Search Results - "сурфактант"

Refine Results
  1. 1

    Source: Neonatology, Surgery and Perinatal Medicine; Vol. 15 No. 2(56) (2025): NEONATOLOGY, SURGERY AND PERINATAL MEDICINE; 5-14
    Неонатология, хирургия и перинатальная медицина; Том 15 № 2(56) (2025): НЕОНАТОЛОГІЯ, ХІРУРГІЯ ТА ПЕРИНАТАЛЬНА МЕДИЦИНА; 5-14
    Неонатологія, хірургія та перинатальна медицина; Том 15 № 2(56) (2025): НЕОНАТОЛОГІЯ, ХІРУРГІЯ ТА ПЕРИНАТАЛЬНА МЕДИЦИНА; 5-14

    File Description: application/pdf

  2. 2
  3. 3
  4. 4

    Source: VII Пущинская конференция «Биохимия, физиология и биосферная роль микроорганизмов», шко- ла-конференция для молодых ученых, аспирантов и студентов «Генетические технологии в микробио- логии и микробное разнообразие».

  5. 5

    Source: Eurasian Journal of Medical and Natural Sciences; Vol. 5 No. 11 (2025): Eurasian Journal of Medical and Natural Sciences; 159-165 ; Евразийский журнал медицинских и естественных наук; Том 5 № 11 (2025): Евразийский журнал медицинских и естественных наук; 159-165 ; Yevrosiyo tibbiyot va tabiiy fanlar jurnali; Jild 5 Nomeri 11 (2025): Евразийский журнал медицинских и естественных наук; 159-165 ; 2181-287X

    File Description: application/pdf

  6. 6

    Source: Obstetrics, Gynecology and Reproduction; Vol 19, No 4 (2025); 488-505 ; Акушерство, Гинекология и Репродукция; Vol 19, No 4 (2025); 488-505 ; 2500-3194 ; 2313-7347

    File Description: application/pdf

    Relation: https://www.gynecology.su/jour/article/view/2473/1368; https://www.gynecology.su/jour/article/view/2473/1369; Davey M.A., Watson L., Rayner J.A., Rowlands S. Risk scoring systems for predicting preterm birth with the aim of reducing associated adverse outcomes. Cochrane Database Syst Rev. 2011;(11):CD004902. https://doi.org/10.1002/14651858.CD004902.pub4. Update in: Cochrane Database Syst Rev. 2015;(10):CD004902. https://doi.org/10.1002/14651858.CD004902.pub5.; Ancel P.-Y., Lelong N., Papiernik E. et al.; EUROPOP. History of induced abortion as a risk factor for preterm birth in European countries: results of the EUROPOP survey. Hum Reprod. 2004;19(3):734–40. https://doi.org/10.1093/humrep/deh107.; Здравоохранение в России. 2021. Статистический сборник. М.: Росстат, 2021. 171 с.; 2022 exceptional surveillance of preterm labour and birth (NICE guideline NG25). London: National Institute for Health and Care Excellence (NICE), 2022 Aug 4. Режим доступа: https://www.ncbi.nlm.nih.gov/books/NBK591661/. [Дата обращения: 25.02.2025].; Romero R., Miranda J., Chaiworapongsa T. et al. Prevalence and clinical significance of sterile intra-amniotic inflammation in patients with preterm labor and intact membranes. Am J Reprod Immunol. 2014;72(5):458–74. https://doi.org/10.1111/aji.12296.; Gomez-Lopez N., Romero R., Panaitescu B. et al. Inflammasome activation during spontaneous preterm labor with intra-amniotic infection or sterile intra-amniotic inflammation. Am J Reprod Immunol. 2018;80(5):e13049. https://doi.org/10.1111/aji.13049.; Boyle A.K., Rinaldi S.F., Norman J.E., Stock S.J. Preterm birth: inflammation, fetal injury and treatment strategies. J Reprod Immunol. 2017;119:62–6. https://doi.org/10.1016/j.jri.2016.11.008.; Keelan J.A. Intrauterine inflammatory activation, functional progesterone withdrawal, and the timing of term and preterm birth. J Reprod Immunol. 2018;125:89–99. https://doi.org/10.1016/j.jri.2017.12.004.; Sim W.H., Araujo Júnior E., Da Silva Costa F., Sheehan P.M. Maternal and neonatal outcomes following expectant management of preterm prelabour rupture of membranes before viability. J Perinat Med. 2017;45(1):29–44. https://doi.org/10.1515/jpm-2016-0183.; Kenyon S., Pike K., Jones D.R. et al. Childhood outcomes after prescription of antibiotics to pregnant women with preterm rupture of the membranes: 7-year follow-up of the ORACLE I trial. Lancet. 2008;372(9646):1310–8. https://doi.org/10.1016/S0140-6736(08)61202-7.; Nabhan A.F., Abdelmoula Y.A. Amniotic fluid index versus single deepest vertical pocket as a screening test for preventing adverse pregnancy outcome. Cochrane Database Syst Rev. 2008;2008(3):CD006593. https://doi.org/10.1002/14651858.CD006593.pub2.; Weissmann-Brenner A., O'Reilly-Green C., Ferber A., Divon M.Y. Values of amniotic fluid index in cases of preterm premature rupture of membranes. J Perinat Med. 2009;37(3):232–5. https://doi.org/10.1515/JPM.2009.078.; Thomson A.J.; Royal College of Obstetricians and Gynaecologists. Care of women presenting with Suspected preterm prelabour rupture of membranes from 24+0 weeks of gestation: Green-top Guideline No. 73. BJOG. 2019;126(9):e152–e166. https://doi.org/10.1111/1471-0528.15803.; Weiner E., Barrett J., Zaltz A. et al. Amniotic fluid volume at presentation with early preterm prelabor rupture of membranes and association with severe neonatal respiratory morbidity. Ultrasound Obstet Gynecol. 