMTS13 deficiency in secondary thrombotic microangiopathies. Immunobiology. 2017;222(2):119–27. https://doi.org/10.1016/j.imbio.2016.10.014.; Richardson P. Phase II trial of single agent bortezomib (VELCADE^(! R)) in patients with previously untreated multiple myeloma. Blood. 2004;104:100a.; Ono T., Mimuro J., Madoiwa S. et al. Severe secondary deficiency of von Willebrand factor–cleaving protease (ADAMTS13) in patients with sepsisinduced disseminated intravascular coagulation: its correlation with development of renal failure. Blood. 2006;107(2):528–34. https://doi.org/10.1182/blood-2005-03-1087.; Crawley J.T., Lam J.K., Rance J.B. et al. Proteolytic inactivation of ADAMTS13 by thrombin and plasmin. Blood. 2005;105(3):1085–93. https://doi.org/10.1182/blood-2004-03-1101.; Klebanoff S.J. Myeloperoxidase: friend and foe. J Leukoc Biol. 2005;77950:598–625. https://doi.org/10.1189/jlb.1204697.; Chen J., Fu X., Wang Y. et al. Oxidative modification of von Willebrand factor by neutrophil oxidants inhibits its cleavage by ADAMTS13. Blood. 2010;115(3):706–12. https://doi.org/10.1182/blood-2009-03-213967.; Nishimura K., Sano M., Ohtaka M. et al. Development of defective and persistent Sendai virus vector: a unique gene delivery/expression system ideal for cell reprogramming. J Biol Chem. 2011;286(6):4760–71. https://doi.org/10.1074/jbc.M110.183780.; Pillai V.G., Bao J., Zander C.B. et al. Human neutrophil peptides inhibit cleavage of von Willebrand factor by ADAMTS13: a potential link of inflammation to TTP. Blood. 2016;128(1):110–9. https://doi.org/10.1182/blood-2015-12-688747.; Quinn K., Henriques M., Parker T. et al. Human neutrophil peptides: a novel potential mediator of inflammatory cardiovascular diseases. Am J Physiol Heart Circ Physiol. 2008;295(5):H1817–24. https://doi.org/10.1152/ajpheart.00472.2008.; Higazi A.A., Ganz T., Kariko K., Cines D.B. Defensin modulates tissue-type plasminogen activator and plasminogen binding to fibrin and endothelial cells. J Biol Chem. 1996;271(30):17650–5. https://doi.org/10.1074/jbc.271.30.17650.; Wong S.L., Wagner D.D. Peptidylarginine deiminase 4: a nuclear button triggering neutrophil extracellular traps in inflammatory diseases and aging. FASEB J. 2018;32(12):fj201800691R. https://doi.org/10.1096/fj.201800691R. Online ahead of print.; Sorvillo N., Mizurini D.M., Coxon C. et al. Plasma peptidylarginine deiminase IV promotes VWF-platelet string formation and accelerates thrombosis after vessel injury. Circ Res. 2019;125(5):507–19. https://doi.org/10.1161/CIRCRESAHA.118.314571.; Buchtele N., Schwameis M., Gilbert J.C. et al. Targeting von Willebrand factor in ischaemic stroke: focus on clinical evidence. Thromb Haemost. 2018;118(6):959–78. https://doi.org/10.1055/s-0038-1648251.; Laridan E., Denorme F., Desender L. et al. Neutrophil extracellular traps in ischemic stroke thrombi. Ann Neurol. 2017;82(2):223–32. https://doi.org/10.1002/ana.24993.; Pena-Martinez C., Duran-Laforet V., Garcia-Culebras A. et al. Pharmacological modulation of neutrophil extracellular traps reverses thrombotic stroke tPA (tissue-type plasminogen activator) resistance. Stroke. 2019;50(11):3228–37. https://doi.org/10.1161/STROKEAHA.119.026848.; Novotny J., Oberdieck P., Titova A. et al. Thrombus NET content is associated with clinical outcome in stroke and myocardial infarction. Neurology. 2020;94(22):e2346–e2360. https://doi.org/10.1212/WNL.0000000000009532.; Hada M., Kaminski M., Bockenstedt P., McDonagh J. Covalent crosslinking of von Willebrand factor to fibrin. Blood. 1986;68(1):95–101.; Miszta A., Pelkmans L., Lindhout T. et al. Thrombin-dependent incorporation of von Willebrand factor into a fibrin network. J Biol Chem. 2014;289(52):35979–86. https://doi.org/10.1074/jbc.M114.591677.; Denorme F., Langhauser F., Desender L. et al. ADAMTS13-mediated thrombolysis of t-PA-resistant occlusions in ischemic stroke in mice. Blood. 2016;127(19):2337–45. https://doi.org/10.1182/blood-2015-08-662650.; https://www.gynecology.su/jour/article/view/1516

  11. 11
  12. 12

    Source: Obstetrics, Gynecology and Reproduction; Vol 16, No 3 (2022); 228-243 ; Акушерство, Гинекология и Репродукция; Vol 16, No 3 (2022); 228-243 ; 2500-3194 ; 2313-7347

    File Description: application/pdf

    Relation: https://www.gynecology.su/jour/article/view/1356/1019; https://www.gynecology.su/jour/article/view/1356/1033; Smilowitz N.R., Subaschchandran V., Yuriditsky E. et al. Thrombosis in hospitalized patients with viral respiratory infections versus COVID-19. Am Heart J. 2021;231:93–5. https://doi.org/10.1016/j.ahj.2020.10.075.; Hanff T.C., Mohareb A.M., Giri J. et al. Thrombosis in COVID-19. Am J Hematol. 2020;95(12):1578–89. https://doi.org/10.1002/ajh.25982.; Malas M.B., Naazie I.N., Elsayed N. et al. Thromboembolism risk of COVID-19 is high and associated with a higher risk of mortality: A systematic review and meta-analysis. EClinicalMedicine. 2020;29:100639. https://doi.org/10.1016/j.eclinm.2020.100639.; Loo J., Spittle D.A., Newnham M. COVID-19, immunothrombosis and venous thromboembolism: biological mechanisms. Thorax. 2021;76(4):412–20. https://doi.org/10.1136/thoraxjnl-2020-216243.; Бицадзе В.О., Слуханчук Е.В., Хизроева Д.Х. и др. Внеклеточные ловушки нейтрофилов (NETs) в патогенезе тромбоза и тромбовоспалительных заболеваний. Вестник РАМН. 2021;76(1):75–85. https://doi.org/10.15690/vramn1395.; Zuo Y., Yalavarthi S., Shi H. et al. Neutrophil extracellular traps (NETs) as markers of disease severity in COVID-19. medRxiv. 2020;Apr 14:2020.04.09.20059626. https://doi.org/10.1101/2020.04.09.20059626.; Слуханчук Е.В., Бицадзе В.О., Хизроева Д.Х. и др. COVID-19 и тромботическая микроангиопатия. Акушерство, Гинекология и Репродукция. 2021;15(6):639–657. https://doi.org/10.17749/2313-7347/ob.gyn.rep.2021.265.; Sweeney J.M., Barouqa M., Krause G.J. et al. Evidence for secondary thrombotic microangiopathy in COVID-19. medRxiv. 2020;Oct 23: 2020.10.20.20215608. https://doi.org/10.1101/2020.10.20.20215608.; Bonaventura A., Vecchié A., Dagna L. et al. Endothelial dysfunction and immunothrombosis as key pathogenic mechanisms in COVID-19. Nat Rev Immunol. 2021;21(5):319–29. https://doi.org/10.1038/s41577-021-00536-9.; Guéant J.L., Fromonot J., Guéant-Rodriguez R.M. et al. Blood myeloperoxidase-DNA, a biomarker of early response to SARS-CoV-2 infection? Allergy. 2021;76(3):892–6. https://doi.org/10.1111/all.14533.; Zhan H., Chen H., Liu C. et al. Diagnostic value of D-dimer in COVID-19: a meta-analysis and meta-regression. Clin Appl Thromb Hemost. 2021;27:10760296211010976. https://doi.org/10.1177/10760296211010976.; Spyropoulos A.C., Lipardi C., Xu J. et al. Modified IMPROVE VTE risk score and elevated D-dimer identify a high venous thromboembolism risk in acutely ill medical population for extended thromboprophylaxis. TH Open. 2020;4(1):e59–e65. https://doi.org/10.1055/s-0040-1705137.; Landau N., Shoenfeld Y., Negru L., Segal G. Exploring the pathways of inflammation and coagulopathy in COVID-19: A narrative tour into a viral rabbit hole. Int Rev Immunol. 2021;22:1–9. https://doi.org/10.1080/08830185.2021.1993211.; Iba T., Levy J.H., Levi M., Thachil J. Coagulopathy in COVID-19. J Thromb Haemost. 2020;8(9):2103–9. https://doi.org/10.1111/jth.14975.; Favaloro E.J., Henry B.M., Lippi G. Increased VWF and decreased ADAMTS-13 in COVID-19: creating a milieu for (micro) thrombosis. Semin Thromb Hemost. 2021;47(4):400–18. https://doi.org/10.1055/s-0041-1727282.; Tiscia G.L., Favuzzi G., De Laurenzo A. et al.; CSS COVID-19 Group. Reduction of ADAMTS13 levels predicts mortality in SARS-CoV-2 patients. TH Open. 2020;4:e203–e206. https://doi.org/10.1055/s-0040-1716379.; Pascreau T., Zia-Chahabi S., Zuber B. et al. ADAMTS 13 deficiency is associated with abnormal distribution of von Willebrand factor multimers in patients with COVID-19. Thromb Res. 2021;204:138–40. https://doi.org/10.1016/j.thromres.2021.02.008.; Pramitasuri T.I., Laksmidewi A.A.A.P., Putra I.B.K., Dalimartha F.A. Neutrophil extracellular traps in Coronavirus disease-19-associated ischemic stroke: A novel avenue in neuroscience. Exp Neurobiol. 2021;30(1):1–12. https://doi.org/10.5607/en20048.; Nguyen T.C., Liu A., Liu L. et al. Acquired ADAMTS-13 deficiency in pediatric patients with severe sepsis. Haematologica. 2007;92(1):121–4. https://doi.org/10.3324/haematol.10262.; Thachil J., Tang N., Gando S.et al. ISTH interim guidance on recognition and management of coagulopathy in COVID-19. J Thromb Haemost. 2020;18(5):1023–6. https://doi.org/10.1111/jth.14810.; https://www.gynecology.su/jour/article/view/1356

  13. 13

    Source: Annals of the Russian academy of medical sciences; Vol 77, No 3 (2022); 189-198 ; Вестник Российской академии медицинских наук; Vol 77, No 3 (2022); 189-198 ; 2414-3545 ; 0869-6047 ; 10.15690/vramn.773

    File Description: application/pdf

  14. 14
  15. 15

    Source: Obstetrics, Gynecology and Reproduction; Vol 15, No 4 (2021); 390-403 ; Акушерство, Гинекология и Репродукция; Vol 15, No 4 (2021); 390-403 ; 2500-3194 ; 2313-7347