2019;54(6):767–73. https://doi.org/10.1002/uog.20257.; Storness-Bliss C., Metcalfe A., Simrose R. et al. Correlation of residual amniotic fluid and perinatal outcomes in periviable preterm premature rupture of membranes. J Obstet Gynaecol Can. 2012;34(2):154–8. https://doi.org/10.1016/S1701-2163(16)35158-1.; Vermillion S.T., Kooba A.M., Soper D.E. Amniotic fluid index values after preterm premature rupture of the membranes and subsequent perinatal infection. Am J Obstet Gynecol. 2000;183(2):271–6. https://doi.org/10.1067/mob.2000.107653.; Bhagat M., Chawla I. Correlation of amniotic fluid index with perinatal outcome. J Obstet Gynaecol India. 2014;64(1):32–5. https://doi.org/10.1007/s13224-013-0467-2.; Chamberlain P.F., Manning F.A., Morrison I. et al. Ultrasound evaluation of amniotic fluid volume. I. The relationship of marginal and decreased amniotic fluid volumes to perinatal outcome. Am J Obstet Gynecol. 1984;150(3):245–9. https://doi.org/10.1016/s0002-9378(84)90359-4.; Manning F.A., Platt L.D., Sipos L. Antepartum fetal evaluation: development of a fetal biophysical profile. Am J Obstet Gynecol. 1980;136(6):787–95. https://doi.org/10.1016/0002-9378(80)90457-3.; Phelan J.P., Ahn M.O., Smith C.V. et al. Amniotic fluid index measurements during pregnancy. J Reprod Med. 1987;32(8):601–4.; Phelan J.P., Smith C.V., Broussard P., Small M. Amniotic fluid volume assessment with the four-quadrant technique at 36-42 weeks' gestation. J Reprod Med. 1987;32(7):540–2.; Moore T.R., Cayle J.E. The amniotic fluid index in normal human pregnancy. Am J Obstet Gynecol. 1990;162(5):1168–73. https://doi.org/10.1016/0002-9378(90)90009-v.; Карпова А.Л., Мостовой А.В., Прутко Е.Е. и др. Интерлейкин-6 как индикатор тяжести полиорганной недостаточности у недоношенных детей с массой тела менее 1500 г: ретроспективное когортное исследование. Педиатрия имени Г.Н. Сперанского. 2023;102(1):54–63. https://doi.org/10.24110/0031-403X-2023-102-1-54-63.; Карпова А.Л., Мостовой А.В., Багаева З.Е. и др. Шкала NEOMOD в прогнозировании исходов у новорожденных детей с массой тела менее 1500 граммов: ретроспективное когортное исследование. Анестезиология и реаниматология. 2024;(2):49–57. https://doi.org/10.17116/anaesthesiology202402149.; Карпова А.Л., Мостовой А.В., Дудкина Е.А. и др. Ранний неонатальный сепсис в эпоху COVID-19. Акушерство, Гинекология и Репродукция. 2023;17(3):284–98. https://doi.org/10.17749/2313-7347/ob.gyn.rep.2023.389.; Карпова А.Л. Общий анализ крови: референсные интервалы для доношенных и поздних недоношенных новорожденных детей в первые сутки жизни (часть I). Педиатрия имени Г.Н. Сперанского. 2022;101(1):62–70. https://doi.org/10.24110/0031-403X-2022-101-1-62-70.; Карпова А.Л., Мостовой А.В., Бородич А.В. и др. Общий анализ крови: референсные интервалы для доношенных и поздних недоношенных новорожденных детей в первые сутки жизни (часть II). Педиатрия имени Г.Н. Сперанского. 2025;104(1):24–33. https://doi.org/10.24110/0031-403X-2025-104-1-24-33.; Мустафин Т.А., Карпова А.Л., Мостовой А.В., Колесников А.Н. Клинико-лабораторные индикаторы летального исхода у недоношенных новорожденных с массой тела менее 1500 г. Неонатология: новости, мнения, обучение. 2021;9(3):9–15. https://doi.org/10.33029/2308-2402-2021-9-3-9-15.; Мостовой А.В., Карпова А.Л., Харитонова Н.Р. и др. Заболеваемость и предикторы летального исхода у недоношенных новорожденных с гестационным возрастом менее 32 недель, получивших порактант альфа разными методами. Педиатрия имени Г.Н. Сперанского. 2022;101(1):27–38. https://doi.org/10.24110/0031-403X-2022-101-1-27-38.; Younge N., Goldstein R.F., Bann C.M. et al.; Eunice Kennedy Shriver National Institute of Child Health and Human Development Neonatal Research Network. Survival and neurodevelopmental outcomes among periviable infants. N Engl J Med. 2017;376(7):617–28. https://doi.org/10.1056/NEJMoa1605566.; Buscicchio G., Giannubilo S.R., Bezzeccheri V. et al. Computerized analysis of the fetal heart rate in pregnancies complicated by preterm premature rupture of membranes (pPROM). J Matern Fetal Neonatal Med. 2006;19(1):39–42. https://doi.org/10.1080/14767050500361505.; Vandenbroucke L., Doyen M., Le Lous M. et al. Chorioamnionitis following preterm premature rupture of membranes and fetal heart rate variability. PLoS One. 2017;12(9):e0184924. https://doi.org/10.1371/journal.pone.0184924.; Cataño Sabogal C.P., Fonseca J., García-Perdomo H.A. Validation of diagnostic tests for histologic chorioamnionitis: Systematic review and meta-analysis. Eur J Obstet Gynecol Reprod Biol. 2018;228:13–26. https://doi.org/10.1016/j.ejogrb.2018.05.043.; Okonek E.J., Schulz E.V., Belzer K. et al. Neonatal survival and outcomes following periviable rupture of membranes. Am J Perinatol. 2025;42(5):649–59. https://doi.org/10.1055/a-2414-1006.; https://www.gynecology.su/jour/article/view/2473

  7. 7

    Source: Meditsinskiy sovet = Medical Council; № 4 (2025); 124-134 ; Медицинский Совет; № 4 (2025); 124-134 ; 2658-5790 ; 2079-701X

    File Description: application/pdf

    Relation: https://www.med-sovet.pro/jour/article/view/9032/7849; Principi N, Di Pietro GM, Esposito S. Bronchopulmonary dysplasia: clinical aspects and preventive and therapeutic strategies. J Transl Med. 2018;16(1):36. https://doi.org/10.1186/s12967-018-1417-7.; Shukla VV, Ambalavanan N. Recent Advances in Bronchopulmonary Dysplasia. Indian J Pediatr. 2021;88(7):690–695. https://doi.org/10.1007/s12098-021-03766-w.; Siffel C, Kistler KD, Lewis JFM, Sarda SP. Global incidence of bronchopulmonary dysplasia among extremely preterm infants: a systematic literature review. J Matern Fetal Neonatal Med. 2021;34(11):1721–1731. https://doi.org/10.1080/14767058.2019.1646240.; Алексеева АА, Балашова ЕН, Баранов АА, Басаргина МА, Батышева ТТ, Беляева ИА и др. Бронхолегочная дисплазия: клинические рекомендации. 2024. Режим доступа: https://neonatology.pro/wp-content/uploads/2024/06/cr_bpd_final_2024.pdf.pdf.; Овсянников ДЮ, Геппе НА, Малахов АБ, Дегтярев ДН (ред.). Бронхолегочная дисплазия. М.; 2020. Режим доступа: https://pulmodeti.ru/wp-content/uploads/BLD-Klin_Rukovod_2020_Nestle_BLOK_NEW.pdf.; Raimondi F, Yousef N, Migliaro F, Capasso L, De Luca D. Point-of-care lung ultrasound in neonatology: classification into descriptive and functional applications. Pediatr Res. 2021;90(3):524–531. https://doi.org/10.1038/s41390-018-0114-9.; Шестак ЕВ, Ксенофонтова ОЛ, Ковтун ОП, Старков ВЮ. Протокол наблюдения, обследования и антибактериальной терапии новорожденных с подозреваемой и/или подтвержденной неонатальной инфекцией. Российский педиатрический журнал. 2024;5(2):95–107. https://doi.org/10.15690/rpj.v5i2.2756.; Brat R, Yousef N, Klifa R, Reynaud S, Shankar Aguilera S, De Luca D. Lung Ultrasonography Score to Evaluate Oxygenation and Surfactant Need in Neonates Treated With Continuous Positive Airway Pressure. JAMA Pediatr. 2015;169(8):e151797 . https://doi.org/10.1001/jamapediatrics.2015.1797.; Escourrou G, De Luca D. Lung ultrasound decreased radiation exposure in preterm infants in a neonatal intensive care unit. Acta Paediatr. 2016;105(5):e237-e239. https://doi.org/10.1111/apa.13369.; Alonso-Ojembarrena A, Aldecoa-Bilbao V, De Luca D. Imaging of bronchopulmonary dysplasia. Semin Perinatol. 2023;47(6):151812. https://doi.org/10.1016/j.semperi.2023.151812.; Liu J, Chen XX, Li XW, Chen SW, Wang Y, Fu W. Lung Ultrasonography to Diagnose Transient Tachypnea of the Newborn. Chest. 2016;149(5):1269–1275. https://doi.org/10.1016/j.chest.2015.12.024.; Blank DA, Kamlin COF, Rogerson SR, Fox LM, Lorenz L, Kane SC et al. Lung ultrasound immediately after birth to describe normal neonatal transition: an observational study. Arch Dis Child Fetal Neonatal Ed. 2018;103(2):F157–F162. https://doi.org/10.1136/archdischild-2017-312818.; Liu J, Wang Y, Fu W, Yang CS, Huang JJ. Diagnosis of neonatal transient tachypnea and its differentiation from respiratory distress syndrome using lung ultrasound. Medicine. 2014;93(27):e197. https://doi.org/10.1097/MD.0000000000000197.; Sawires HK, Abdel Ghany EA, Hussein NF, Seif HM. Use of lung ultrasound in detection of complications of respiratory distress syndrome. Ultrasound Med Biol. 2015;41(9):2319–2325. https://doi.org/10.1016/j.ultrasmedbio.2015.04.024.; Singh P, Patnaik S, Verma A, Garegrat R, Maheshwari R, Suryawanshi P. Diagnostic utility of lung ultrasound in predicting the need for surfactant therapy in preterm neonates with respiratory distress. Front Pediatr. 2023;11:1307761. https://doi.org/10.3389/fped.2023.1307761.; Старков ВЮ, Шестак ЕВ. Ультразвуковое исследование легких как инструмент диагностики и определения терапевтической стратегии при респираторном дистресс-синдроме у недоношенных новорожденных. Обзор литературы. Неонатология: новости, мнения, обучение. 2024;12(4):84–96. https://doi.org/10.33029/2308-2402-2024-12-4-84-96.; Jensen EA, Watterberg KL. Postnatal Corticosteroids To Prevent Bronchopulmonary Dysplasia. Neoreviews. 2023;24(11):e691-e703. https://doi.org/10.1542/neo.24-11-e691.; Radulova P, Vakrilova L, Hitrova-Nikolova S, Dimitrova V. Lung ultrasound in premature infants as an early predictor of bronchopulmonary dysplasia. J Clin Ultrasound. 2022;50(9):1322–1327. https://doi.org/10.1002/jcu.23207.; Oulego-Erroz I, Alonso-Quintela P, Terroba-Seara S, Jiménez-González A, Rodríguez-Blanco S. Early assessment of lung aeration using an ultrasound score as a biomarker of developing bronchopulmonary dysplasia: a prospective observational study. J Perinatol. 2021;41(1):62–68. https://doi.org/10.1038/s41372-020-0724-z.; Soll RF, Morley CJ. Prophylactic versus selective use of surfactant for preventing morbidity and mortality in preterm infants. Cochrane Database Syst Rev. 2000;(2):CD000510. https://doi.org/10.1002/14651858.CD000510.; Polin RA, Carlo WA; Committee on Fetus and Newborn; American Academy of Pediatrics. Surfactant replacement therapy for preterm and term neonates with respiratory distress. Pediatrics. 2014;133(1):156–163. https://doi.org/10.1542/peds.2013-3443.; Perez-Gil J, Weaver TE. Pulmonary surfactant pathophysiology: current models and open questions. Physiology. 2010;25(3):132–141. https://doi.org/10.1152/physiol.00006.2010.; Jeon GW. Surfactant preparations for preterm infants with respiratory distress syndrome: past, present, and future. Korean J Pediatr. 