    File Description: application/pdf

    Relation: https://www.gynecology.su/jour/article/view/1066/928; https://www.gynecology.su/jour/article/view/1066/929; Володин Н.Н., Ройтман Е.В., Румянцев А.Г., Шнейдер М.М. Тромбозы у новорожденных: патогенез, диагностика, лечение. Вопросы практической педиатрии. 2012;7(4):34-43.; Saracco P., Bagna R., Gentilomo C. et al.; Neonatal Working Group of the Registro Italiano Trombosi Infantili (RITI). Clinical data of neonatal systemic thrombosis. J Pediatr. 2016;171:60-6.e1. https://doi.org/10.1016/j.jpeds.2015.12.035.; Bhatt M.D., Chan A.K. Venous thrombosis in neonates. Fac Rev. 2021;10:20. https://doi.org/10.12703/r/10-20.; Raffini L., Huang Y.S., Witmer C., Feudtner C. Dramatic increase in venous thromboembolism in children's hospitals in the United States from 2001 to 2007. Pediatrics. 2009;124(4):1001-8. https://doi.org/10.1542/peds.2009-0768.; Saxonhouse M.A. Thrombosis in the neonatal intensive care unit. Clin Perinatol. 2015;42(3):651-73. https://doi.org/10.1016/j.clp.2015.04.010.; Saracco P., Parodi E., Fabris C. et al. Management and investigation of neonatal thromboembolic events: genetic and acquired risk factors. Thromb Res. 2009;123(6):805-9. https://doi.org/10.1016/j.thromres.2008.12.002.; Strauss T., Levy-Shraga Y., Ravid B. et al. Clot formation of neonates tested by thromboelastography correlates with gestational age. Thromb Haemost. 2010;103(2):344-50. https://doi.org/10.1160/TH09-05-0282.; Kenet G., Nowak-Gottl U. Venous thromboembolism in neonates and children. Best Pract Res Clin Haematol. 2012;25(3):333-44. https://doi.org/10.1016/j.beha.2012.07.001.; El-Naggar W., Yoon E.W., McMillan D. et al.; Canadian Neonatal Network Investigators. Epidemiology of thrombosis in Canadian neonatal intensive care units. J Perinatol. 2020;40(7):1083-90. https://doi.org/10.1038/s41372-020-0678-1.; Kenet G., Cohen O., Bajorat T., Nowak-Gottl U. Insights into neonatal thrombosis. Thromb Res. 2019;181(Suppl 1):S33-S36. https://doi.org/10.1016/S0049-3848(19)30364-0.; Haley K.M. Neonatal venous thromboembolism. Front Pediatr. 2017;5:136. https://doi.org/10.3389/fped.2017.00136.; Veldman A., Nord M.F., Michel-Behnke I. Thrombosis in the critically ill neonate: incidence, diagnosis, and management. Vask Health Risk Manag. 2008;4(6):1337-48. https://doi.org/10.2147/vhrm.s4274.; Martin G., Thomas M.A., Wei X.C., Le D. Diffuse intracerebral hemorrhage in an infant with a novel homozygous variant leading to severe protein C deficiency. J Pediatr Hematol Oncol. 2020 Nov 6. https://doi.org/10.1097/MPH.0000000000001993.; Kraus F.T. Fetal thrombotic vasculopathy: perinatal stroke, growth restriction, and other sequelae. Surg Pathol Clin. 2013;6(1):87-100. https://doi.org/10.1016/j.path.2012.10.001.; Young G., Albisetti M., Bonduel M. et al. Impact of inherited thrombophilia on venous thromboembolism in children: a systematic review and metaanalysis of observational studies, Circulation. 2008;118(13):1373-82. https://doi.org/10.1161/CIRCULATIONAHA.108.789008.; Monagle P., Ignjatovic V., Savoia H. Hemostasis in neonates and children: pitfalls and dilemmas. Blood Rev. 2010;24(2):63-8. https://doi.org/10.1016/j.blre.2009.12.001.; Шабалов Н.П., Иванов Д.О., Шабалова Н.Н. Гемостаз в динамике первой недели жизни как отражение механизмов адаптации к внеутробной жизни новорожденного. Педиатрия. Журнал имени Г.Н. Сперанского. 2000;79(3):22.; Кольцова Е.М., Балашова Е.Н., Пантелеев М.А., Баландина А.Н. Лабораторные аспекты гемостаза новорожденных. Вопросы гематологии/ онкологии и иммунопатологии в педиатрии. 2018;17(4):100-13. https://doi.org/10.24287/1726-1708-2018-17-4-100-113.; Ignjatovic V., Pelkmans L., Kelchtermans H. et al. Differences in the mechanism of blood clot formation and nanostructure in infants and children compared with adults. Thromb Res. 2015;136(6):1303-9. https://doi.org/10.1016/j.thromres.2015.10.034.; Черкасова С.В. Гемостаз новорожденных. Практика педиатра. 2020;(1):49 -52.; Nowak-Gottl U., Limperger V., Kenet G. et al. Developmental hemostasis: a lifespan from neonates and pregnancy to the young and elderly adult in a European white population. Blood Cell Mol Dis. 2017;67:2-13. https://doi.org/10.1016/j.bcmd.2016.11.012.; Ignjatovic V. 30 years of developmental haemostasis: what have we learnt and how are we applying this knowledge. Thromb Res. 2018;172:188-9. https://doi.org/10.1016/j.thromres.2018.11.021.; Леонова Е.Ю., Синякин О.Ю. Особенности системы гемостаза у новорожденных детей. Охрана материнства и детства. 2016;(2):76-81.; Strauss T., Sidlik-Muskatel R., Kenet G. Developmental hemostasis: primary hemostasis and evaluation of platelet function in neonates. Semin Fetal Neonatal Med. 2011;16(6):301-4. https://doi.org/10.1016/j.siny.2011.07.001.; Wiedmeier S.E., Henry E., Sola-Visner M.C., Christensen R.D. Platelet reference ranges for neonates, defined using data from over 47,000 patients in a multihospital healthcare system. J Perinatol. 2009;29(2):130-6. https://doi.org/10.1038/jp.2008.14.; Strauss T., Elisha N., Ravid B. et al. Activity of Von Willebrand factor and levels of VWF-cleaving protease (ADAMTS13) in preterm and full-term neonates. Blood Cell Mol Dis. 2017;67:14-7. https://doi.org/10.1016/j.bcmd.2016.12.013.; van Ommen C.H., Sol J.J. Developmental hemostasis and management of central venous catheter thrombosis in neonates. Semin Thromb Hemost. 2016;42(7):752-9. https://doi.org/10.1055/s-0036-1592299.; Sirachainan N., Limrungsikul A., Chuansumrit A. et al. Incidences, risk factors and outcomes of neonatal thromboembolism. J Matern Fetal Neonatal Med. 2018;31(3):347-51. https://doi.org/10.1080/14767058.2017.1285892.; Marquez A., Shabanova V., Faustino E.V.S.; Northeast Pediatric Critical Care Research Consortium. Prediction of catheter-associated thrombosis in critically ill children. Pediatr Crit Care Med. 2016;17(11):e521-e528. https://doi.org/10.1097/PCC.0000000000000958.; Rupp M.E., Karnatak R. Intravascular catheter-related bloodstream infections. Infect Dis Clin North Am. 2018;32(4):765-87. https://doi.org/10.1016/j.idc.2018.06.002.; Thornburg C.D., Smith P.B., Smithwick M.L. et al. Association between thrombosis and bloodstream infection in neonates with peripherally inserted catheters. Thromb Res. 2008;122(6):782-5. https://doi.org/10.1016/j.thromres.2007.10.001.; Amankwah E.K., Atchison C.M., Arlikar S. et al. Risk factors for hospital-associated venous thromboembolism in the neonatal intensive care unit. Thromb Res. 2014;134(2):305-9. https://doi.org/10.1016/j.thromres.2014.05.036.; Andres O., Schulze H., Speer C.P. Platelets in neonates: central mediators in haemostasis, antimicrobial defence and inflammation. Thromb Haemost. 2015;113(1):3-12. https://doi.org/10.1160/TH14-05-0476.; Vorobev A., Makatsariya A., Bitsadze V. et al. Unusual thrombosis or pregnancy complications associated to ovarian cancers: two clinical cases. J Matern Fetal Neonatal Med. 2021;34(9):1430-4. https://doi.org/10.1080/14767058.2019.1638359.; Bhat R., Kumar R., Kwon S. et al. Risk factors for neonatal venous and arterial thromboembolism in the neonatal intensive care unit - a case control study. J Pediatr. 2018;195:28-32. https://doi.org/10.1016/j.jpeds.2017.12.015.; Kulkarni A.A., Osmond M., Bapir M. et al. The effect of labour on the coagulation system in the term neonate. Haemophilia. 2013;19(4):533-8. https://doi.org/10.1111/hae.12115.; Tuckuviene R., Christensen A.L., Helgested J. et al. Infant, obstetrical and maternal characteristics associated with thromboembolism in infancy: a nationwide population-based case-control study. Arch Dis Child Fetal Neonatal Ed. 2012;97(6):F417-22. https://doi.org/10.1136/archdischild-2011-300665.; Branchford B.R., Mourani P., Bajaj L et al. Risk factors for in-hospital venous thromboembolism in children: a case-control study employing diagnostic validation. Haematologica. 2012;97(4):509-15. https://doi.org/10.3324/haematol.2011.054775.; Motta M., Rodriguez-Perez C., Tincani A. et al. Neonates born from mothers with autoimmune disorders. Early Hum Dev. 2009;85(10 Suppl):S67-70. https://doi.org/10.1016/j.earlhumdev.2009.08.020.; van Ommen C.H., Nowak-Gottl U. Inherited thrombophilia in pediatric venous thromboembolic disease: why and who to test. Front Pediatr. 2017;5:50. https://doi.org/10.3389/fped.2017.00050.; Sharathkumar A.A., Mahajerin A., Heidt L. et al. Risk-prediction tool for identifying hospitalized children with a predisposition for development of venous thromboembolism: Peds-Clot clinical Decision Rule. J Thromb Haemost. 2012;10(7):1326-34. https://doi.org/10.1111/j.1538-7836.2012.04779.x.; Ovesen P.G., Jensen D.M., Damm P. et al. Maternal and neonatal outcomes in pregnancies complicated by gestational diabetes: a nationwide study. J Matern Fetal Neonatal Med. 2015;28(14):1720-4. https://doi.org/10.3109/14767058.2014.966677.; Makatsariya A., Bitsadze V., Khizroeva J. et al. Neonatal thrombosis. J Matern Fetal Neonatal Med. 2020 Mar 23:1-9. https://doi.org/10.1080/14767058.2020.1743668. [Online ahead of print].; Kristensen S.R., Kaehne M., Petersen N.E. Hemizygous antithrombindeficiency (Budapest III) in a newborn presenting with a thrombosis at birth. Br J Haematol. 2007;138(3):397-8. https://doi.org/10.1111/j.1365-2141.2007.06662.x.; Monagle P., Chan A.K., Goldenberg N.A. et al. Antithrombotic therapy in neonates and children: antithrombotic therapy and prevention of thrombosis, 9th ed: American College of Chest Physicians evidence-based clinical practice guidelines. Chest. 2012;141(Suppl 2):e737S-801S. https://doi.org/10.1378/chest.11-2308.; Limperger V., Klostermeier U.C., Kenet G. et al. Clinical and laboratory characteristics of children with venous thromboembolism and protein C-deficiency: an observational Israeli-German cohort study. Br J Haematol. 2014;167(3):385-93. https://doi.org/10.1111/bjh.13039.; Lee M.J., Kim K.M., Kim J.S. et al. Long-term survival of a child with homozygous protein C deficiency successfully treated with living donor liver transplantation. Pediatr Transplant. 2009;13(2):251-4. https://doi.org/10.1111/j.1399-3046.2008.00972.x.; Klostermeier U.C., Limperger V., Kenet G. et al. Role of protein S deficiency in children with venous thromboembolism. An observational international cohort study. Thromb Haemost. 2015;113(2):426-33. https://doi.org/10.1160/TH14-06-0533.; Жарков П.А. Влияние носительства полиморфизмов генов свертывающей системы крови и фолатного обмена на риск развития тромбозов у взрослых и детей. Вопросы практической педиатрии. 2012;7(5):26-32.; Arnaez J., Arca G., Martin-Ancel A., Garcia-Alix A. Coagulation factor V G1691A, factor II G20210A and methylenetetrahydrofolate reductase C677T gene mutations do not play a major role in symptomatic neonatal arterial ischaemic stroke. Br J Haematol. 2018;180(2):290-2. https://doi.org/10.1111/bjh.14308.; Kenet G., Lutkhoff L.K., Albisetti M. et al. Impact of thrombophilia on risk of arterial ischemic stroke or cerebral sinovenous thrombosis in neonates and children: a systematic review and meta-analysis of observational studies. Circulation. 2010;121(16):1838-47. https://doi.org/10.1161/CIRCULATIONAHA.109.913673.; Laugesaar R., Kahre T., Kolk A. et al. Factor V Leiden and prothrombin 20210G>A [corrected] mutation and paediatric ischaemic stroke: a casecontrol study and two meta-analyses. Acta Paediatr. 2010;99(8):1168-74. https://doi.org/10.1111/j.1651-2227.2010.01784.x.; Turebylu R., Salis R., Erbe R. et al. Genetic prothrombotic mutations are common in neonates but are not associated with umbilical catheter-associated thrombosis. J Perinatol. 2007;27(8):490-5. https://doi.org/10.1038/sj.jp.7211786.; Neshat-Vahid S., Pierce R., Hersey D. et al. Association of thrombophilia and catheter-associated thrombosis in children: a systematic review and meta-analysis. J Thromb Haemost. 2016;14(9):1749-58. https://doi.org/10.1111/jth.13388.; Mekinian A., Lachassinne E., Nicaise-Roland P. et al. European registry of babies born to mothers with antiphospholipid syndrome. Ann Rheum Dis. 2013;72(2):217-22. https://doi.org/10.1136/annrheumdis-2011-201167.; Berkun Y., Simchen M.J., Strauss T. et al. Antiphospholipid antibodies in neonates with stroke - a unique entity or variant of antiphospholipid syndrome? Lupus. 2014;23(10):986-93. https://doi.org/10.1177/0961203314531842.; Gordon O., Almagor Y., Fridler D. et al. De novo neonatal antiphospholipid syndrome: a case report and review of the literature. Semin Arthritis Rheum. 2014;44(2):241-5. https://doi.org/10.1016/j.semarthrit.2014.04.003.; Fujimura Y., Matsumoto M., Kokame K. et al. Pregnancy-induced thrombocytopenia and TTP, and the risk of fetal death, in Upshaw-Schulman syndrome: a series of 15 pregnancies in 9 genotyped patients. Br J Haematol. 2009;144(5):742-54. https://doi.org/10.1111/j.1365-2141.2008.07515.x.; Strauss T., Elisha N., Ravid B. et al. Activity of Von Willebrand factor and levels of VWF-cleaving protease (ADAMTS13) in preterm and full term neonates. Blood Cells Mol Dis. 2017;67:14-7. https://doi.org/10.1016/j.bcmd.2016.12.013.; Katneni U.K., Ibla J.C., Hunt R. et al. von Willebrand factor/ADAMTS-13 interactions at birth: implications for thrombosis in the neonatal period. J Thromb Haemost. 2019;17(3):429-40. https://doi.org/10.1111/jth.14374.; O'Brien S.H., Kulkarni R., Wallace A. et al. Multicenter dose-finding and efficacy and safety outcomes in neonates and children treated with dalteparin for acute venous thromboembolism. J Thromb Haemost. 2014;12(11):1822-5. https://doi.org/10.1111/jth.12716.; van Ommen C.H., van den Dool E.J., Peters M. Nadroparin therapy in pediatric patients with venous thromboembolic disease. J Pediatr Hematol Oncol. 2008;30(3):230-4. https://doi.org/10.1097/MPH.0b013e31816356f8.; Malowany J.I., Knoppert D.C., Chan A.K. et al. Enoxaparin use in the neonatal intensive care unit: experience over 8 years. Pharmacotherapy. 2007;27(9):1263-71. https://doi.org/10.1592/phco.27.9.1263.; Bauman M.E., Belletrutti M.J., Bajzar L.et al. Evaluation of enoxaparin dosing requirements in infants and children. Better dosing to achieve therapeuticlevels. Thromb Haemost. 2009;101(1):86-92.; Klaassen I.L.M., Sol J.J., Suijker M.H. et al. Are low-molecular-weight heparins safe and effective in children? A systematic review. Blood Rev. 2019;33:33-42. https://doi.org/10.1016/j.blre.2018.06.003.; Witmer C., Raffini L. Treatment of venous thromboembolism in pediatric patients. Blood. 2020;135(5):335-43. https://doi.org/10.1182/blood.2019001847.; Romantsik O., Bruschettini M., Zappettini S. et al. Heparin for the treatment of thrombosis in neonates. Cochrane Database Syst Rev. 2016;11(11):CD012185. https://doi.org/10.1002/14651858.CD012185.pub2.; Monagle P., Newall F. Management of thrombosis in children and neonates: practical use of anticoagulants in children. Hematology Am Soc Hematol Educ Program. 2018;2018(1):399-404. https://doi.org/10.1182/asheducation-2018.1.399.; https://www.gynecology.su/jour/article/view/1066