2019;62(5):155–161. https://doi.org/10.3345/kjp.2018.07185.; Minocchieri S, Berry CA, Pillow JJ; CureNeb Study Team. Nebulised surfactant to reduce severity of respiratory distress: a blinded, parallel, randomised controlled trial. Arch Dis Child Fetal Neonatal Ed. 2019;104(3):F313–F319. https://doi.org/10.1136/archdischild-2018-315051.; Robillard E, Alarie Y, Dagenais-Perusse P, Baril E, Guilbeault A. Microaerosol administration of synthetic beta-gamma-dipalmitoyl-L-alpha-lecithin in the respiratory distress syndrome: a preliminary report. Can Med Assoc J. 1964;90(2):55–57. Available at: https://pubmed.ncbi.nlm.nih.gov/?term=Microaerosol+administration+of+synthetic+beta-gamma-dipalmitoyl-L-alphalecithin+in+the+respiratory+distress+syndrome%3A+a+preliminary+report.; Adams FH, Towers B, Osher AB, Ikegami M, Fujiwara T, Nozaki M. Effects of tracheal instillation of natural surfactant in premature lambs. I. Clinical and autopsy findings. Pediatr Res. 1978;12(8):841–848. https://doi.org/10.1203/00006450-197808000-00008.; Isayama T, Iwami H, McDonald S, Beyene J. Association of Noninvasive Ventilation Strategies With Mortality and Bronchopulmonary Dysplasia Among Preterm Infants: A Systematic Review and Meta-analysis. JAMA. 2016;316(6):611–624. https://doi.org/10.1001/jama.2016.10708.; Verder H, Robertson B, Greisen G, Ebbesen F, Albertsen P, Lundstrøm K, Jacobsen T. Surfactant therapy and nasal continuous positive airway pressure for newborns with respiratory distress syndrome. Danish-Swedish Multicenter Study Group. N Engl J Med. 1994;331(16):1051–1055. https://doi.org/10.1056/NEJM199410203311603.; Herting E, Härtel C, Göpel W. Less invasive surfactant administration (LISA): chances and limitations. Arch Dis Child Fetal Neonatal Ed. 2019;104(6):F655-F659 . https://doi.org/10.1136/archdischild-2018-316557.; Pillow JJ, Minocchieri S. Innovation in surfactant therapy II: surfactant administration by aerosolization. Neonatology. 2012;101(4):337–344. https://doi.org/10.1159/000337354.; Mazela J, Merritt TA, Finer NN. Aerosolized surfactants. Curr Opin Pediatr. 2007;19(2):155–162. https://doi.org/10.1097/MOP.0b013e32807fb013.; Bianco F, Pasini E, Nutini M, Murgia X, Stoeckl C, Schlun M et al. In Vitro Performance of an Investigational Vibrating-Membrane Nebulizer with Surfactant under Simulated, Non-Invasive Neonatal Ventilation Conditions: Influence of Continuous Positive Airway Pressure Interface and Nebulizer Positioning on the Lung Dose. Pharmaceutics. 2020;12(3):257. https://doi.org/10.3390/pharmaceutics12030257.; Köhler E, Jilg G, Avenarius S, Jorch G. Lung deposition after inhalation with various nebulisers in preterm infants. Arch Dis Child Fetal Neonatal Ed. 2008;93(4):F275-F279. https://doi.org/10.1136/adc.2007.121285.; Linner R, Perez-de-Sa V, Cunha-Goncalves D. Lung deposition of nebulized surfactant in newborn piglets. Neonatology. 2015;107(4):277–282. https://doi.org/10.1159/000369955.; Nord A, Linner R, Milesi I, Zannin E, di Castri M, Bianco F et al. A novel delivery system for supraglottic atomization allows increased lung deposition rates of pulmonary surfactant in newborn piglets. Pediatr Res. 2020;87(6):1019–1024. https://doi.org/10.1038/s41390-020-0815-8.; Milesi I, Tingay DG, Zannin E, Bianco F, Tagliabue P, Mosca F et al. Intratracheal atomized surfactant provides similar outcomes as bolus surfactant in preterm lambs with respiratory distress syndrome. Pediatr Res. 2016;80(1):92–100. https://doi.org/10.1038/pr.2016.95.; Dani C, Talosi G, Piccinno A, Ginocchio VM, Balla G, Lavizzari A et al. A Randomized, Controlled Trial to Investigate the Efficacy of Nebulized Poractant Alfa in Premature Babies with Respiratory Distress Syndrome. J Pediatr. 2022;246:40–47.e5. https://doi.org/10.1016/j.jpeds.2022.02.054.; Liu S, Wang Y, Zhu X, Chen F, Shi Y. Comparative efficacy and safety of pulmonary surfactant delivery strategies in neonatal RDS: a network meta-analysis. BMC Pulm Med. 2024;24(1):637. https://doi.org/10.1186/s12890-024-03429-4.; Gaertner VD, Thomann J, Bassler D, Rüegger CM. Surfactant Nebulization to Prevent Intubation in Preterm Infants: A Systematic Review and Metaanalysis. Pediatrics. 2021;148(5):e2021052504 . https://doi.org/10.1542/peds.2021-052504.; Bautin A, Chubulava G, Kozlov I, Poptzov V, Osovskikh V, Seiliev A et al. Surfactant therapy for patients with ARDS after cardiac surgery. J Liposome Res. 2006;16(3):265–272. https://doi.org/10.1080/08982100600848777.; Rosenberg OA, Bautin AE, Osovskich VV, Tsibulkin EK, Gavrilin SV, Kozlov IA. When to start surfactant therapy (ST-therapy) of acute lung injury? Eur Respir J. 2001;18(Suppl. 38):153. https://doi.org/10.1183/09031936.01.00215301.; Vlasenko A, Osovskikh V, Tarasenko M, Rosenberg O. Efficiency of surfactant therapy for ALI/ARDS in homogenous nosologic groups of patients. Eur Respir J. 2005;26(Suppl. 49):90. https://doi.org/10.1183/09031936.05.00009005.; Баутин АЕ, Авдеев СН, Сейлиев АА, Швечкова МВ, Мержоева ЗМ, Трушенко НВ и др. Ингаляционная терапия сурфактантом в комплексном лечении тяжелой формы COVID-19-пневмонии. Туберкулез и болезни легких. 2020;98(9):6–12. https://doi.org/10.21292/2075-1230-2020-98-9-6-12.; Розенберг ОА. Препараты легочного сурфактанта и сурфактанттерапия ОРДС в условиях хирургической реанимации (обзор литературы). Креативная хирургия и онкология. 2019;9(1):50–65. https://doi.org/10.24060/2076-3093-2019-9-1-50-65.; Баутин АЕ, Наумов АБ, Рубинчик ВЕ, Осовских ВВ, Этин ВЛ, Розенберг ОА. Применение препарата экзогенного сурфактанта в кардиохирургических клиниках Санкт-Петербурга: от разработки методик к эволюции лечебной тактики. Трансляционная медицина. 2014;(1):92–97. https://doi.org/10.18705/2311-4495-2014-0-1-92-97.; Мороз ВВ, Власенко АВ, Голубев АМ, Яковлев ВН, Алексеев ВГ, Булатов НН, Смелая ТВ. Патогенез и дифференциальная диагностика острого респираторного дистресс-синдрома, обусловленного прямыми и непрямыми этиологическими факторами. Общая реаниматология. 2011;7(3):5. https://doi.org/10.15360/1813-9779-2011-3-5.; Карпова АЛ, Царева ТВ, Жерлицына ЛГ, Седова ГА, Лященко АЮ, Олендарь НВ. Ретроспективный анализ лечения недоношенных новорожденных куросурфом и сурфактантом BL. Интенсивная терапия. 2006;(4). Режим доступа: http://icj.ru/journal/number-4-2006/89-retrospektivnyy-analiz-lecheniya-nedonoshennyh-novorozhdennyhkurosurfomi-surfaktantom-bl.html.; Антонов АГ, Рындин АЮ. Сурфактант-БЛ в комплексной терапии респираторных нарушений у новорожденных детей. Вопросы практической педиатрии. 2007;2(4):61–64. Режим доступа: https://www.phdynasty.ru/katalog/zhurnaly/voprosy-prakticheskoy-pediatrii/2007/tom-2-nomer-4/11391.; Перепелица СА, Голубев АМ, Мороз ВВ. Влияние экзогенных сурфактантов на показатели газового состава крови у новорождённых с респираторным дистресс-синдромом. Общая реаниматология. 2007;3(3):59. https://doi.org/10.15360/1813-9779-2007-3-59.

  8. 8
  9. 9
  10. 10
  11. 11
  12. 12

    Source: Obstetrics, Gynecology and Reproduction; Vol 18, No 4 (2024); 581-595 ; Акушерство, Гинекология и Репродукция; Vol 18, No 4 (2024); 581-595 ; 2500-3194 ; 2313-7347

    File Description: application/pdf

    Relation: https://www.gynecology.su/jour/article/view/2114/1238; https://www.gynecology.su/jour/article/view/2114/1239; Wiswell T.E., Tuggle J.M., Turner B.S. Meconium aspiration syndrome: have we made a difference? Pediatrics. 1990;85(5):715-21.; Cleary G.M., Wiswell T.E. Meconium-stained amniotic fluid and the meconium aspiration syndrome. An update. Pediatr Clin North Am. 1998;45(3):511-29. https://doi.org/10.1016/s0031-3955(05)70025-0.; Nathan L., Leveno K.J., Carmody T.J. et al. Meconium: a 1990s perspective on an old obstetric hazard. Obstet Gynecol. 1994;83(3):329-32.; Ross M.G. Meconium aspiration syndrome - more than intrapartum meconium. N Engl J Med. 2005;353(9):946-8. https://doi.org/10.1056/NEJMe058149.; Ostrea E.M., Naqvi M. The influence of gestational age on the ability of the fetus to pass meconium in utero. Clinical implications. Acta Obstet Gynecol Scand. 1982;61(3):275-7. https://doi.org/10.3109/00016348209156571.; Usher R.H., Boyd M.E., McLean F.H., Kramer M.S. Assessment of fetal risk in postdate pregnancies. Am J Obstet Gynecol. 1988;158(2):259-64. https://doi.org/10.1016/0002-9378(88)90134-2.; Dargaville P.A., Copnell B.; Australian and New Zealand Neonatal Network. The epidemiology of meconium aspiration syndrome: incidence, risk factors, therapies, and outcome. Pediatrics. 2006;117(5):1712-21. https://doi.org/10.1542/peds.2005-2215.; Velaphi S., Vidyasagar D. Intrapartum and postdelivery management of infants born to mothers with meconium-stained amniotic fluid: evidence-based recommendations. Clin Perinatol. 2006;33(1):29-42. https://doi.org/10.1016/j.clp.2005.11.014.; Ghidini A., Spong C.Y. Severe meconium aspiration syndrome is not caused by aspiration of meconium. Am J Obstet Gynecol. 2001;185(4):931-8. https://doi.org/10.1067/mob.2001.116828.; Богомазова И.М., Стрижаков А.Н., Игнатко И.В. и др. Неонатальная аспирация мекония: факторы риска и адаптация новорожденных. Акушерство, Гинекология и Репродукция. 2018;12(4):5-14. https://doi.org/10.17749/2313-7347.2018.12.4.005-014.; Singh B.S., Clark R.H., Powers R.J., Spitzer A.R. Meconium aspiration syndrome remains a significant problem in the NICU: outcomes and treatment patterns in term neonates admitted for intensive care during a ten-year period. JPerinatol. 2009;29(7):497-503. https://doi.org/10.1038/jp.2008.241.; Radiological Imaging of the Neonatal Chest. 2nd Revised Edition. Ed. V. Donoqhue. Springer, 2008. 362 p.; Goldsmith J.P. Continuous positive airway pressure and conventional mechanical ventilation in the treatment of meconium aspiration syndrome. JPerinatol. 2008;28 Suppl 3:S49-55. https://doi.org/10.1038/jp.2008.156.; Wiswell T.E., Gannon C.M., Jacob J. et al. Delivery room management of the apparently vigorous meconium-stained neonate: results of the multicenter, international collaborative trial. Pediatrics. 2000;105 (1 Pt 1):1–7. https://doi.org/10.1542/peds.105.1.1.; Bondarev V.V., Mostovoy A.V., Narimanbecov I.O. High frequency oscillatory ventilation in respiratory treatment of neonates with severe respiratory distress syndrome. The 7th Baltic Sea Congress on Obstetrics and Gynecology. Журнал акушерства и женских болезней. 1999;48(5S):45. (In English). https://doi.org/10.17816/JOWD100809.; Lin H.C., Su B.H., Lin T.W. et al. System-based strategy for the management of meconium aspiration syndrome: 198 consecutive cases observations. Acta Paediatr Taiwan. 2005;46(2):67-71.; Keszler M., Molina B., Butterfield A.B., Subramanian K.N. Combined high-frequency jet ventilation in a meconium aspiration model. Crit Care Med. 1986;14(1):34-8. https://doi.org/10.1097/00003246-198601000-00009.; Tingay D.G., Mills J.F., Morley C.J. et al.; Australian and New Zealand Neonatal Network. Trends in use and outcome of newborn infants treated with high frequency ventilation in Australia and New Zealand, 1996-2003. J Paediatr Child Health. 2007;43(3):160-6. https://doi.org/10.1111/j.1440-1754.2007.01036.x.; Мостовой А.В., Иванов С.Л., Морозов К.А. Комплексная терапия легочной гипертензии у новорожденных с применением высокочастотной осцилляторной вентиляции легких и ингаляции оксида азота. Интенсивная терапия в неонатологии. 2003;(2):49-53.; Finer N.N., Barrington K.J. Nitric oxide for respiratory failure in infants born at or near term. Cochrane Database Syst Rev. 2006;(4):CD000399. https://doi.org/10.1002/14651858.CD000399.pub2.; Мостовой А.В., Карпова А.Л. Искусственная вентиляция легких у новорожденных. Физиологические особенности газообмена и механики дыхания как основа для управления параметрами вентиляции. Детские болезни сердца и сосудов. 2016;13(2):79-87.; De Luca D., van Kaam A.H., Tingay D.G. et al. The Montreux definition of neonatal ARDS: biological and clinical background behind the description of a new entity. Lancet Respir Med. 2017;5(8):657-66. https://doi.org/10.1016/S2213-2600(17)30214-X.; Schumacher R.E., Roloff D.W., Chapman R. et al. Extracorporeal membrane oxygenation in term newborns. A prospective cost-benefit analysis. ASAIO J. 1993;39(4):873-9.; Lakshminrusimha S., Keszler M. Persistent pulmonary hypertension of the newborn. Neoreviews. 2015;16(12):e680-e692. https://doi.org/10.1542/neo.16-12-e680.; Kugelman A., Gangitano E., Taschuk R. et al. Extracorporeal membrane oxygenation in infants with meconium aspiration syndrome: a decade of experience with venovenous ECMO. J Pediatr Surg. 2005;40(7):1082-9. https://doi.org/10.1016/j.jpedsurg.2005.03.045.; Dargaville P.A., Copnell B., Mills J.F. et al.; lessMAS Trial Study Group. Randomized controlled trial of lung lavage with dilute surfactant for meconium aspiration syndrome. J Pediatr. 2011;158(3):383-389.e2. https://doi.org/10.1016/j.jpeds.2010.08.044.; Dargaville P.A. Innovation in surfactant therapy I: surfactant lavage and surfactant administration by fluid bolus using minimally invasive techniques. Neonatology. 2012;101(4):326-36. https://doi.org/10.1159/000337346.; Hahn S., Choi H.J., Soll R., Dargaville P.A. Lung lavage for meconium aspiration syndrome in newborn infants. Cochrane Database Syst Rev. 2013;(4):CD003486. https://doi.org/10.1002/14651858.CD003486.pub2.; Arayici S., Sari F.N., Kadioglu Simsek G. et al. Lung lavage with dilute surfactant vs. bolus surfactant for meconium aspiration syndrome. J Trop Pediatr. 