  16. 16

    Source: Obstetrics, Gynecology and Reproduction; Vol 15, No 6 (2021); 639-657 ; Акушерство, Гинекология и Репродукция; Vol 15, No 6 (2021); 639-657 ; 2500-3194 ; 2313-7347

    File Description: application/pdf

    Relation: https://www.gynecology.su/jour/article/view/1138/963; https://www.gynecology.su/jour/article/view/1138/983; Zhou F., Yu T., Du R. et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet. 2020;395(10229):1054–62. https://doi.org/10.1016/S0140-6736(20)30566-3.; Ackermann M., Verleden S.E., Kuehnel M. et al. Pulmonary vascular endothelialitis, thrombosis, and angiogenesis in Covid-19. N Engl J Med. 2020;383(2):120–8. https://doi.org/10.1056/NEJMoa2015432.; Cao W., Li T. COVID-19: towards understanding of pathogenesis. Cell Res. 2020;30(5):367–9. https://doi.org/10.1038/s41422-020-0327-4.; Zhang Y., Xiao M., Zhang S. et al. Coagulopathy and antiphospholipid antibodies in patients with Covid-19. N Engl J Med. 2020;382(17):e38. https://doi.org/10.1056/NEJMc2007575.; Beyrouti R., Adams M.E., Benjamin L. et al. Characteristics of ischaemic stroke associated with COVID-19. J Neurol Neurosurg Psychiatry. 2020;91(8):889–91. https://doi.org/10.1136/jnnp2020-323586.; George J.N., Nester C.M. Syndromes of thrombotic microangiopathy. N Engl J Med. 2014;371(7):654–66. https://doi.org/10.1056/NEJMra1312353.; Hovinga J.A.K., Vesely S.K., Terrell D.R. et al. Survival and relapse in patients with thrombotic thrombocytopenic purpura. Blood. 2010;115(8):1500–11; quiz 1662. https://doi.org/10.1182/blood-2009-09-243790.; Ridolfi R.L., Bell W.R. Thrombotic thrombocytopenic purpura: report of 25 cases and review of the literature. Medicine (Baltimore). 1981;60(6):413–28.; Moschcowitz E. Hyaline thrombosis of the terminal arterioles and capillaries: a hitherto undescribed disease. Proc NY Pathol Soc. 1924;24:21–24.; Singer K., Bornstein F.P., Wile S.A. Thrombotic thrombocytopenic purpura: hemorrhagic diathesis with generalized platelet thromboses. Blood. 1947;2(6):542–54.; Amorosi E.L., Ultmann J.E. Thrombotic thrombocytopenic purpura: report of 16 cases and review of the literature. Medicine. 1966;45(2):139–60.; Bukowski R.M., Hewlett J.S., Harris J.W. et al. Exchange transfusions in the treatment of thrombotic thrombocytopenic purpura. Semin Hematol. 1976;13(3):21932.; Bukowski R.M., King J.W., Hewlett J.S. Plasmapheresis in the treatment of thrombotic thrombocytopenic purpura. Blood. 1977;50(3):413–7.; Byrnes J.J., Khurana M. Treatment of thrombotic thrombocytopenic purpura with plasma. N Engl J Med. 1977;297(25):1386–9. https://doi.org/10.1056/NEJM197712222972507.; Moake J.L., Rudy C.K., Troll J.H. et al. Unusually large plasma factor VIII: von Willebrand factor multimers in chronic relapsing thrombotic thrombocytopenic purpura. N Engl J Med. 1982;307(23):1432–5. https://doi.org/10.1056/NEJM198212023072306.; Furlan M., Robles R., Lämmle B. Partial purification and characterization of a protease from human plasma cleaving von Willebrand factor to fragments produced by in vivo proteolysis. Blood. 1996;87(10):4223–32.; Furlan M., Robles R., Solenthaler M. et al. Deficient activity of von Willebrand factor–cleaving protease in chronic relapsing thrombotic thrombocytopenic purpura. Blood. 1997;89(9):3097–103.; Tsai H.M., Lian E.C. Antibodies to von Willebrand factor–cleaving protease in acute thrombotic thrombocytopenic purpura. N Engl J Med. 1998;339(22):1585–94. https://doi.org/10.1056/NEJM199811263392203.; Zheng X., Chung D., Takayama TK. et al. Structure of von Willebrand factor-cleaving protease (ADAMTS13), a metalloprotease involved in thrombotic thrombocytopenic purpura. J Biol Chem. 2001;276(44):41059–63. https://doi.org/10.1074/jbc.C100515200.; Levy G.G., Nichols W.C., Lian E.C. et al. Mutations in a member of the ADAMTS gene family cause thrombotic thrombocytopenic purpura. Nature. 2001;413(6855):488–94. https://doi.org/10.1038/35097008.; Scheiflinger F., Knöbl P., Trattner B. et al. Nonneutralizing IgM and IgG antibodies to von Willebrand factor–cleaving protease (ADAMTS-13) in a patient with thrombotic thrombocytopenic purpura. Blood. 2003;102(9):3241–3. https://doi.org/10.1182/blood-2003-05-1616.; Bianchi V., Robles R., Alberio L. et al. Von Willebrand factor–cleaving protease (ADAMTS13) in thrombocytopenic disorders: a severely deficient activity is specific for thrombotic thrombocytopenic purpura. Blood. 2002;100(2):710–3. https://doi.org/10.1182/blood2002-02-0344.; Pereira A., Mazzara R., Monteagudo J. et al. Thrombotic thrombocytopenic purpura/hemolytic uremic syndrome: a multivariate analysis of factors predicting the response to plasma exchange. Ann Hematol. 1995;70(6):319–23. https://doi.org/10.1007/BF01696619.; Picod A., Provôt F., Coppo P. Therapeutic plasma exchange in thrombotic thrombocytopenic purpura. Presse Med. 2019;48(11 Pt 2):319–27. https://doi.org/10.1016/j.lpm.2019.08.024.; Schulman I., Pierce M., Lukens A., Currimbhoy Z. Studies on thrombopoiesis. I. A factor in normal human plasma required for platelet production; chronic thrombocytopenia due to its deficiency. Blood. 1960;16:943–57.; Upshaw J.D. Congenital deficiency of a factor in normal plasma that reverses microangiopathic hemolysis and thrombocytopenia. N Engl J Med. 1978;298(24):1350–2. https://doi.org/10.1056/NEJM197806152982407.; Zheng X.L., Sadler J.E. Pathogenesis of thrombotic microangiopathies. Annu Rev Pathol. 2008;3:249–77. https://doi.org/10.1146/annurev.pathmechdis.3.121806.154311.; Miyata T., Kokame K., Matsumoto M., Fujimura Y. ADAMTS13 activity and genetic mutations in Japan. Haemostaseologie. 2013;33(2):131–7. https://doi.org/10.5482/HAMO-12-11-0017.; Furlan M., Lämmle B. Aetiology and pathogenesis of thrombotic thrombocytopenic purpura and haemolytic uraemic syndrome: the role of von Willebrand factor-cleaving protease. Best Pract Res Clin Haematol. 2001;14(2):437–54. https://doi.org/10.1053/beha.2001.0142.; Veyradier A., Meyer D., Loirat C. Desmopressin, an unexpected link between nocturnal enuresis and inherited thrombotic thrombocytopenic purpura (Upshaw–Schulman syndrome). J Thromb Haemost. 2006;4(3):700–1. https://doi.org/10.1111/j.1538-7836.2005.01768.x.; Loirat C., Girma J.-P., Desconclois C. et al. Thrombotic thrombocytopenic purpura related to severe ADAMTS13 deficiency in children. Pediatr Nephrol. 2009;24(1):19–29. https://doi.org/10.1007/s00467-008-0863-5.; Furlan M., Robles R., Morselli B. et al. Recovery and half-life of von Willebrand factorcleaving protease after plasma therapy in patients with thrombotic thrombocytopenic purpura. Thromb Haemost. 1999;81(1):8–13.; Rock G.A., Shumak K.H., Buskard N.A. et al. Comparison of plasma exchange with plasma infusion in the treatment of thrombotic thrombocytopenic purpura. Canadian Apheresis Study Group. N Engl J Med. 1991;325(6):393–7. https://doi.org/10.1056/NEJM199108083250604.; Scully M., Hunt B.J., Benjamin S. et al. Guidelines on the diagnosis and management of thrombotic thrombocytopenic purpura and other thrombotic microangiopathies. Br J Haematol. 2012;158(3):323–35. https://doi.org/10.1111/j.1365-2141.2012.09167.x.; Scully M., Knöbl P., Kentouche K. et al. Recombinant ADAMTS-13: first-in-human pharmacokinetics and safety in congenital thrombotic thrombocytopenic purpura. Blood. 2017;130(19):2055–63. https://doi.org/10.1182/blood-2017-06-788026.; Plaimauer B., Hovinga J.A.K., Juno C. et al. Recombinant ADAMTS13 normalizes von Willebrand factor‐cleaving activity in plasma of acquired TTP patients by overriding inhibitory antibodies. J Thromb Haemost. 2011;9(5):936–44. https://doi.org/10.1111/j.1538-7836.2011.04224.x.; Gasser C., Gautier E., Steck A. et al. Hemolytic-uremic syndrome: bilateral necrosis of the renal cortex in acute acquired hemolytic anemia. Schweiz Med Wochenschr. 1955;85(38–39):905–9. [Article in German].; Kiibel M., Barnard P. The haemolytic-uraemia syndrome: a survey in Southern Africa. S Afr Med J. 1968;42(27):692–8.; Karmali M., Petric M., Steele B., Lim C. Sporadic cases of haemolytic-uraemic syndrome associated with faecal cytotoxin and cytotoxin-producing Escherichia coli in stools. Lancet. 1983;321(8325):619–20. https://doi.org/10.1016/s0140-6736(83)91795-6.; O'Brien A., Lively T., Chen M. et al. Escherichia coli 0157:H7 strains associated with haemorrhagic colitis in the United States produce a Shigella dysenteriae 1 (Shiga) like cytotoxin. Lancet. 1983;1(8326 Pt 1):702. https://doi.org/10.1016/s0140-6736(83)91987-6.; Riley L.W., Remis R.S., Helgerson S.D. et al. Hemorrhagic colitis associated with a rare Escherichia coli serotype. N Engl J Med. 1983;308(12):681–5. https://doi.org/10.1056/NEJM198303243081203.; Tarr P.I., Gordon C.A., Chandler W.L. Shiga-toxin-producing Escherichia coli and haemolytic uraemic syndrome. Lancet. 2005;365(9464):1073–86. https://doi.org/10.1016/S0140-6736(05)71144-2.; Proesmans W. The role of coagulation and fibrinolysis in the pathogenesis of diarrheaassociated hemolytic uremic syndrome. Semin Thromb Hemost. 2001;27(3):201–5. https://doi.org/10.1055/s-2001-15249.; Hosler G.A., Cusumano A.M., Hutchins G.M. Thrombotic thrombocytopenic purpura and hemolytic uremic syndrome are distinct pathologic entities: a review of 56 autopsy cases. Arch Pathol Lab Med. 2003;127(7):834–9. https://doi.org/10.5858/2003-127-834-TTPAHU.; Inward C.D., Howie A.J., Fitzpatrick M.M. et al. Renal histopathology in fatal cases of diarrhoea-associated haemolytic uraemic syndrome. British Association for Paediatric Nephrology. Pediatr Nephrol. 1997;11(5):556–9. https://doi.org/10.1007/s004670050337.; Menne J., Nitschke M., Stingele R. et al. Validation of treatment strategies for enterohaemorrhagic Escherichia coli O104: H4 induced haemolytic uraemic syndrome: case-control study. BMJ. 2012;345;e4565. https://doi.org/10.1136/bmj.e4565.; Barnard P., Kibel M. The haemolytic-uraemic syndrome of infancy and childhood. A report of eleven cases. Cent Afr J Med. 1965;11:4–11.; Kaplan B.S., Chesney R.W., Drummond K.N. Hemolytic uremic syndrome in families. N Engl J Med. 1975;292(21):1090–3. https://doi.org/10.1056/NEJM197505222922102.; Kaplan B.S. Hemolytic uremic syndrome with recurrent episodes: an important subset. Clin Nephrol. 1977;8(6):495–8.; Thompson R., Winterborn M. Hypocomplementaemia due to a genetic deficiency of beta 1H globulin. Clin Exp Immunol. 1981;46(1):110. https://doi.org/; Warwicker P., Goodship T.H., Donne R.L. et al. Genetic studies into inherited and sporadic hemolytic uremic syndrome. Kidney Int. 1998;53(4):836–44. https://doi.org/10.1111/j.1523-1755.1998.00824.x.; Legendre C., Licht C., Muus P. et al. Terminal complement inhibitor eculizumab in atypical hemolytic–uremic syndrome. N Engl J Med. 2013;368(23):2169–81. https://doi.org/10.1056/NEJMoa1208981.; Noris M., Caprioli J., Bresin E. et al. Relative role of genetic complement abnormalities in sporadic and familial aHUS and their impact on clinical phenotype. Clin J Am Soc Nephrol. 2010;5(10):1844–59. https://doi.org/10.2215/CJN.02210310.; Lemaire M., Frémeaux-Bacchi V., Schaefer F. et al. Recessive mutations in DGKE cause atypical hemolytic-uremic syndrome. Nat Genet. 2013;45(5):531–6. https://doi.org/10.1038/ng.2590.; Fremeaux-Bacchi V., Fakhouri F., Garnier A. et al. Genetics and outcome of atypical hemolytic uremic syndrome: a nationwide French series comparing children and adults. Clin J Am Soc Nephrol. 2013;8(4):554–62. https://doi.org/10.2215/CJN.04760512.; Fakhouri F., Roumenina L., Provot F. et al. Pregnancy-associated hemolytic uremic syndrome revisited in the era of complement gene mutations. J Am Soc Nephrol. 2010;21(5):859–67. https://doi.org/10.1681/ASN.2009070706.; Taylor C.M., Machin S., Wigmore S.J., Goodship T.H.; a working party from the Renal Association, the British Committee for Standards in Haematology and the British Transplantation Society. Clinical practice guidelines for the management of atypical haemolytic uraemic syndrome in the United Kingdom. Br J Haematol. 2010;148(1):37–47. https://doi.org/10.1111/j.1365-2141.2009.07916.x.; Noris M., Remuzzi G. Managing and preventing atypical hemolytic uremic syndrome recurrence after kidney transplantation. Curr Opin Nephrol Hypertens. 2013;22(6):704–12. https://doi.org/10.1097/MNH.0b013e328365b3fe.; Sack G.H., Levin J., Bell W.R. Trousseau's syndrome and other manifestations of chronic disseminated coagulopathy in patients with neoplasms: clinical, pathophysiologic, and therapeutic features. Medicine (Baltimore). 1977;56(1):1–37.; Elliott M.A., Letendre L., Gastineau D.A. et al. Cancer‐associated microangiopathic hemolytic anemia with thrombocytopenia: an important diagnostic consideration. Eur J Haematol. 2010;85(1):43–50. https://doi.org/10.1111/j.1600-0609.2010.01448.x.; Domingo-Claros A., Larriba I., Rozman M. et al. Acute erythroid neoplastic proliferations. A biological study based on 62 patients. Haematologica. 2002;87(2):148–53.; Zheng X.L., Kaufman R.M., Goodnough L.T., Sadler J.E. Effect of plasma exchange on plasma ADAMTS13 metalloprotease activity, inhibitor level, and clinical outcome in patients with idiopathic and nonidiopathic thrombotic thrombocytopenic purpura. Blood. 2004;103(11):4043–9. https://doi.org/10.1182/blood-2003-11-4035.; Hyseni A., Kemperman H., de Lange D.W. et al. Active von Willebrand factor predicts 28-day mortality in patients with systemic inflammatory response syndrome. Blood. 2014;123(14):2153–6. https://doi.org/10.1182/blood-2013-08-508093.; Kerchberger V.E., Ware L.B. The role of circulating cell-free hemoglobin in sepsisassociated acute kidney injury. Semin Nephrol. 