2019;65(5):491-7. https://doi.org/10.1093/tropej/fmy081.; Xu Y., Guo X., Chen M. et al. Efficacy of synthetic surfactant (CHF5633) bolus and/or lavage in meconium-induced lung injury in ventilated newborn rabbits. Pediatr Res. 2023;93(3):541-50. https://doi.org/10.1038/s41390-022-02152-2.; Rey-Santano C., Alvarez-Diaz F.J., Mielgo V. et al. Bronchoalveolar lavage versus bolus administration of lucinactant, a synthetic surfactant in meconium aspiration in newborn lambs. Pediatr Pulmonol. 2011t;46(10):991-9. https://doi.org/10.1002/ppul.21460.; Инструкция по медицинскому применению лекарственного препарата Сурфактант-БЛ. М.: Министерство здравоохранения Российской Федерации, 2021. 21 с. Режим доступа: https://biosurf.ru/upload/iblock/c9f/c9fdfc8dc57585fcc4e53d6b0eed8fb3.pdf. [Дата обращения: 09.05.2024].; Виноградова И.В., Никифорова Г.И. Применение сурфактанта БЛ у новорожденных с синдромом аспирации мекония. Российский вестник перинатологии и педиатрии. 2011;(4):15-9.; Hui R., Jing-Jing P., Yun-Su Z. et al. Surfactant lavage for neonatal meconium aspiration syndrome-An updated meta-analysis. J Chin Med Assoc. 2020;83(8):761-73. https://doi.org/10.1097/JCMA.0000000000000357.; Lam B.C., Yeung C.Y. Surfactant lavage for meconium aspiration syndrome: a pilot study. Pediatrics. 1999;103(5 Pt 1):1014-8. https://doi.org/10.1542/peds.103.5.1014.; Kowalska K, Szymankiewicz M, Gadzinowski J. Aneffectiveness of surfactant lung lavage (SLL) in meconium aspiration syndrome (MAS). Przegl Lek. 2002;59 Suppl 1:21-4. (In Polish).; Schlössser R.L., Veldman A., Fischer D. et al. Lavage with exogenous surfactant in neonatal meconium aspiration syndrome. Z Geburtshilfe Neonatol. 2002;206(1):15-8. (In German). https://doi.org/10.1055/s-2002-20945.; Wiswell T.E., Knight G.R., Finer N.N. et al. A multicenter, randomized, controlled trial comparing Surfaxin (Lucinactant) lavage with standard care for treatment of meconium aspiration syndrome. Pediatrics. 2002;109(6):1081-7. https://doi.org/10.1542/peds.109.6.1081.; Chang H.Y., Hsu C.H., Kao H.A. et al. Treatment of severe meconium aspiration syndrome with dilute surfactant lavage. J Formos Med Assoc. 2003;102(5):326-30.; Salvia-Roigés M.D., Carbonell-Estrany X., Figueras-Aloy J., Rodríguez-Miguélez J.M. Efficacy of three treatment schedules in severe meconium aspiration syndrome. Acta Paediatr. 2004;93(1):60-5.; Dargaville P.A., Mills J.F., Copnell B. et al. Therapeutic lung lavage in meconium aspiration syndrome: a preliminary report. J Paediatr Child Health. 2007;43(7-8):539-45. https://doi.org/10.1111/j.1440-1754.2007.01130.x.; Lee S.M., Kim H.M., Jeon J.H. et al. Effect of surfactant lavage in severe Meconium Aspiration Syndrome. Korean J Pediatr. 2008;51:367-71.; Gu H.R. Effect of pig surfactant lung lavage on severe meconium aspiration syndrome. Xian Dai Zhen DuanYu Zhi Liao. 2018;29:719-20. (In Chinese}.; Bandiya P., Nangia S., Saili A. Surfactant lung lavage vs. standard care in the treatment of meconium aspiration syndrome - a randomized trial. J Trop Pediatr. 2019;65(2):114-21. https://doi.org/10.1093/tropej/fmy024.; Jeng M.J., Soong W.J., Lee Y.S. Effective lavage volume of diluted surfactant improves the outcome of meconium aspiration syndrome in newborn piglets. Pediatr Res. 2009;66(1):107-12. https://doi.org/10.1203/PDR.0b013e3181a29092.; Hung H.Y., Jim W.T., Hsu C.H. et al. Small versus large volume dilute surfactant lavage for meconium aspiration syndrome. Acta Paediatr Taiwan. 2006;47(4):181-6.; Клинические рекомендации - Бронхолегочная дисплазия (у детей) - 2024-2025-2026 (05.06.2024). М.: Министерство здравоохранения Российской Федерации, 2024. 60 с. Режим доступа: http://disuria.ru/_ld/14/1425_kr24P27p1MZ.pdf. [Дата обращения: 09.05.2024].; Xiong J., Zhang L., Bao L. Complications and mortality of venovenous extracorporeal membrane oxygenation in the treatment of neonatal respiratory failure: a systematic review and meta-analysis. BMC Pulm Med. 2020;20(1):124. https://doi.org/10.1186/s12890-020-1144-8.; Geyer M., Gohrbandt B., Sagoschen I. et al. Pitfalls of cannulation for extracorporeal life support: review of the literature and illustrative case presentation. J Artif Organs. 2018;21(1):8-16. https://doi.org/10.1007/s10047-017-1004-3.; El Shahed A.I., Dargaville P.A., Ohlsson A., Soll R. Surfactant for meconium aspiration syndrome in term and late preterm infants. Cochrane Database Syst Rev. 2014;2014(12):CD002054. https://doi.org/10.1002/14651858.CD002054.pub3.; Janssen D.J., Carnielli V.P., Cogo P. et al. Surfactant phosphatidylcholine metabolism in neonates with meconium aspiration syndrome. J Pediatr. 2006;149(5):634-9. https://doi.org/10.1016/j.jpeds.2006.07.027.; Dargaville P.A., Mills J.F. Surfactant therapy for meconium aspiration syndrome: current status. Drugs. 2005;65(18):2569-91. https://doi.org/10.2165/00003495-200565180-00003.; Lo C.W., Jeng M.J., Chang F.Y. et al. Therapeutic lung lavage with diluted surfactant in neonates with severe meconium aspiration syndrome. J Chin Med Assoc. 2008;71(2):103-9. https://doi.org/10.1016/S1726-4901(08)70084-4.; Terasaka D., Clark D.A., Singh B.N., Rokahr J. Free fatty acids of human meconium. Biol Neonate. 1986;50(1):16-20. https://doi.org/10.1159/000242556.; Розенберг О.А. Лёгочный сурфактант и его применение при заболеваниях лёгких. Общая реаниматология. 2007;3(1):66-77. https://doi.org/10.15360/1813-9779-2007-1-66-77.; Мостовой А.В., Карпова А.Л., Межинский С.С., Володин Н.Н. Влияние различных концентраций порактанта альфа с одинаковой дозой на исходы у недоношенных новорожденных менее 32 недель. Акушерство, Гинекология и Репродукция. 2023;17(5):565—583. (In English). https://doi.org/10.17749/2313-7347/ob.gyn.rep.2023.448.; van der Bleek J., Plotz F.B., van Overbeek F.M. et al. Distribution of exogenous surfactant in rabbits with severe respiratory failure: the effect of volume. Pediatr Res. 1993;34(2):154-8. https://doi.org/10.1203/00006450-199308000-00009.; Lista G., Bianchi S., Castoldi F. et al. Bronchoalveolar lavage with diluted porcine surfactant in mechanically ventilated term infants with meconium aspiration syndrome. Clin Drug Investig. 2006;26(1):13-9. https://doi.org/10.2165/00044011-200626010-00002.; Lejeune T., Pfister R.E. Surfactant lavage for extracorporeal membrane oxygenation-requiring meconium aspiration syndrome - a cheap alternative. Eur J Pediatr. 2005;164(5):331-3. https://doi.org/10.1007/s00431-005-1624-0.; Dargaville P.A., Copnell B., Tingay D.G. et al. Refining the method of therapeutic lung lavage in meconium aspiration syndrome. Neonatology. 2008;94(3):160-3. https://doi.org/10.1159/000143394.; https://www.gynecology.su/jour/article/view/2114