2020;40(2):148–59. https://doi.org/10.1016/j.semnephrol.2020.01.006.; Martin K., Borgel D., Lerolle N. et al. Decreased ADAMTS-13 (A disintegrin-like and metalloprotease with thrombospondin type 1 repeats) is associated with a poor prognosis in sepsisinduced organ failure. Crit Care Med. 2007;35(10):2375–82. https://doi.org/10.1097/01.ccm.0000284508.05247.b3.; Cao W., Krishnaswamy S., Camire R.M. et al. Factor VIII accelerates proteolytic cleavage of von Willebrand factor by ADAMTS13. Proc Natl Acad Sci U S A. 2008;105(21):7416–21. https://doi.org/10.1073/pnas.0801735105.; Mikes B., Sinkovits G., Farkas P. et al. Elevated plasma neutrophil elastase concentration is associated with disease activity in patients with thrombotic thrombocytopenic purpura. Thromb Res. 2014;133(4):616–21. https://doi.org/10.1016/j.thromres.2014.01.034.; Crawley J.T., Lam J.K., Rance J.B. et al. Proteolytic inactivation of ADAMTS13 by thrombin and plasmin. Blood. 2005;105(3):1085–93. https://doi.org/10.1182/blood-2004-03-1101.; Chen J., Fu X., Wang Y. et al. Oxidative modification of von Willebrand factor by neutrophil oxidants inhibits its cleavage by ADAMTS13. Blood. 2010;115(3):706–12. https://doi.org/10.1182/blood-2009-03-213967.; Lopez-Dee Z., Pidcock K., Gutierrez L.S. Thrombospondin-1: multiple paths to inflammation. Mediators Inflamm. 2011;2011. https://doi.org/10.1155/2011/296069.; Studt J.-D., Hovinga J.A.K., Antoine G. et al. Fatal congenital thrombotic thrombocytopenic purpura with apparent ADAMTS13 inhibitor: in vitro inhibition of ADAMTS13 activity by hemoglobin. Blood. 2005;105(2):542–4. https://doi.org/10.1182/blood-2004-06-2096.; Tersteeg C., de Maat S., De Meyer S.F. et al. Plasmin cleavage of von Willebrand factor as an emergency bypass for ADAMTS13 deficiency in thrombotic microangiopathy. Circulation. 2014;129(12):1320–31. https://doi.org/10.1161/CIRCULATIONAHA.113.006727.; Ono T., Mimuro J., Madoiwa S. et al. Severe secondary deficiency of von Willebrand factor–cleaving protease (ADAMTS13) in patients with sepsis-induced disseminated intravascular coagulation: its correlation with development of renal failure. Blood. 2006;107(2):528–34. https://doi.org/10.1182/blood-2005-03-1087; Kopic A.N., Hollriegl W., Plaimauer B.et al. Subcutaneous administration of ADAMTS13. US Patent App. 16/567,048; 2020.; Rossio R., Lotta L.A., Pontiggia S. et al. A novel CD46 mutation in a patient with microangiopathy clinically resembling thrombotic thrombocytopenic purpura and normal ADAMTS13 activity. Haematologica. 2015;100(3):e87–9. https://doi.org/10.3324/haematol.2014.111062.; Gianviti A., Tozzi A.E., De Petris L. et al. Risk factors for poor renal prognosis in children with hemolytic uremic syndrome. Pediatr Nephrol. 2003;18(12):1229–35. https://doi.org/10.1007/s00467-003-1262-6.; Joseph A., Cointe A., Mariani Kurkdjian P. et al. Shiga toxin-associated hemolytic uremic syndrome: a narrative review. Toxins (Basel). 2020;12(2):67. https://doi.org/10.3390/toxins12020067.; Magro C., Mulvey J.J., Berlin D. et al. Complement associated microvascular injury and thrombosis in the pathogenesis of severe COVID-19 infection: a report of five cases. Transl Res. 2020;220:1–13. https://doi.org/10.1016/j.trsl.2020.04.007.; Bilgin E., Ertenli A.I. Proposal of a new nomenclature for the underlying pathogenetic mechanism of severe coronavirus disease-19: “inflammatory thrombosis with immune endotheliitis – ITIE”. Rheumatol Int. 2021;41(3):679–80. https://doi.org/10.1007/s00296-020-04768-1.; Meizlish M.L., Pine A.B., Goshua G. et al. Circulating markers of angiogenesis and endotheliopathy in COVID-19. medRxiv. 2020;2020.06.29.20140376. https://doi.org/10.1101/2020.06.29.20140376. Preprint.; Teuwen L.-A., Geldhof V., Pasut A., Carmeliet P. COVID-19: the vasculature unleashed. Nat Rev Immunol. 2020;20(7):389–91. https://doi.org/10.1038/s41577-020-0343-0.; Mohamed M.M., Lukitsch I., Torres-Ortiz A.E. et al. Acute kidney injury associated with coronavirus disease 2019 in urban New Orleans. Kidney360. 2020;1:614–22. https://doi.org/10.34067/KID.0002652020.; Su H., Yang M., Wan C. et al. Renal histopathological analysis of 26 postmortem findings of patients with COVID-19 in China. Kidney Int. 2020;98(1):219–27. https://doi.org/10.1016/j.kint.2020.04.003; Fox S.E., Akmatbekov A., Harbert J.L. et al. Pulmonary and cardiac pathology in African American patients with COVID-19: an autopsy series from New Orleans. Lancet Respir Med. 2020;8(7):681–6. https://doi.org/10.1016/S2213-2600(20)30243-5.; Carsana L., Sonzogni A., Nasr A. et al. Pulmonary post-mortem findings in a series of COVID-19 cases from northern Italy: a two-centre descriptive study. Lancet Infec Dis. 2020;20(10):1135–40. https://doi.org/10.1016/S1473-3099(20)30434-5.; Rapkiewicz A.V., Mai X., Carsons S.E. et al. Megakaryocytes and platelet-fibrin thrombi characterize multi-organ thrombosis at autopsy in COVID-19: a case series. EClinicalMedicine. 2020;24:100434. https://doi.org/10.1016/j.eclinm.2020.100434.; Menter T., Haslbauer J.D., Nienhold R. et al. Postmortem examination of COVID‐19 patients reveals diffuse alveolar damage with severe capillary congestion and variegated findings in lungs and other organs suggesting vascular dysfunction. Histopathology. 2020;77(2):198–209. https://doi.org/10.1111/his.14134.; Jhaveri K.D., Meir L.R., Chang B.S.F. et al. Thrombotic microangiopathy in a patient with COVID-19. Kidney Int. 2020;98(2):509–12. https://doi.org/10.1016/j.kint.2020.05.025.; Sharma P., Uppal N.N., Wanchoo R. et al. COVID-19–associated kidney injury: a case series of kidney biopsy findings. J Am Soc Nephrol. 2020;31(9):1948–58. https://doi.org/10.1681/ASN.2020050699.; da Silva R.L. Viral-associated thrombotic microangiopathies. Hematol Oncol Stem Cell Ther. 2011;4(2):51–9. https://doi.org/10.5144/1658-3876.2011.51.; Hindilerden F., Yonal-Hindilerden I., Akar E., Kart-Yasar K. Covid-19 associated autoimmune thrombotic thrombocytopenic purpura: report of a case. Thromb Res. 2020;195:136–8. https://doi.org/10.1016/j.thromres.2020.07.005.; Capecchi M., Mocellin C., Abbruzzese C. et al. Dramatic presentation of acquired thombotic thrombocytopenic purpura associated with COVID-19. Haematologica. 2020;105(10):e540. https://doi.org/10.3324/haematol.2020.262345.; Varga Z., Flammer A.J., Steiger P. et al. Endothelial cell infection and endotheliitis in COVID-19. Lancet. 2020;395(10234):1417–18. https://doi.org/10.1016/S0140-6736(20)30937-5.; Nicholson P., Alshafai L., Krings T. Neuroimaging findings in patients with COVID-19. AJNR Am J Neuroradiol. 2020;41(8):1380–3. https://doi.org/10.3174/ajnr.A6630.; Bentley M.J., Lehman C.M., Blaylock R.C. et al. The utility of patient characteristics in predicting severe ADAMTS13 deficiency and response to plasma exchange. Transfusion. 2010;50(8):1654–64. https://doi.org/10.1111/j.1537-2995.2010.02653.x.; Coppo P., Schwarzinger M., Buffet M. et al. Predictive features of severe acquired ADAMTS13 deficiency in idiopathic thrombotic microangiopathies: the French TMA reference center experience. PLoS One. 2010;5(4):e10208. https://doi.org/10.1371/journal.pone.0010208.; Bendapudi P.K., Hurwitz S., Fry A. et al. Derivation and external validation of the PLASMIC score for rapid assessment of adults with thrombotic microangiopathies: a cohort study. Lancet Haematol. 2017;4(4):e157–e164. https://doi.org/10.1016/S2352-3026(17)30026-1.; Brocklebank V., Wood K.M., Kavanagh D. Thrombotic microangiopathy and the kidney. Clin J Am Soc Nephrol. 2018;13(2):300–17. https://doi.org/10.2215/CJN.00620117.; Sciascia S., Yazdany J., Dall'Era M. et al. Anticoagulation in patients with concomitant lupus nephritis and thrombotic microangiopathy: a multicentre cohort study. Ann Rheum Dis. 2018;78(7):1014–6. https://doi.org/10.1136/annrheumdis-2018-214559.; Go R.S., Winters J.L., Leung N. et al. Thrombotic microangiopathy care pathway: a consensus statement for the Mayo clinic complement alternative Pathway-Thrombotic microangiopathy (CAP-TMA) Disease-Oriented group. Mayo Clin Proc. 2016;91(9):1189–211. https://doi.org/10.1016/j.mayocp.2016.05.015.; Rico-Mesa J.S., Rosas D., Ahmadian-Tehrani A. et al. The role of anticoagulation in COVID-19-induced hypercoagulability. Curr Cardiol Rep. 2020;22(7):53. https://doi.org/10.1007/s11886-020-01328-8.; Bell W.R., Braine H.G., Ness P.M., Kickler T.S. Improved survival in thrombotic thrombocytopenic purpura–hemolytic uremic syndrome: clinical experience in 108 patients. N Engl J Med. 1991;325(6):398–403. https://doi.org/10.1056/NEJM199108083250605.; Dane K., Chaturvedi S. Beyond plasma exchange: novel therapies for thrombotic thrombocytopenic purpura. Hematology Am Soc Hematol Educ Program. 2018;2018(1):539–47. https://doi.org/10.1182/asheducation-2018.1.539.; Zielińska K.A., Van Moortel L., Opdenakker G. et al. Endothelial response to glucocorticoids in inflammatory diseases. Front Immunol. 2016;7:592. https://doi.org/10.3389/fimmu.2016.00592.; Weiler J., Packard B. Methylprednisolone inhibits the alternative and amplification pathways of complement. Infect Immun. 1982;38(1):122–6. https://doi.org/10.1128/iai.38.1.122-126.1982.; Limbourg F.P., Huang Z., Plumier J.-C. et al. Rapid nontranscriptional activation of endothelial nitric oxide synthase mediates increased cerebral blood flow and stroke protection by corticosteroids. J Clin Invest. 2002;110(11):1729–38. https://doi.org/10.1172/JCI15481.; Ruan Q., Yang K., Wang W. et al. Clinical predictors of mortality due to COVID-19 based on an analysis of data of 150 patients from Wuhan, China. Intensive Care Med. 2020;46(5):846–8. https://doi.org/10.1007/s00134-020-05991-x.; RECOVERY Collaborative Group; Horby P., Lim W.S., Emberson J.R. et al. Dexamethasone in hospitalized patients with Covid-19. N Engl J Med. 2021;384(8):693–704. https://doi.org/10.1056/NEJMoa2021436.; Corral-Gudino L., Bahamonde A., Arnaiz-Revillas F. et al. GLUCOCOVID: a controlled trial of methylprednisolone in adults hospitalized with COVID-19 pneumonia. medRxiv. June 18, 2020. Preprint. https://doi.org/10.1101/2020.06.17.20133579.; Zaki A.M., van Boheemen S., Bestebroer T.M. et al. Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia. N Engl J Med. 2012;367(19):1814–20. https://doi.org/10.1056/NEJMoa1211721.; Ohta R., Torii Y., Imai M. et al. Serum concentrations of complement anaphylatoxins and proinflammatory mediators in patients with 2009 H1N1 influenza. Microbiol Immunol. 2011;55(3):191–8. https://doi.org/10.1111/j.1348-0421.2011.00309.x.; Jiang Y., Zhao G., Song N. et al. Blockade of the C5a–C5aR axis alleviates lung damage in hDPP4-transgenic mice infected with MERS-CoV. Emerg Microbes Infect. 2018;7(1):1–12. https://doi.org/10.1038/s41426-018-0063-8.; O'Brien K.B., Morrison T.E., Dundore D.Y. et al. A protective role for complement C3 protein during pandemic 2009 H1N1 and H5N1 influenza A virus infection. PLoS One. 2011;6(3):e17377. https://doi.org/10.1371/journal.pone.0017377.; Sun S., Zhao G., Liu C. et al. Inhibition of complement activation alleviates acute lung injury induced by highly pathogenic avian influenza H5N1 virus infection. Am J Respir Cell Mol Biol. 2013;49(2):221–30. https://doi.org/10.1165/rcmb.2012-0428OC.; Gralinski L.E., Sheahan T.P., Morrison T.E. et al. Complement activation contributes to severe acute respiratory syndrome coronavirus pathogenesis. mBio. 2018;9(5):e01753–18. https://doi.org/10.1128/mBio.01753-18.; Stoermer K.A., Morrison T.E. Complement and viral pathogenesis. Virology. 2011;411(2):362–73. https://doi.org/10.1016/j.virol.2010.12.045.; Diurno F., Numis F., Porta G. et al. Eculizumab treatment in patients with COVID-19: preliminary results from real life ASL Napoli 2 Nord experience. Eur Rev Med Pharmacol Sci. 2020;24(7):4040–7. https://doi.org/10.26355/eurrev_202004_20875.; Home. ClinicalTrials.gov. Available at: https://clinicaltrials.gov.; Mastaglio S., Ruggeri A., Risitano A.M. et al. The first case of COVID-19 treated with the complement C3 inhibitor AMY-101. Clin Immunol. 2020;215:108450. https://doi.org/10.1016/j.clim.2020.108450.; Winters J.L. Plasma exchange in thrombotic microangiopathies (TMAs) other than thrombotic thrombocytopenic purpura (TTP). Hematology Am Soc Hematol Educ Program. 2017;2017(1):632–8. https://doi.org/10.1182/asheducation-2017.1.632.; Albiol N., Awol R., Martino R. Autoimmune thrombotic thrombocytopenic purpura (TTP) associated with COVID-19. Ann Hematol. 2020;99(7):1673–4. https://doi.org/10.1007/s00277-020-04097-0.; Khamis F., Al-Zakwani I., Al Hashmi S. et al. Therapeutic plasma exchange in adults with severe COVID-19 infection. Int J Infect Dis. 2020;99:214–8. https://doi.org/10.1016/j.ijid.2020.06.064.; Gucyetmez B., Atalan H.K., Sertdemir I. et al. Therapeutic plasma exchange in patients with COVID-19 pneumonia in intensive care unit: a retrospective study. Crit Care. 2020;24(1):492. https://doi.org/10.1186/s13054-020-03215-8.; Wang Y., Huo P., Dai R. et al. Convalescent plasma may be a possible treatment for COVID-19: a systematic review. Int Immunopharmacol. 2021;91:107262. https://doi.org/10.1016/j.intimp.2020.107262.; Casadevall A., Joyner M.J., Pirofski L.-A. A randomized trial of convalescent plasma for COVID-19 – potentially hopeful signals. JAMA. 2020;324(5):455–7. https://doi.org/10.1001/jama.2020.10218.; Rojas M., Rodríguez Y., Monsalve D.M. et al. Convalescent plasma in Covid-19: Possible mechanisms of action. Autoimmun Rev. 2020;19(7):102554. https://doi.org/10.1016/j.autrev.2020.102554.; Guilpain P., Le Bihan C., Foulongne V. et al. Rituximab for granulomatosis with polyangiitis in the pandemic of covid-19: lessons from a case with severe pneumonia. Ann Rheum Dis. 2021;80(1):e10. https://doi.org/10.1136/annrheumdis-2020-217549.; Callewaert F., Roodt J., Ulrichts H. et al. Evaluation of efficacy and safety of the anti-VWF Nanobody ALX-0681 in a preclinical baboon model of acquired thrombotic thrombocytopenic purpura. Blood. 2012;120(17):3603–10. https://doi.org/10.1182/blood-2012-04-420943.; Scully M., Cataland S.R., Peyvandi F. et al. Caplacizumab treatment for acquired thrombotic thrombocytopenic purpura. N Engl J Med. 2019;380(4):335–46. https://doi.org/10.1056/NEJMoa1806311.; https://www.gynecology.su/jour/article/view/1138

  17. 17

    Source: Obstetrics, Gynecology and Reproduction; Vol 15, No 4 (2021); 335-350 ; Акушерство, Гинекология и Репродукция; Vol 15, No 4 (2021); 335-350 ; 2500-3194 ; 2313-7347

    File Description: application/pdf

    Relation: https://www.gynecology.su/jour/article/view/1067/930; https://www.gynecology.su/jour/article/view/1067/931; Antoniak S. The coagulation system in host defense. Res Pract Thromb Haemost. 2018;2(3):549-57. https://doi.org/10.1002/rth2.12109.; Engelmann B., Massberg S. Thrombosis as an intravascular effector of innate immunity. Nat Rev Immunol. 2013;13(1):34—45. https://doi.org/10.1038/nri3345.; Jenne C.N., Kubes P. Platelets in inflammation and infection. Platelets. 2015;26(4):286-92. https://doi.org/10.3109/09537104.2015.1010441.; Rendu F., Brohard-Bohn B. The platelet release reaction: granules' constituents, secretion and functions. Platelets. 2001;12(5):261-73. https://doi.org/10.1080/09537100120068170.; Kenny E.F., Herzig A., Kruger R. et al. Diverse stimuli engage different neutrophil extracellular trap pathways. Elife. 2017;6:e24437. https://doi.org/10.7554/eLife.24437.; Brinkmann V., Reichard U., Goosmann C. et al. Neutrophil extracellular traps kill bacteria. Science. 2004;303(5663):1532-5. https://doi.org/10.1126/science.1092385.; Metchnikoff E. Immunity in infective diseases. Cambridge: University Press, 1907.; Ehrlich P. Methodologische beitrage zur physiologie und pathologie der verschiedenen formen der leukocyten. The Collected Papers of Paul Ehrlich: Elsevier, 2013. 124-9.; Fuchs T.A., Abed U., Goosmann C. et al. Novel cell death program leads to neutrophil extracellular traps. J Cell Biol. 2007;176(2):231-41. https://doi.org/10.1083/jcb.200606027.; Martinod K., Wagner D.D. Thrombosis: tangled up in NETs. Blood. 2014;123(18):2768-76. https://doi.org/10.1182/blood-2013-10-463646.; Budnik I., Brill A. Immune factors in deep vein thrombosis initiation. Trends Immunol. 2018;39(8):610-23. https://doi.org/10.1016/j.it.2018.04.010.; Brill A., Fuchs T., Savchenko A. et al. Neutrophil extracellular traps promote deep vein thrombosis in mice. J Thromb Haemost. 2012;10(1):136-44. https://doi.org/10.1111/j.1538-7836.2011.04544.x.; Darbousset R., Thomas G.M., Mezouar S. et al. Tissue factor-positive neutrophils bind to injured endothelial wall and initiate thrombus formation. Blood. 2012;120(10):2133-43. https://doi.org/10.1182/blood-2012-06-437772.; Savchenko A., Martinod K., Seidman M. et al. Neutrophil extracellular traps form predominantly during the organizing stage of human venous thromboembolism development. J Thromb Haemost. 2014;12(6):860-70. https://doi.org/10.1111/jth.12571.; Mangold A., Alias S., Scherz T. et al. Coronary neutrophil extracellular trap burden and deoxyribonuclease activity in ST-elevation acute coronary syndrome are predictors of ST-segment resolution and infarct size. Circ Res. 2015;116(7):1182-92. https://doi.org/10.1161/CIRCRESAHA.116.304944.; Ducroux C., Di Meglio L., Loyau S. et al. Thrombus neutrophil extracellular traps content impair tPA-induced thrombolysis in acute ischemic stroke. Stroke. 2018;49(3):754-7. https://doi.org/10.1161/STROKEAHA.117.019896.; Farkas A.Z., Farkas V.J., Gubucz I. et al. Neutrophil extracellular traps in thrombi retrieved during interventional treatment of ischemic arterial diseases. Thromb Res. 2019;175:46-52. https://doi.org/10.1016/j.thromres.2019.01.006.; Abrams S.T., Zhang N., Manson J. et al. Circulating histones are mediators of trauma-associated lung injury. Am J Respir Crit Care Med. 2013;187(2):160-9. https://doi.org/10.1164/rccm.201206-1037OC.; Garcia-Gimenez J., Roma-Mateo C., Carbonell N. et al. A new mass spectrometry-based method for the quantification of histones in plasma from septic shock patients. Sci Rep. 2017;7(1):10643. https://doi.org/10.1038/s41598-017-10830-z.; Alhamdi Y., Abrams S.T., Cheng Z. et al. Circulating histones are major mediators of cardiac injury in patients with sepsis. Crit Care Med. 2015;43(10):2094-103. https://doi.org/10.1097/CCM.0000000000001162.; Thalin C., Hisada Y., Lundstrom S. et al. Neutrophil extracellular traps: villains and targets in arterial, venous, and cancer-associated thrombosis. Arterioscler Thromb Vasc Biol. 2019;39(9):1724-38. https://doi.org/10.1161/ATVBAHA.119.312463.; Laridan E., Martinod K., De Meyer S.F. Neutrophil extracellular traps in arterial and venous thrombosis. Semin Thromb Hemost. 2019;45(1):86-93. https://doi.org/10.1055/s-0038-167704.; Gould T., Lysov Z., Liaw P. Extracellular DNA and histones: double-edged swords in immunothrombosis. J Thromb Haemost. 2015;(13 Suppl 1):S82-91. https://doi.org/10.1111/jth.12977.; Jimenez-Alcazar M., Napirei M., Panda R. et al. Impaired DN ase1-mediated degradation of neutrophil extracellular traps is associated with acute thrombotic microangiopathies. J Thromb Haemost. 2015;13(5):732-42. https://doi.org/10.1111/jth.12796.; Fuchs T.A., Brill A., Duerschmied D. et al. Extracellular DNA traps promote thrombosis. Proc Natl Acad Sci U S A. 2010;107(36):15880-5. https://doi.org/10.1073/pnas.1005743107.; Ley K., Laudanna C., Cybulsky M.I., Nourshargh S. Getting to the site of inflammation: the leukocyte adhesion cascade updated. Nat Rev Immunol. 2007;7(9):678-89. https://doi.org/10.1038/nri2156.; Yago T., Liu Z., Ahamed .J, McEver R.P. Cooperative PSGL-1 and CXCR2 signaling in neutrophils promotes deep vein thrombosis in mice. Blood. 2018;132(13):1426-37. https://doi.org/10.1182/blood-2018-05-850859.; Palabrica T., Lobb R., Furie B.C. et al. Leukocyte accumulation promoting fibrin deposition is mediated in vivo by P-selectin on adherent platelets. Nature. 1992;359(6398):848-51. https://doi.org/10.1038/359848a0.; Wakefield T.W., Myers D.D., Henke P.K. Role of selectins and fibrinolysis in VTE. Thromb Res. 2009;123(Suppl 4):S35-40. https://doi.org/10.1016/S0049-3848(09)70141-0.; Ataga K.I., Kutlar A., Kanter J. et al. Crizanlizumab for the prevention of pain crises in sickle cell disease. N Engl J Med. 2017;376(5):429-39. https://doi.org/10.1056/NEJMoa1611770.; Hakkim A., Fuchs T.A., Martinez N.E. et al. Activation of the Raf-MEK-ERK pathway is required for neutrophil extracellular trap formation. Nat Chem Biol. 2011;7(2):75-7. https://doi.org/10.1038/nchembio.496.; Bianchi M., Hakkim A., Brinkmann V. et al. Restoration of NET formation by gene therapy in CGD controls aspergillosis. Blood. 2009;114(13):2619-22. https://doi.org/10.1182/blood-2009-05-221606.; Naudin C., Burillo E., Blankenberg S. et al. Factor XII contact activation. Semin Thromb Hemost. 2017;43(8):814-26. https://doi.org/10.1055/s-0036-1598003.; Delabranche X., Helms J., Meziani F. Immunohaemostasis: a new view on haemostasis during sepsis. Ann Intensive Care. 2017;7(1):1—14. https://doi.org/10.1186/s13613-017-0339-5.; Semeraro F., Ammollo C.T., Morrissey J.H. et al. Extracellular histones promote thrombin generation through platelet-dependent mechanisms: involvement of platelet TLR2 and TLR4. Blood. 2011;118(7):1952—61. https://doi.org/10.1182/blood-2011-03-343061.; Vu T.T., Leslie B.A., Stafford A.R. et al. Histidine-rich glycoprotein binds DNA and RNA and attenuates their capacity to activate the intrinsic coagulation pathway. Thromb Haemost. 2016;115(1):89—98. https://doi.org/10.1160/TH15-04-033.; Noubouossie D.F., Whelihan M.F., Yu Y.-B. et al. In vitro activation of coagulation by human neutrophil DNA and histone proteins but not neutrophil extracellular traps. Blood. 2017;129(8):1021—9. https://doi.org/10.1182/blood-2016-06-722298.; Urban C.F., Ermert D., Schmid M. et al. Neutrophil extracellular traps contain calprotectin, a cytosolic protein complex involved in host defense against Candida albicans. PLoS Pathog. 2009;5(10):e1000639. https://doi.org/10.1371/journal.ppat.1000639.; Chen R., Kang R., Fan X., Tang D. Release and activity of histone in diseases. Cell Death Dis. 2014;5(8):e1370. https://doi.org/10.1038/cddis.2014.337; Qi H., Yang S., Zhang L. Neutrophil extracellular traps and endothelial dysfunction in atherosclerosis and thrombosis. Front Immunol. 2017;8:928. https://doi.org/10.3389/fimmu.2017.00928.; Xu J., Zhang X., Pelayo R. et al. Extracellular histones are major mediators of death in sepsis. Nat Med. 2009;15(11):1318—21. https://doi.org/10.1038/nm.2053.; Saffarzadeh M., Juenemann C., Queisser M.A. et al. Neutrophil extracellular traps directly induce epithelial and endothelial cell death: a predominant role of histones. PloS One. 2012;7(2):e32366. https://doi.org/10.1371/journal.pone.0032366.; Kleine T.J., Lewis P.N., Lewis S.A. Histone-induced damage of a mammalian epithelium: the role of protein and membrane structure. Am J Physiol. 1997;273(6):C1925-36. https://doi.org/10.1152/ajpcell.1997.273.6.C1925; Gamberucci A., Fulceri R., Marcolongo P. et al. Histones and basic polypeptides activate Ca2+/cation influx in various cell types. Biochem J. 1998;331(Pt 2):623-30. https://doi.org/10.1042/bj3310623.; Crittenden J.R., Bergmeier W., Zhang Y. et al. CalDAG-GEFI integrates signaling for platelet aggregation and thrombus formation. Nat Med. 2004;10(9):982-6. https://doi.org/10.1038/nm1098.; Carestia A., Rivadeneyra L., Romaniuk M.A. et al. Functional responses and molecular mechanisms involved in histone-mediated platelet activation. Thromb Haemost. 2013;110(5):1035-45. https://doi.org/10.1160/TH13-02-0174.; Gersh K.C., Nagaswami C., Weisel J.W. Fibrin network structure and clot mechanical properties are altered by incorporation of erythrocytes. Thromb Haemost. 2009;102(6):1169. https://doi.org/10.1160/TH09-03-0199.; Wohner N., Sotonyi P., Machovich R. et al. Lytic resistance of fibrin containing red blood cells. Arterioscler Thromb Vasc Biol. 2011;31(10):2306-13. https://doi.org/10.1161/ATVBAHA.111.229088.; Semeraro F., Ammollo C., Esmon N., Esmon C. Histones induce phosphatidylserine exposure and a procoagulant phenotype in human red blood cells. J Thromb Haemost. 