  13. 13

    Source: The Russian Archives of Internal Medicine; Том 14, № 6 (2024); 405-418 ; Архивъ внутренней медицины; Том 14, № 6 (2024); 405-418 ; 2411-6564 ; 2226-6704

    File Description: application/pdf

    Relation: https://www.medarhive.ru/jour/article/view/1876/1367; https://www.medarhive.ru/jour/article/view/1876/1374; Данные генетического регистра. [Электронный ресурс]. URL: https://www.ncbi.nlm.nih.gov/gtr/tests/552741/. (дата обращения 11. 09. 2024).; Интерстициальные болезни легких: практическое руководство под ред. Н.А. Мухина. М.: Литера. 2007; 432 с.; Визель А.А., Горблянский Ю.Ю., Илькович М.М. и др. Фиброзирующий саркоидоз: от понимания к перспективе лечения. Практическая пульмонология. 2021; 1: 61-73.; Бирюкова С.С., Вишневский А.Г., Гимпельсон В.Е. и др. Как увеличить человеческий капитал и его вклад в экономическое и социальное развитие. Тезисы докладов к ХIX Апрельской международной научной конференции по проблемам развития экономики и общества, под ред. Кузьминова Я.И., Овчаровой Л.Н., Якобсона Л.И. Москва, Изд. дом Высшей школы экономики. 2018; 38-46.; Adegunsoye A., Oldham J.M., Fernandez Perez E.R., et al. Outcomes of immunosuppressive therapy in chronic hypersensitivity pneumonitis. ERJ Open Res. 2017; 3: 00016–2017. doi:10.1183/23120541.00016-2017.; Alder J.K., Stanley S.E., Wagner C.L., et al. Exome sequencing identifies mutant TINF2 in a family with pulmonary fibrosis. Chest. 2015; 147: 1361–8. doi:10.1378/chest.14-1947.; Allen R.J., Porte J., Braybrooke R., et al. Genetic variants associated with susceptibility to idiopathic pulmonary fibrosis in people of European ancestry: a genome-wide association study. Lancet Respir Med. 2017; 5: 869–80. doi:10.1016/S2213-2600(17)30387-9.; Antoine M.H., Mlika M. Interstitial Lung Disease.In: StatPearls. Treasure Island (FL): StatPearls Publishing. 2024. [Electronic resource]. URL: https://www.ncbi.nlm.nih.gov/books/NBK541084/ (date of the application: 02. 05. 2024).; Avci E., Sarvari P., Savai R., et al. Epigenetic Mechanisms in Parenchymal Lung Diseases: Bystanders or Therapeutic Targets? Int J Mol Sci. 2022; 23(1): 546. doi:10.3390/ijms23010546.; Raghu G., Remy-Jardin M., Myers J.L., et al. Diagnosis of idiopathic pulmonary fibrosis. An Official ATS/ERS/JRS/ALAT Clinical Practice Guideline. Am J Respir Crit Care Med. 2018; 198(5): e44–e68. doi:10.1164/rccm.201807-1255ST.; Bartczak K., Białas A.J.; Kotecki M.J., et al. More than a Genetic Code: Epigenetics of Lung Fibrosis. Mol. Diagn. Ther. 2020; 24: 665–681. doi:10.1007/s40291-020-00490-7.; Chen Y., Huang Z., Bao Y., et al. Increased p300/CBP expression in acute respiratory distress syndrome is associated with interleukin-17 and prognosis. Clin. Respir. J. 2020; 14: 791–799. doi:10.1111/crj.13197.; Cogan J.D., Kropski J.A., Zhao M., et al. Rare variants in RTEL1 are associated with familial interstitial pneumonia. Am J Respir Crit Care Med. 2015; 191: 646–55. doi:10.1164/rccm.201408-1510OC.; Collaborators GBDCRD. Prevalence and attributable health burden of chronic respiratory diseases, 1990–2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet Respir Med. 2020; 8: 585–96. doi:10.1016/S2213-2600(20)30105-3].; Dai J., Cai H., Li H., et al. Association between telomere length and survival in patients with idiopathic pulmonary fibrosis. Respirology. 2015; 20: 947–52. doi:10.1111/resp.12566.; Dickson R.P., Erb-Downward J.R., Martinez F.J., et al. The microbiome and the respiratory tract. Annu Rev Physiol. 2016; 78: 481–504. doi:10.1146/annurev-physiol-021115-105238.; Ding Q., Luckhardt T., Hecker L., et al. New Insights into the Pathogenesis and Treatment of Idiopathic Pulmonary Fibrosis. Drugs. 2011; 71: 981–1001. doi:10.2165/11591490-000000000-00000.; Falfán-Valencia R., Camarena A., Pineda C.L., et al. Genetic susceptibility to multicase hypersensitivity pneumonitis is associated with the TNF-238 GG genotype of the promoter region and HLADRB1*04 bearing HLA haplotypes. Respir Med. 2014; 108: 211–217. doi:10.1016/j.rmed.2013.11.004.; Fingerlin T.E., Murphy E., Zhang W., et al. Genome-wide association study identifies multiple susceptibility loci for pulmonary fibrosis. Nat Genet, 2013; 45: 613–20. doi:10.1038/ng.2609.; Garbuzenko O.B., Ivanova V., Kholodovych V., et al. Combinatorial treatment of idiopathic pulmonary fibrosis using nanoparticles with prostaglandin E and siRNA(s). Nanomed. Nanotechnol. Biol. Med. 2017; 13: 1983–1992. doi:10.1016/j.nano.2017.04.005; Hannum G., Guinney J., Zhao L., et al. Genome-wide Methylation Profiles Reveal Quantitative Views of Human Aging Rates. Mol. Cell. 2013; 49: 359–367. doi:10.1016/j.molcel.2012.10 .016.; Hao Y., Bates S., Mou H., et al. Genome-Wide Association Study: Functional Variant rs2076295 Regulates Desmoplakin Expression in Airway Epithelial Cells. Am J Respir Crit Care Med. 2020; 202(9): 1225-1236. doi:10.1164/rccm.201910-1958OC.; Herazo-Maya J.D., Sun J., Molyneaux P.L., et al. Validation of a 52-gene risk profile for outcome prediction in patients with idiopathic pulmonary fibrosis: an international, multicentre, cohort study. Lancet Respir Med. 2017; 5: 857–68. doi:10.1016/S2213-2600(17)30349-1.; Hewitt R.J., Molyneaux P.L. The respiratory microbiome in idiopathic pulmonary fibrosis. Ann Transl Med. 2017; 5: 250. doi:10.21037/atm.2017.01.56.; Huang Y., Ma S.F., Espindola M.S., et al. Microbes are associated with host innate immune response in idiopathic pulmonary fibrosis. Am J Respir Crit Care Med. 2017; 196: 208–19. doi:10.1164/rccm.201607-1525OC.; Killian H., Ozaki M., Philippot Q., et al. A roadmap to precision treatments for familial pulmonary fibrosis. eBioMedicine. EBioMedicine. 2024; 104: 105135. doi:10.1016/j.ebiom.2024.105135.; Justet A., Klay D., Porcher R., et al. Safety and efficacy of pirfenidone and nintedanib in patients with idiopathic pulmonary fibrosis and carrying a telomere-related gene mutation. Eur. Respir. J. 2021; 57: 2003198. doi:10.1183/13993003.03198-2020.; Kaminski N. Microarray analysis of idiopathic pulmonary fibrosis. Am. J. Respir. Cell Mol. Biol. 2003; 29(3): S32–S36.; Kannengiesser C., Borie R., Ménard C., et al. Heterozygous RTEL1 mutations are associated with familial pulmonary fibrosis. Eur Respir J. 2015; 46: 474–85. doi:10.1183/09031936.00040115; King Jr T.E., Bradford W.Z., C astro-Bernardini S., et al. A phase 3 trial of pirfenidone in patients with idiopathic pulmonary fibrosis. N Engl J Med. 2014; 370: 2083–92. doi:10.1056/NEJMoa1402582.; Koh H.B., Scruggs A.M., Huang S.K. Transforming growth factor-β1 increases DNA methyltransferase 1 and 3a ex-pression through distinct post-transcriptional mechanisms in lung fibroblasts. J. Biol. Chem. 2 016; 291: 19287–19298.; Krishna R. Genetic Testing in Interstitial Lung Disease: Potential Benefits and Unintended Risks. Curr Pulmonol Rep. 2023; 12: 228–238.; Kropski J.A., Mitchell D.B., Markin C., et al. A novel dyskerin (DKC1) mutation is associated with familial interstitial pneumon ia. Chest. 