2014;12(10):1697—702. https://doi.org/10.1111/jth.12677.; Barranco-Medina S., Pozzi N., Vogt A.D., Di Cera E. Histone H4 promotes prothrombin autoactivation. J Biol Chem. 2013;288(50):35749-57. https://doi.org/10.1074/jbc.M113.509786.; Varju I., Longstaff C., Szabo L. et al. DNA, histones and neutrophil extracellular traps exert anti-fibrinolytic effects in a plasma environment. Thromb Haemost. 2015;113(6):1289-98. https://doi.org/10.1160/TH14-08-0669.; Ammollo C.T., Semeraro F., Xu J. et al. Extracellular histones increase plasma thrombin generation by impairing thrombomodulin-dependent protein C activation. J Thromb Haemost. 2011;9(9):1795—803. https://doi.org/10.1111/j.1538-7836.2011.04422.x.; Healy L.D., Puy C., Fernandez J.A. et al. Activated protein C inhibits neutrophil extracellular trap formation in vitro and activation in vivo. J Biol Chem. 2017;292(21):8616-29. https://doi.org/10.1074/jbc.M116.768309.; Bajzar L., Morser J., Nesheim M. TAFI, or plasma procarboxypeptidase B, couples the coagulation and fibrinolytic cascades through the thrombinthrombomodulin complex. J Biol Chem. 1996;271(28):16603—8. https://doi.org/10.1074/jbc.271.28.16603.; Sakharov D.V., Plow E.F., Rijken D.C. On the mechanism of the antifibrinolytic activity of plasma carboxypeptidase B. J Biol Chem. 1997;272(22):14477-82. https://doi.org/10.1074/jbc.272.22.14477.; Gould T.J., Vu T.T., Stafford A.R. et al. Cell-free DNA modulates clot structure and impairs fibrinolysis in sepsis. Arterioscler Thromb Vasc Biol. 2015;35(12):2544-53. https://doi.org/10.1161/ATVBAHA.115.306035.; Bustin M., Cole R.D. Regions of high and low cationic charge in a lysine-rich histone. J Biol Chem. 1970;245(6):1458-66.; Katchalski E., Bichovski-Slomnitzki L., Volcani B. Action of some watersoluble poly-a-amino-acids on bacteria. Nature. 1952;169(4313):1095-6. https://doi.org/10.1038/1691095b0.; Biezunski N., Shafrir E., De Vries A., Katchalski E. The action of polylysine on the conversion of fibrinogen into fibrin by coagulase thrombin. Biochem J. 1955;59(1):55-8. https://doi.org/10.1042/bj0590055.; Wolberg A.S. Thrombin generation and fibrin clot structure. Blood Rev. 2007;21(3):131-42. https://doi.org/10.1016/j.blre.2006.11.001.; Mutch N.J., Engel R., de Willige S.U. et al. Polyphosphate modifies the fibrin network and down-regulates fibrinolysis by attenuating binding of tPA and plasminogen to fibrin. Blood. 2010;115(19):3980-8. https://doi.org/10.1182/blood-2009-11-254029.; Locke M., Francis R.J., Tsaousi E., Longstaff C. Fibrinogen protects neutrophils from the cytotoxic effects of histones and delays neutrophil extracellular trap formation induced by ionomycin. Sci Rep. 2020;10(1):1-16. https://doi.org/10.1038/s41598-020-68584-0.; Longstaff C., Varju I., Sotonyi P. et al. Mechanical stability and fibrinolytic resistance of clots containing fibrin, DNA, and histones. J Biol Chem. 2013;288(10):6946-56. https://doi.org/10.1074/jbc.M112.404301.; Muszbek L., Bereczky Z., Bagoly Z. et al. Factor XIII: a coagulation factor with multiple plasmatic and cellular functions. Physiol Rev. 2011;91(3):931-72. https://doi.org/10.1152/physrev.00016.2010.; Byrnes J.R., Duval C., Wang Y. et al. Factor XIIIa-dependent retention of red blood cells in clots is mediated by fibrin a-chain crosslinking. Blood. 2015;126(16):1940-8. https://doi.org/10.1182/blood-2015-06-652263.; Wolberg A.S. Fibrinogen and factor XIII: newly-recognized roles in venous thrombosis formation and composition. Curr Opin Hematol. 2018;25(5):358-64. https://doi.org/10.1097/MOH.0000000000000445.; Locke M., Longstaff C. Extracellular histones inhibit fibrinolysis through noncovalent and covalent interactions with fibrin. Thromb Haemost. 2021;121(4):464-76. https://doi.org/10.1055/s-0040-1718760.; Longstaff C., Hogwood J., Gray E. et al. Neutralization of the anticoagulant effects of heparin by histones in blood plasma and purified systems. Thromb Haemost. 2016;115(3):591-9. https://doi.org/10.1160/TH15-03-0214.; Wang F., Zhang N., Li B. et al. Heparin defends against the toxicity of circulating histones in sepsis. Front Biosci (Landmark Ed). 2015;20:1259-70. https://doi.org/10.2741/4370.; Fuchs T.A., Bhandari A.A., Wagner D.D. Histones induce rapid and profound thrombocytopenia in mice. Blood. 2011;118(13):3708-14. https://doi.org/10.1182/blood-2011-01-332676.; Komissarov A.A, Florova G., Idell S. Effects of extracellular DNA on plasminogen activation and fibrinolysis. J Biol Chem. 2011;286(49):41949-62. https://doi.org/10.1074/jbc.M111.301218.; Eckle I., Seitz R., Egbring R. et al.Protein C degradation in vitro by neutrophil elastase. Biol Chem Hoppe Seyler. 1991;372(11):1007-13. https://doi.org/10.1515/bchm3.1991.372.2.1007.; Levi M., Schultz M., van der Poll T. Sepsis and thrombosis. Semin Thromb Hemost. 2013:39(5):559-66. https://doi.org/10.1055/s-0033-1343894.; Gando S., Kameue T., Morimoto Y. et al. Tissue factor production not balanced by tissue factor pathway inhibitor in sepsis promotes poor prognosis. Crit Care Med. 2002;30(8):1729-34. https://doi.org/10.1097/00003246-200208000-00009.; Collen D., Schetz J., de Cock F. et al. Metabolism of antithrombin III (heparin cofactor) in man: effects of venous thrombosis and of heparin administration. Eur J Clin Invest. 1977;7(1):27-35. https://doi.org/10.1111/j.1365-2362.1977.tb01566.x.; Iba T., Saitoh D. Efficacy of antithrombin in preclinical and clinical applications for sepsis-associated disseminated intravascular coagulation. J Intensive Care. 2014;2(1):66. https://doi.org/10.1186/s40560-014-0051-6.; Sun H.-m., Hong L.-z., Shen X.-k. et al. Antithrombin-III without concomitant heparin improves endotoxin-induced acute lung injury rats by inhibiting the activation of mitogen-activated protein kinase. Chin Med J (Engl). 2009;122(20):2466-71.; Asakura H., Ontachi Y., Mizutani T. et al. Decreased plasma activity of antithrombin or protein C is not due to consumption coagulopathy in septic patients with disseminated intravascular coagulation. Eur J Haematol. 2001;67(3):170-5. https://doi.org/10.1034/j.1600-0609.2001.5790508.x.; Aibiki M., Fukuoka N., Umakoshi K. et al. Serum albumin levels anticipate antithrombin III activities before and after antithrombin III agent in critical patients with disseminated intravascular coagulation. Shock. 2007;27(2):139-44. https://doi.org/10.1097/01.shk.0000239762.90335.68.; Iba T., Miki T., Hashiguchi N. et al. Combination of antithrombin and recombinant thrombomodulin modulates neutrophil cell-death and decreases circulating DAMPs levels in endotoxemic rats. Thromb Res. 2014;134(1):169-73. https://doi.org/10.1016/j.thromres.2014.04.015.; Lof A., Muller J.P., Brehm M.A. A biophysical view on von Willebrand factor activation. J Cell Physiol. 2018;233(2):799-810. https://doi.org/10.1002/jcp.25887.; Zhang C., Kelkar A., Neelamegham S. von Willebrand factor selfassociation is regulated by the shear-dependent unfolding of the A2 domain. Blood Adv. 2019;3(7):957-68. https://doi.org/10.1182/bloodadvances.2018030122.; South K., Lane D.A. ADAMTS-13 and von Willebrand factor: a dynamic duo. J Thromb Haemost. 2018;16(1):6-18. https://doi.org/10.1111/jth.13898.; Bernardo A., Ball C., Nolasco L. et al. Effects of inflammatory cytokines on the release and cleavage of the endothelial cell-derived ultralarge von Willebrand factor multimers under flow. Blood. 2004;104(1):100-6. https://doi.org/10.1182/blood-2004-01-0107.; Ono T., Mimuro J., Madoiwa S. et al. Severe secondary deficiency of von Willebrand factor-cleaving protease (ADAMTS13) in patients with sepsis-induced disseminated intravascular coagulation: its correlation with development of renal failure. Blood. 2006;107(2):528-34. https://doi.org/10.1182/blood-2005-03-1087.; Chen J., Fu X., Wang Y. et al. Oxidative modification of von Willebrand factor by neutrophil oxidants inhibits its cleavage by ADAMTS13. Blood. 2010;115(3):706-12. https://doi.org/10.1182/blood-2009-03-213967.; Wang Y., Chen J., Ling M. et al. Hypochlorous acid generated by neutrophils inactivates ADAMTS13: an oxidative mechanism for regulating ADAMTS13 proteolytic activity during inflammation. J Biol Chem. 2015;290(3):1422-31. https://doi.org/10.1074/jbc.M114.599084.; Wong S.L., Wagner D.D. Peptidylarginine deiminase 4: a nuclear button triggering neutrophil extracellular traps in inflammatory diseases and aging. FASEB J. 2018;32(12):6258-370. https://doi.org/10.1096/fj.201800691R.; Sorvillo N., Mizurini D.M., Coxon C. et al. Plasma peptidylarginine deiminase IV promotes VWF-platelet string formation and accelerates thrombosis after vessel injury. Circ Res. 2019;125(5):507-19. https://doi.org/10.1161/CIRCRESAHA.118.314571.; Tang N., Li D., Wang X., Sun Z. Abnormal coagulation parameters are associated with poor prognosis in patients with novel coronavirus pneumonia. J Thromb Haemost. 2020;18(4):844-7. https://doi.org/10.1111/jth.14768.; Han H., Yang L., Liu R. et al. Prominent changes in blood coagulation of patients with SARS-CoV-2 infection. Clin Chem Lab Med. 2020;58(7):1116-20. https://doi.org/10.1515/cclm-2020-0188.; Zuo Y., Yalavarthi S., Shi H. et al. Neutrophil extracellular traps in COVID-19. JCI Insight. 2020;5(11):e138999. https://doi.org/10.1172/jci.insight.138999.; Nicolai L., Leunig A., Brambs S. et al. Immunothrombotic dysregulation in COVID-19 pneumonia is associated with respiratory failure and coagulopathy. Circulation. 2020;142(12):1176-89. https://doi.org/10.1161/CIRCULATIONAHA.120.048488.; Barnes B.J., Adrover J.M., Baxter-Stoltzfus A. et al. Targeting potential drivers of COVID-19: neutrophil extracellular traps. J Exp Med. 2020;217(6):e20200652. https://doi.org/10.1084/jem.20200652.; Veras F.P., Pontelli M.C., Silva C.M. et al. SARS-CoV-2-triggered neutrophil extracellular traps mediate COVID-19 pathology. J Exp Med. 2020;217(12):e20201129. https://doi.org/10.1084/jem.20201129.; Pfeiler S., Massberg S., Engelmann B. Biological basis and pathological relevance of microvascular thrombosis. Thromb Res. 2014;133(Suppl 1):S35-7. https://doi.org/10.1016/j.thromres.2014.03.016.; Gould T.J., Vu T.T., Swystun L.L. et al. Neutrophil extracellular traps promote thrombin generation through platelet-dependent and plateletindependent mechanisms. Arterioscler Thromb Vasc Biol. 2014;34(9):1977-84. https://doi.org/10.1161/ATVBAHA.114.304114.; Wang Y., Luo L., Braun O.O. et al. Neutrophil extracellular trap -microparticle complexes enhance thrombin generation via the intrinsic pathway of coagulation in mice. Sci Rep. 2018;8(1):4020. https://doi.org/10.1038/s41598-018-22156-5.; Massberg S., Grahl L., von Bruehl M.-L. et al. Reciprocal coupling of coagulation and innate immunity via neutrophil serine proteases. Nat Med. 2010;16(8):887-96. https://doi.org/10.1038/nm.2184.; Nakazawa D., Ishizu A. Immunothrombosis in severe COVID-19. EBioMedicine. 2020;59:102942. https://doi.org/10.1016/j.ebiom.2020.102942.; Ladikou E.E., Sivaloganathan H., Milne K.M. et al. Von Willebrand factor (vWF): marker of endothelial damage and thrombotic risk in COVID-19? Clin Med (Lond). 2020;20(5):e178-e182. https://doi.org/10.7861/clinmed.2020-0346.; Tiscia G.L., Favuzzi G., De Laurenzo A. et al. Reduction of ADAMTS13 levels predicts mortality in SARS-CoV-2 patients. TH Open. 2020;4(03):e203-e206. https://doi.org/10.1055/s-0040-1716379.; Kanthi Y., Knight J.S., Zuo Y., Pinsky D.J. New (re) purpose for an old drug: purinergic modulation may extinguish the COVID-19 thromboinflammatory firestorm. JCI Insight. 2020;5(14):e140971. https://doi.org/10.1172/jci.insight.140971.; Okamoto K., Tamura T., Sawatsubashi Y. Sepsis and disseminated intravascular coagulation. J Intensive Care. 2016;4:23. https://doi.org/10.1186/s40560-016-0149-0.; Iba T., Ito T., Maruyama I. et al. Potential diagnostic markers for disseminated intravascular coagulation of sepsis. Blood Rev. 2016;30(2):149-55. https://doi.org/10.1016/j.blre.2015.10.002.; Levi M., van der Poll T. Coagulation and sepsis. Thromb Res. 2017;149:38-44. https://doi.org/10.1016/j.thromres.2016.11.007.; Semeraro N., Ammollo C.T., Semeraro F., Colucci M. Sepsis, thrombosis and organ dysfunction. Thromb Res. 2012;129(3):290-5. https://doi.org/10.1016/j.thromres.2011.10.013.; Ikeda M., Matsumoto H., Ogura H. et al. Circulating syndecan-1 predicts the development of disseminated intravascular coagulation in patients with sepsis. J Crit Care. 2018;43:48-53. https://doi.org/10.1016/j.jcrc.2017.07.049.; Aibar J., Castro P., Espinosa G. et al. ADAMTS-13 in critically ill patients with septic syndromes and noninfectious systemic inflammatory response syndrome. Shock. 2015;43(6):556-62. https://doi.org/10.1097/SHK.0000000000000341.; Russwurm S., Vickers J., Meier-Hellmann A. et al. Platelet and leukocyte activation correlate with the severity of septic organ dysfunction. Shock. 2002;17(4):263-8. https://doi.org/10.1097/00024382-200204000-00004.; Wang Y., Ouyang Y., Liu B. et al. Platelet activation and antiplatelet therapy in sepsis: A narrative review. Thromb Res. 2018;166:28-36. https://doi.org/10.1016/j.thromres.2018.04.007.; Delabranche X., Stiel L., Severac F. et al. Evidence of netosis in septic shock-induced disseminated intravascular coagulation. Shock. 2017;47(3):313-7. https://doi.org/10.1097/SHK.0000000000000719.; Gupta A.K., Hasler P., Holzgreve W. et al. Induction of neutrophil extracellular DNA lattices by placental microparticles and IL-8 and their presence in preeclampsia. Hum Immunol. 2005;66(11):1146-54. https://doi.org/10.1016/j.humimm.2005.11.003.; Redman C.W., Sargent I. Placental debris, oxidative stress and pre-eclampsia. Placenta. 2000;21(7):597-602. https://doi.org/10.1053/plac.2000.0560.; Bouvier S., Mousty E., Fortier M. et al. Placenta-mediated complications: Nucleosomes and free DNA concentrations differ depending on subtypes. J Thromb Haemost. 2020;18(12):3371-80. https://doi.org/10.1111/jth.15105.; Sargent I., Germain S., Sacks G. et al. Trophoblast deportation and the maternal inflammatory response in pre-eclampsia. J Reprod Immunol. 2003;59(2):153-60. https://doi.org/10.1016/s0165-0378(03)00044-5.; Sacks G., Studena K., Sargent I., Redman C. CD11b expression on circulating neutrophils in pre-eclampsia. Clin Sci (Lond). 1997;93(2):187-8. https://doi.org/10.1042/cs0930187.; Giaglis S., Stoikou M., Chowdhury C.S. et al. Multimodal regulation of NET formation in pregnancy: progesterone antagonizes the pro-NETotic effect of estrogen and G-CSF. Front Immunol. 2016;7:565. https://doi.org/10.3389/fimmu.2016.00565.; Giaglis S., Stoikou M., Grimolizzi F. et al. Neutrophil migration into the placenta: Good, bad or deadly? Cell Adh Migr. 2016;10(1-2):208-25. https://doi.org/10.1080/19336918.2016.1148866.; Hahn S., Huppertz B., Holzgreve W. Fetal cells and cell free fetal nucleic acids in maternal blood: new tools to study abnormal placentation? Placenta. 2005;26(7):515-26. https://doi.org/10.1016/j.placenta.2004.10.017.; Hahn S., Gupta A.K., Troeger C., Rusterholz C, Holzgreve W, editors. Disturbances in placental immunology: ready for therapeutic interventions? Springer Semin Immunopathol. 2006;27(4):477-93. https://doi.org/10.1007/s00281-006-0016-5.; Erpenbeck L., Chowdhury C.S., Zsengeller Z.K. et al. PAD4 deficiency decreases inflammation and susceptibility to pregnancy loss in a mouse model. Biol Reprod. 2016;95(6):132. https://doi.org/10.1095/biolreprod.116.140293.; Gupta S., Agarwal A., Banerjee J., Alvarez J.G. The role of oxidative stress in spontaneous abortion and recurrent pregnancy loss: a systematic review. Obstet Gynecol Surv. 2007;62(5):335-47. https://doi.org/10.1097/01.ogx.0000261644.89300.df.; Paszkowski T., Lagod L., Sikorsi R., Rola R. The role of oxidative stress in the pathogenesis of early pregnancy loss. Poland J Gynecol Invest. 2001;3(3):135-8.; Choi J.W., Im M.W., Pai S.H. Nitric oxide production increases during normal pregnancy and decreases in preeclampsia. Ann Clin Lab Sci. 2002;32(3):257-63.; Omeljaniuk W.J., Jabtonska E., Garley M. et al. Biomarkers of neutrophil extracellular traps (NETs) and nitric oxide-(NO)-dependent oxidative stress in women who miscarried. Sci Rep. 2020;10(1):13088. https://doi.org/10.1038/s41598-020-70106-x.; Girardi G., Berman J., Redecha P. et al. Complement C5a receptors and neutrophils mediate fetal injury in the antiphospholipid syndrome. J Clin Invest. 2003;112(11):1644-54. https://doi.org/10.1172/JCI18817.; Redecha P., Tilley R., Tencati M. et al. Tissue factor: a link between C5a and neutrophil activation in antiphospholipid antibody-induced fetal injury. Blood. 2007;110(7):2423-31. https://doi.org/10.1182/blood-2007-01-070631.; Redecha P., Franzke C.-W., Ruf W. et al. Neutrophil activation by the tissue factor/Factor VIIa/PAR2 axis mediates fetal death in a mouse model of antiphospholipid syndrome. J Clin Invest. 2008;118(10):3453-61. https://doi.org/10.1172/JCI36089.; Yalavarthi S., Gould T.J., Rao A.N. et al. Release of neutrophil extracellular traps by neutrophils stimulated with antiphospholipid antibodies: a newly identified mechanism of thrombosis in the antiphospholipid syndrome. Arthritis Rheumatol. 2015;67(11):2990-3003. https://doi.org/10.1002/art.39247.; Meng H., Yalavarthi S., Kanthi Y. et al. In vivo role of neutrophil extracellular traps in antiphospholipid antibody-mediated venous thrombosis. Arthritis Rheumatol. 2017;69(3):655-67. https://doi.org/10.1002/art.39938.; Zhao J., Kim K.D., Yang X. et al. Hyper innate responses in neonates lead to increased morbidity and mortality after infection. Proc Natl Acad Sci U S A. 2008;105(21):7528-33. https://doi.org/10.1073/pnas.0800152105.; Heinemann A.S., Pirr S., Fehlhaber B. et al. In neonates S100A8/S100A9 alarmins prevent the expansion of a specific inflammatory monocyte population promoting septic shock. FASEB J. 2017;31(3):1153-64. https://doi.org/10.1096/fj.201601083R.; Annane D., Bellissant E., Cavaillon J.-M. Septic shock. Lancet. 2005;365(9453):63-78. https://doi.org/10.1016/S0140-6736(04)17667-8.; Schouten M., Wiersinga W.J., Levi M., van der Poll T. Inflammation, endothelium, and coagulation in sepsis. J Leukoc Biol. 2008;83(3):536-45. https://doi.org/10.1189/jlb.0607373.; Nourshargh S., Renshaw S.A., Imhof B.A. Reverse migration of neutrophils: where, when, how, and why? Trends Immunol. 2016;37(5):273-86. https://doi.org/10.1016/j.it.2016.03.006.; Souto F.O., Alves-Filho J.C., Turato W.M. et al. Essential role of CCR2 in neutrophil tissue infiltration and multiple organ dysfunction in sepsis. Am J Respir Crit Care Med. 2011;183(2):234-42. https://doi.org/10.1164/rccm.201003-0416OC.; Colon D.F., Wanderley C.W., Franchin M. et al. Neutrophil extracellular traps (NETs) exacerbate severity of infant sepsis. Crit Care. 2019;23(1):113. https://doi.org/10.1186/s13054-019-2407-8.; Stiel C.U., Ebenebe C.U., Trochimiuk M. et al. Markers of NETosis do not predict neonatal early onset sepsis: a pilot study. Front Pediatr. 2020;7:555. https://doi.org/10.3389/fped.2019.00555.; Yost C.C., Schwertz H., Cody M.Jet al. Neonatal NET-inhibitory factor and related peptides inhibit neutrophil extracellular trap formation. J Clin Invest. 2016;126(10):3783-98. https://doi.org/10.1172/JCI83873.; Adly A.A., Ismail E.A., Andrawes N.G., El-Saadany M.A. Circulating soluble triggering receptor expressed on myeloid cells-1 (sTREM-1) as diagnostic and prognostic marker in neonatal sepsis. Cytokine. 2014;65(2):184-91. https://doi.org/10.1016/j.cyto.2013.11.004.; Camicia G., Pozner R., de Larranaga G. Neutrophil extracellular traps in sepsis. Shock. 2014;42(4):286-94. https://doi.org/10.1097/SHK.0000000000000221.; https://www.gynecology.su/jour/article/view/1067