2014; 146: e1–7. doi:10.1378/chest.13-2224.; Kwapiszewska G., Gungl A., Wilhelm J., et al. Transcriptome profiling reveals the complexity of pirfenidone effects in idiopathic pulmonary fibrosis. Eur. Respir. J. 2018; 52: 1800564. doi:10.1183/13993003.00564-2018.; Ley B., Newton C.A., Arnould I., et al. The MUC5B promoter polymorphism and telomere length in patients with chronic hypersensitivity pneumonitis: an observational cohort-control study. Lancet Respir Med. 2017; 5: 639–47. doi:10.1016/S2213-2600(17)30216-3.; Martinez F.J., Collard H.R., Pardo A., et al. Idiopathic pulmonary fibrosis. Nat. Rev. Dis. Prim. 2017; 3: 17074. doi:10.1038/nrdp.2017.74.; Mathai S.K., Pedersen B.S., Smith K., et al. Desmoplakin Variants Are Associated with Idiopathic Pulmonary Fibrosis. Am J Respir Crit Care Med. 2016; 193(10): 1151-60. doi:10.1164/rccm.201509-1863OC.; Michalski J.E., Schwartz D.A. Genetic Risk Factors for Idiopathic Pulmonary Fibrosis: Insights into Immunopathogenesis. J Inflamm Res. 2021; 13: 1305-1318. doi:10.2147/JIR.S280958.; Molyneaux P.L., Maher T.M. Respiratory microbiome in IPF: cause, effect, or bio marker? Lancet Respir Med. 2014; 2: 511-513. doi:10.1016/S2213-2600(14)70088-8.; Molyneaux P.L., Willis-Owen S.A.G, Cox M.J., et al. Host-microbial interactions in idiopathic pulmonary fibrosis. Am J Respir Crit Care Med. 2017; 195: 1640–50. doi:10.1164/rccm.201607-1408OC.; Nakao A., Fujii M., Matsumura R., et al. Transient gene transfer and expression of Smad7 prevents bleomycin-induced lung fibrosis in mice. J. Clin. Investig. 1999; 104: 5–11. doi:10.1172/JCI6094.; Newton C.A., Molyneaux P.L., Oldham J.M. Clinical Genetics in Interstitial Lung Disease.Front. Med. 2018; 5: 116. doi:10.3389/fmed.2018.00116.; Oldham J.M., Ma S.F., Martinez F.J., et al. TOLLIP, MUC5B, and the response to N-acetylcysteine among individuals with idiopathic pulmonary fibrosis. Am J Respir Crit Care Med. 2015; 192: 1475–82. doi:10.1164/rccm.201505-1010OC.; Olson A.L., Gifford A.H., Inase N., et al. The epidemiology of idiopathic pulmonary fibrosis and interstitial lung diseases at risk of a progressive-fibrosing phenotype. Eur. Respir. Rev. 2018; 27(150): 180077. doi:10.1183/16000617.0077-2018.; Olson A.L., Brown K.K., Swi gris J.J. Understanding and optimizing health-related quality of life and physical functional capacity in idiopathic pulmonary fibrosis. Patient Relat Outcome Meas. 2016; 7: 29–35. doi:10.2147/PROM.S74857.; Povedano J.M., Martinez P., Serrano R., et al. Therapeutic effects of telomerase in mice with pulmonary fibrosis induced by damage to the lungs and short telomeres. eLife. 2018; 7: e31299. doi:10.7554/eLife.31299.; Raghu G., Chen S.-Y., Hou Q., et al. Incidence and prevalence of idiopathic pulmonary fibrosis in US adults 18-64 years old. Eur Respir J. 2016; 48: 179–86. doi:10.1183/13993003.01653-2015.; Roy M.G., Livraghi-Butrico A., Fletcher A.A., et al. Muc5b is required for airway defence. Nature. 2014; 505: 412–6. doi:10.1038/nature12807.; Rubio K., Singh I., Dobersch S., Sarvari P., Günther S., Cordero J., Mehta A., Wujak L., Cabrera-Fuentes H., Chao C.-M., et al. Inactivation of nuclear histone deacetylases by EP300 disrupts the MiCEE complex in idiopat hic pulmonary fibrosis. Nat. Commun. 2019; 10: 1–16. doi:10.1038/s41467-019-10066-7.; Ryerson C.J., Vittinghoff E., Ley B., et al. Predicting survival across chronic interstitial lung disease: the ILD-GAP model. Chest.2014; 145: 723–8. doi:10.1378/chest.13-1474.; Sakamoto S., Yazawa T., Baba Y., et al. Keratinocyte Growth Factor Gene Transduction Ameliorates Pulmonary Fibrosis Induced by Bleomycin in Mice. Am. J. Respir. Cell Mol. Biol. 2011; 45: 489–497. doi:10.1165/rcmb.2010-0092OC.; Salisbury M.L., Han M.K., Dickson R.P., Molyneaux PL. Microbiome in interstitial lung disease: from pathogenesis to treatment target. Curr Opin Pulm Med. 2017; 23: 404–10. doi:10.1097/MCP.0000000000000399.; Schwartz D.A. Idiopathic Pulmonary Fibrosis Is a Genetic Disease Involving Mucus and the Peripheral Airways. Ann. Am. Thorac. Soc. 2018; 15(S3): S192–S197. doi:10.1513/AnnalsATS.201802-144AW.; Seibold M.A., Wise A.L., Speer M.C., et al. A common M UC5B promoter polymorphism and pulmonary fibrosis. N Engl J Med. 2011; 364: 1503–12. doi:10.1056/NEJMoa1013660.; Selman M., Pardo A., Barrera L., et al. Gene Expression Profiles Distinguish Idiopathic Pulmonary Fibrosis from Hypersensitivity Pneumonitis. Am. J. Respir. Crit. Care Med. 2006; 173: 188–198. doi:10.1164/rccm.200504-644OC.; Sheu C.-C., Chang W.-A., Tsai M.-J., et al. Gene Expression Changes Associated with Nintedanib Treatment in Idiopathic Pulmonary Fibrosis Fibroblasts: A Next-Generation Sequencing and Bioinformatics Study. J. Clin. Med. 2019; 8: 308. doi:10.3390/jcm8030308.; Steele M.P., Speer M.C., Loyd J.E., et al. The Clinical and Pathologic Features of Familial Interstitial Pneumonia (FIP) Am. J. Respir. Crit. Care Med. 2005; 172: 1146–1152. doi:10.1164/rccm.200408-1104OC.; Stuart B.D., Choi J., Zaidi S., et al. Exome sequencing links mutations in PARN and RTEL1 with familial pulmonary fibrosis and telomere shortening. Nat Genet. 2015; 47: 512–7. doi:10.1038/ng.3278.; Stuart B.D ., Lee J.S., Kozlitina J., et al. Effect of telomere length on survival in patients with idiopathic pulmonary fibrosis: an observational cohort study with independent validation. Lancet Respir Med. 2014; 2: 557–65. doi:10.1016/S2213-2600(14)70124-9.; Taskar V.S., Coultas D.B. Is idiopathic pulmonary fibrosis an environmental disease? Proc. Am. Thorac. Soc. 2006; 3: 293–298. doi:10.1513/pats.200512-131TK.; Thannickal V.J., Henke C.A., Horowitz J.C., et al. Matrix biology of idiopathic pulmonary fibrosis: A workshop report of the national heart, lung, and blood institute. Am. J. Pathol. 2014; 184: 1643–1651. doi:10.1016/j.ajpath.2014.02.003.; Tirelli C., Morandi V., Valentini A., et al. Multidisciplinary Approach in the Early Detection of Undiagnosed Connective Tissue Diseases in Patients With Interstitial Lung Disease: A Retrospective Cohort Study. Front. Med. 2020; 7: 11. doi:10.3389/fmed.2020.00011.; Tirelli C., Pesenti C., Miozzo M., et al. The Genetic and Epigenetic Footprint in Idiopathic Pulmonary Fibrosis and Familial Pulmonary Fibrosis: A State-of-the-Art Review. Diagnostics. 2022; 12: 3107.; Watanabe M., Ebina M., Orson F.M., et al. Hepatocyte Growth Factor Gene Transfer to Alveolar Septa for Effective Suppression of Lung Fibrosis. Mol. Ther. 2005; 12: 58–67. doi:10.1016/j.ymthe.2005.02.019.; Yuan J., Li P., Pan H., et al. miR-542-5p Attenuates Fibroblast Activation by Targeting Integrin α6 in Silica-Induced Pulmonary Fibrosis. Int. J. Mol. Sci. 2018; 19: 3717. doi:10.3390/ijms19123717.; Zhang S., Liu H., Liu Y., et al. miR-30a as Potential Therapeutics by Targeting TET1 through Regulation of Drp-1 Promoter Hydroxymethylation in Idiopathic Pulmonary Fibrosis. Int. J. Mol. Sci. 2017; 18: 633. doi:10.3390/ijms18030633.; Zhang Y.S., Tu B., Song K. et al. Epigenetic hallmarks in pulmonary fibrosis: New advances and perspectives. Cell Signal. 2023; 110: 110842. doi:10.1016/j.cellsig.2023.110842.; https://www.medarhive.ru/jour/article/view/1876

  14. 14

    Source: Zdorovʹe Rebenka, Vol 13, Iss 5, Pp 516-523 (2018)
    CHILD`S HEALTH; Том 13, № 5 (2018); 516-523
    Здоровье ребенка-Zdorovʹe rebenka; Том 13, № 5 (2018); 516-523
    Здоров'я дитини-Zdorovʹe rebenka; Том 13, № 5 (2018); 516-523

    File Description: application/pdf

  15. 15
  16. 16
  17. 17
  18. 18
  19. 19

    Source: Лабораторная диагностика. Восточная Европа. :324-335

  20. 20