  18. 18

    Source: Rational Pharmacotherapy in Cardiology; Vol 15, No 6 (2019); 892-899 ; Рациональная Фармакотерапия в Кардиологии; Vol 15, No 6 (2019); 892-899 ; 2225-3653 ; 1819-6446

    File Description: application/pdf

    Relation: https://www.rpcardio.com/jour/article/view/2082/1897; Rosamond W., Flegal K., Furie K., et al. Heart disease and stroke statistics-2008 update: a report from the American Heart Association Statistics Committee and Stroke Statistics Subcommittee. Circulation. 2008;117:e25-146. DOI:10.1161/CIRCULATIONAHA.107.187998.; Nichols M., Townsend N., Scarborough P., Rayner M. Cardiovascular disease in Europe 2014: epidemiological update. Eur Heart J.2014;35(42):2950-9. DOI:10.1093/eurheartj/ehu299.; Benjamin E.J., Virani S.S., Callaway C.W., et al. Heart Disease and Stroke Statistics-2018 Update: A Report From the American Heart Association. Circulation. 2018;137:e67-e492. DOI:10.1161/CIR.0000000000000558.; Heidenreich P.A., Trogdon J.G., Khavjou O.A., et al. Forecasting the future of cardiovascular disease in the United States: a policy statement from the American Heart Association. Circulation. 2011;123(8):933-44. DOI:10.1161/CIR.0b013e31820a55f5.; Заболеваемость всего населения России в 2017 году. Статистические материалы. Часть I]. М.: ЦНИИОИЗ; 2018. [цитировано 20.10.2019. Доступно на: https://www.rosminzdrav.ru/ministry/61/22/stranitsa979/statisticheskie-i-informatsionnye-materialy/statisticheskiy-sbornik-2017-god].; Paneni F., Beckman J.A., Creager M.A., et al. Diabetes and vascular disease: Pathophysiology, clinical consequences, and medical therapy: Part I. Eur Heart J. 2013;34:2436-43. DOI:10.1093/eurheartj/eht149.; Norhammar A., Tenerz A., Nilsson G., et al. Glucose metabolism in patients with acute myocardial infarction and no previous diagnosis of diabetes mellitus: A prospective study. Lancet. 2002;359:21404. DOI:10.1016/S0140-6736(02)09089-X.; Bartnik M., Ryden L., Ferrari R., et al. The prevalence of abnormal glucose regulation in patients with coronary artery disease across Europe. The Euro Heart Survey on diabetes and the heart. Eur Heart J. 2004;25:1880-90. DOI:10.1016/j.ehj.2004.07.027.; Hage C., Lundman P., Ryden L., et al. Fasting glucose, HbA1c, or oral glucose tolerance testing for the detection of glucose abnormalities in patients with acute coronary syndromes. Eur J Prev Cardiol. 2013;20:549-54. DOI:10.1177/2047487312444371.; Bjarnason T.A., Kristinsdottir L.B., Oskarsdottir E.S., et al. Editor’s Choice-Diagnosis of type 2 diabetes and prediabetes among patients with acute coronary syndromes. Eur Heart J Acute Cardiovasc Care. 2017;6(8):744-9. DOI:10.1177/2048872616669060.; Дедов И.И., Шестакова М.В., Викулова О.К. Эпидемиология сахарного диабета в Российской Федерации: клиникостатистический анализ по данным Федерального регистра сахарного диабета. Сахарный Диабет. 2017;20(1):13-41.; Diabetes Atlas. 7th ed. International Diabetes Federation. Brussels, Belgium: International Diabetes Federation; 2015; Thomas R., Einarson D., Annabel A., Craig L. Economic Burden of Cardiovascular Disease in Type 2 Diabetes: A Systematic review, Value in Health. Eur Heart J Acute Cardiovasc Care. 2017;6(8):7449. DOI:10.1016/j.jval.2017.12.019.; Murohara T., Buerke M., Lefer A. Polymorphonuclear leucocyte-induced vasoconstriction and endothelial dysfunction. Role of selectins. Arterioscler Thromb. 1994;14:1509-19.; De Mayer G., Herman A. Vascular endothelial dysfunction. Prog Cardiovasc Dis. 1997;49:325-342. DOI:10.1016/s0033-0620(97)80031-x.; Calder P.C., Ahluwalia N., Albers R., et al. A consideration of biomarkers to be used for evaluation of inflammation in human nutritional studies. Br J Nutr. 2013;109(Suppl 1):S1e34. DOI:10.1017/S0007114512005119.; Blankenberg S., Barbaux S., Tiret L. Adhesion molecules and atherosclerosis. Atherosclerosis. 2003;170:191-203. DOI:10.1016/s0021-9150(03)00097-2.; Tretjakovs P., Jurka A., Bormane I., et al. Circulating adhesion molecules, matrix metalloproteinase9, plasminogen activator inhibitor-1, and myeloperoxidase in coronary artery disease patients with stable and unstable angina. Clin Chim Acta. 2012;413(1-2):25-9. DOI:10.1016/j.cca.2011.10.009; Senen K., Ileri M., Alper A., et al. Increased Levels of Soluble Adhesion molecules E-Selectin and PSelectin in patients with Cardiac Syndrome X. Angiology; 2005;56:273-7. DOI:10.1177/000331970505600306.; Husam B., Paul S. Jeffrey G., et al. Soluble VCAM-1 and E-Selectin, but not ICAM-1 Discriminate Endothelial Injury in Patients with Documented Coronary Artery Disease Cardiology. 2000;93:7-10. DOI:10.1159/000006995.; Natasa-Bogavac Stanojevic N., Ivanivic Z., Djurovic S., et al. Lack of Association Between Low HDLcholesterol and Elevated Circulating Cellular Adhesion Molecules in normolipidemic CAD Patients and Healthy Subjects. Int Heart J. 2005;46(4):593-600. DOI:10.1536/ihj.46.593.; Hajilooi M., Sanati A., Ahmadieh A., et al. Circulating ICAM-1, VCAM-1, E-Selectin, P-Selectin, and TNFRII in Patients with Coronary Artery Disease. Immunological Investigations. 2004;33(3):26375. DOI:10.1081/IMM-120037275.; Porsch-Oezc M.,Ueruemez M., Kunz D., et al. Evaluation of Serum Levels of solubilized Adhesion Molecules and Cytokine Receptors in Coronary Heart Disease. Journal of the American College of Cardiology.1999; 34:7. DOI:10.1016/S0735-1097(99)00473-8.; Stanojevic N., Djurovic S., Jelic-Ivanovic Z., et al. Circulating Transforming Growth Factor-1, Lipoprotein( a) and Cellular Adhesion Molecules in Angiographically Assessed Coronary Artery Disease. Clin Chem Lab Med. 2003;41(7):893-8. DOI:10.1515/CCLM.2003.135.; Nasuno A., Matsubara T., Hori T., et al. Levels of Soluble E-selectin and ICAM-1in the Coronary Circulation of Patients with Stable Coronary Artery Disease Association with the Severity of Coronary Atherosclerosis. Jpn Heart J. 2002;43(2):93-101. DOI:10.1536/jhj.43.93.; Galvani M., Ferrini D., Ottani F., et al. Soluble E-selectin is not a marker of unstable coronary plaque in serum of patients with ischemic heart disease. J Thromb Thrombolysis. 2000;9:53-60.; Oishi Y., Wakatsuki T., Nishikado A., et al. Circulating adhesion molecules and severity of coronary atherosclerosis. Coronary Artery Disease. 2000;11:77-81.; Jang Y., Lincoff A.M., Plow E.F., Topol E.J. Cell adhesion molecules in coronary artery disease. J Am Coll Cardiol. 1994;24:1591-601. DOI:10.1016/0735-1097(94)90162-7.; Alber H.F., Frick M., Sussenbacher A., et al. Effect of atorvastatin on peripheral endothelial function and systemic inflammatory markers in patients with stable coronary artery disease. Wien med Wochenschr. 2007;157(3-4):73-8. DOI:10.1007/s10354-007-0377-y.; Albertini J.P., Valensi P., Lormeau B., et al. Soluble L-Selectin Level Is a Marker for Coronary artery Disease in Type 2 Diabetic Patients. Diabetes Care. 1999;22(12):2044-8. DOI:10.2337/diacare.22.12.2044.; Albertini J.P., Valensi P., Lormeau B., et al. Elevated Concentrations of Soluble E-Selectin and Vascular Cell Adhesion Molecule-1 in NIPPM. Diabetes Care. 1998;21(6):1008-13. DOI:10.2337/diacare.21.6.1008.; Kruszelnicka O., Chyrchel B., Golay A., et al. Differential associations of circulating asymmetric dimethyl arginine and cell adhesion molecules with metformin use in patients with type 2 diabetes mellitus and stable coronary artery disease. Amino Acids. 2015;47(9):1951-9. DOI:10.1007/s00726-015-1976-3.; Kumpatla S., Karuppiah K., Immaneni S., et al. Comparison of plasma adiponectin & certain inflammatory markers in angiographically proven coronary artery disease patients with & without diabetes A study from India. Indian J Med Res. 2014;139:841-50.; Natarajan A., Marshall S.M., Kesteven P.J., et al. Impact of biomarkers for endothelial dysfunction and procoagulant state on 10-year cardiovascular risk in Type 2 diabetes. Diabet Med. 2011;28(10):1201-5. DOI:10.1111/j.1464-5491.2011.03311.; Kato Y., Iwata A., Futami M., et al. Impact of von Willebrand factor on coronary plaque burden in coronary artery disease patients treated with statins. Medicine. 2018;97(17):e0589. DOI:10.1097/MD.0000000000010589.; Ruggeri Z.M. The role of von Willebrand factor in thrombus formation. Thromb Res. 2007;120(suppl 1):S5-9. DOI:10.1097/MD.0000000000010589.; Meigs J.B., O'Donnell C.J., Tofler G.H., et al. Hemostatic markers of endothelial dysfunction and risk of incident type 2 diabetes: the Framingham Offspring Study. Diabetes. 2006;55:530-537. DOI:10.2337/diabetes.55.02.06.db05-1041.; Jolanta M., Siller-Matula A., Irene M., et al. Interdependence between osteoprotegerin and active von Willebrand factor in long-term cardiovascular mortality prediction in patients undergoing percutaneous coronary intervention. Thrombosis and Haemostasis. 2017;17(9):1730-8. DOI:10.1160/TH17-02-0087.; Murata M., Adachi H. Glucose fluctuation and the resultant endothelial injury are correlated with pancreatic cell dysfunction in patients with coronary artery disease. Diabetes Research and Clinical Practice. 2017;131:107-15. DOI:10.1016/j.diabres.2017.07.007.; Akyol O., Akyol S., Chen C. Update on ADAMTS13 and VWF in cardiac and hematological disorders. Clin Chim Acta. 2016 Dec 1;463:109-18. DOI:10.1016/j.cca.2016.10.017.; Miura M., Kaikita K., Matsukawa M., et al. Prognostic value of plasma von Willebrand factor-cleaving protease(ADAMTS13) antigen levels in patients with coronary artery disease. Blood Coagulation, Fibrinolysis and Cellular Haemostasis. 2010;103(3):623-9. DOI:10.1160/TH09-08-0568.; Danesh J., Wheeler J.G., Hirschfield G.M., et al. C-reactive protein and other circulating markers of inflammation in the prediction of coronary heart disease. N Engl J Med. 2004;350:1387-97. DOI:10.1056/NEJMoa032804.; Sonneveld M., Kavousi M., Ikram M.A., et al. Low ADAMTS-13 activity and the risk of coronary heart disease – a prospective cohort study: the Rotterdam Study. Cardiovascular Medicine. 2016;14(11):2114-20. DOI:10.1111/jth.13479.; Gragnano F., Sperlongano S., Goliaet E., al. The Role of von Willebrand Factor in Vascular Inflammation: From Pathogenesis to Targeted Therapy. Mediators of Inflammation. 2017;. DOI :10.1155/2017/5620314.; Brott D., Katein A., Thomas H., et al. Evaluation of von Willebrand factor and von Willebrand factor propeptide in models of vascular endothelial cell activation, perturbation, and/or injury. Toxicologic Pathology. 2014;42(4):672-83. DOI:10.1177/0192623313518664.; Lip G.Y., Blann A. von Willebrand factor: a marker of endothelial dysfunction in vascular disorders? Cardiovasc Res. 1997;34:255-65. DOI:10.1016/s0008-6363(97)00039-4.; Jin H., Chen Y., Wang В., et al. Association between brain-derived neurotrophic factor and von Willebrand factor levels in patients with stable coronary artery disease. BMC Cardiovascular Disorders. 2018; DOI:10.1186/s12872-018-0762-z.; Cao Y., Yang K., Zhang Z., et al. Correlation between plasma asymmetric dimethyl arginine and different types of coronary heart disease. Zhong Nan Da Xue Xue Bao Yi Xue Ban. 2010;35(4):3016. DOI:10.3969/j.issn.1672-7347.2010.04.004.; Blann A.D., Amiral J., McCollum C.N. Circulating endothelial cell, leucocyte adhesion molecules in ischaemic heart disease. Br J Haematol. 1996;95(2):263-5. DOI:10.1046/j.13652141.1996.d01-1921.x.; Murata M., Adachi H. Glucose fluctuation and the resultant endothelial injury are correlated with pancreatic βcell dysfunction in patients with coronary artery disease. Diabetes Research and Clinical Practice. 2017;131:107-15. DOI:10.1016/j.diabres.2017.07.007.; Li Q., Zhang Z., Duet R., al. Association analysis between endothelial function related factors and coronary artery stenosis degree in coronary heart disease patients with type 2 diabetes mellitus. J Pediatr Endocr Met. 2012; 25(7-8):711-6. DOI:10.1515/jpem-2012-0159.; Meyers K.E., Sethna C. Endothelin antagonists in hypertension and kidney disease. Pediat Nephrol. 2013;28:711-20. DOI:10.1007/s00467-012-2316-4.; Rodriguez-Pascual F., Busnadiego O., Lagares D., Lamas S. Role of endothelin in the cardiovascular system. Pharmacol. Res. 2011;63:463-72. DOI:10.3317/jraas.2002.001.; Bledar C., Olausson J., Charlotte A., et al. Circulating concentrations of endothelin-1 predict coronary heart disease in women but not in men: a longitudinal observational study in the Vara-Skovde Cohort. BMC Cardiovascular Disorders. 2015;15:146. DOI:10.1186/s12872-015-0141-y.; Ying F., Li S., Li X-L., et al. Plasma endothelin-1 level as a predictor for poor collaterals in patientswith ≥95% coronary chronic occlusion. Thrombosis Research 142 (2016) 21-25. DOI:10.1016/j.thromres.2016.04.007.; Ye M., Ju С., Li F. Plasma Brain Natriuretic Peptide, Endothelin-1, and Matrix Metalloproteinase Expression and Significance in Type 2 Diabetes Mellitus Patients with Ischemic Heart Disease. Med Sci Monit. 2015;21:2094-9. DOI:10.12659/MSM.893375.; https://www.rpcardio.com/jour/article/view/2082

  19. 19
  20. 20