Výsledky vyhledávání - "сигнальный путь Notch"
-
1
Autoři: a další
Přispěvatelé: a další
Zdroj: Advances in Molecular Oncology; Vol 11, No 2 (2024); 97-105 ; Успехи молекулярной онкологии; Vol 11, No 2 (2024); 97-105 ; 2413-3787 ; 2313-805X
Témata: lung cancer, colorectal cancer, Notch signaling pathway, tumor progression, metastasis, cancer stem cells, рак легкого, колоректальный рак, сигнальный путь Notch, опухолевая прогрессия, метастазирование, опухолевые стволовые клетки
Popis souboru: application/pdf
Relation: https://umo.abvpress.ru/jour/article/view/680/356; https://umo.abvpress.ru/jour/article/view/680
-
2
Autoři: Lebedeva, E. I.
Zdroj: Морфологія, Vol 14, Iss 1, Pp 7-15 (2020)
Morphologia; Том 14, № 1 (2020); 7-15Témata: фіброз печінки, макрофаги, QH301-705.5, сигнальный путь Notch, фиброз печени, звездчатые клетки, синусоидальные эндотелиальные клетки, сигнальний шлях notch, сигнальний шлях Notch, зірчасті клітини, синусоїдальні ендотеліальні клітини, Notch signaling pathway, liver fibrosis, stellate cells, macrophages, sinusoidal endothelial cells, Biology (General), 3. Good health
Popis souboru: application/pdf
-
3
Autoři: a další
Přispěvatelé: a další
Zdroj: Cancer Urology; Том 15, № 1 (2019); 108-116 ; Онкоурология; Том 15, № 1 (2019); 108-116 ; 1996-1812 ; 1726-9776 ; 10.17650/1726-9776-2019-15-1
Témata: у-секретаза, adrenocortical carcinoma, renal cell cancer, prostate cancer, Notch signaling pathway, oncogene, tumor suppressor, monoclonal antibody, y-secretase, адренокортикальный рак, почечно-клеточная карцинома, рак предстательной железы, сигнальный путь Notch, онкоген, опухолевый супрессор, моноклональное антитело
Popis souboru: application/pdf
Relation: https://oncourology.abvpress.ru/oncur/article/view/876/834; Antoni S., Ferlay J., Soerjomataram I. et al. Bladder cancer incidence and mortality: a global overview and recent trends. Eur Urol 2017;71(1):96-108. DOI:10.1016/j.eururo.2016.06.010. PMID: 27370177.; Malats N., Real F. X. Epidemiology of bladder cancer. Hematol Oncol Clin North Am 2015;29(2):177—89. DOI:10.1016/j.hoc.2014.10.001. PMID: 25836927.; Rosenberg J.E., Hoffman-Censits J., Pow-les T. et al. Atezolizumab in patients with locally advanced and metastatic urothelial carcinoma who have progressed following treatment with platinum-based chemotherapy: a single-arm, multicentre, phase 2 trial. Lancet 2016;387(10031):1909-20. DOI:10.1016/S0140-6736(16)00561-4. PMID: 26952546.; Hussain M.H., Wood D.P., Bajorin D.F. et al. Bladder cancer: narrowing the gap between evidence and practice. J Clin Oncol 2009;27(34):5680-4. DOI:10.1200/JCO.2009.23.6901. PMID: 19858384.; Cancer Genome Atlas Research Network. Comprehensive molecular characterization of urothelial bladder carcinoma. Nature 2014;507(7492):315-22. DOI:10.1038/nature12965. PMID: 24476821.; Wilson A., Radtke F. Multiple functions of Notch signaling in self-renewing organs and cancer. FEBS Lett 2006;580(12): 2860-8. DOI:10.1016/j.febs-let.2006.03.024. PMID: 16574107.; Weng A.P., Ferrando A.A., Lee W. et al. Activating mutations of NOTCH1 in human T-cell acute lymphoblastic leukemia. Science 2004;306(5694):269—71. DOI:10.1126/science.1102160. PMID: 15472075.; Lin C., Zheng H., Wang C. et al. Mutations increased overexpression of Notch1 in T-cell acute lymphoblastic leukemia. Cancer Cell Int 2012;12:13. DOI:10.1186/1475-2867-12-13. PMID: 22480166.; Clay M.R., Varma S., West R.B. MAST2 and NOT CH1 translocations in breast carcinoma and associated pre-invasive lesions. Hum Pathol 2013;44(12):2837—44. DOI:10.1016/j.humpath.2013.08.001. PMID: 24140425.; Tonon G., Modi S., Wu L. et al. t(11;19) (q21;p13) translocation in mucoepidermoid carcinoma creates a novel fusion product that disrupts a Notch signaling pathway. Nat Genet 2003;33(2):208—13. DOI:10.1038/ng1083. PMID: 12539049.; Hori K., Sen A., Artavanis-Tsakonas S. Notch signaling at a glance. J Cell Sci 2013;126(Pt 10):2135—40. DOI:10.1242/jcs.127308. PMID: 23729744.; Hsieh J.J., Hayward S.D. Masking of the CBF1/RBPJ kappa transcriptional repression domain by Epstein—Barr virus EBNA2. Science 1995;268(5210):560—3. PMID: 7725102.; Dou S., Zeng X., Cortes P. et al. The recombination signal sequence-binding protein RBP-2N functions as a transcriptional repressor. Mol Cell Biol 1994;14(5): 3310—9. PMID: 8164682.; Ronchi C.L., Sbiera S., Altieri B. et al. Notch1 pathway in adrenocortical carcinomas: correlations with clinical outcome. Endocr Relat Cancer 2015;22(4):531—43. DOI:10.1530/ERC-15-0163. PMID: 25979380.; Simon D.P., Giordano T.J., Hammer G.D. Upregulated JAG1 enhances cell proliferation in adrenocortical carcinoma. Clin Cancer Res 2012;18(9):2452—64. DOI:10.1158/1078-0432.CCR-11-2371. PMID: 22427350.; Toso A., Revandkar A., Di Mitri D. et al. Enhancing chemotherapy efficacy in Pten-deficient prostate tumors by activating the senescence-associated antitumor immunity. Cell Rep 2014;9(1):75—89. DOI:10.1016/j.celrep.2014.08.044. PMID: 25263564.; Wang X.D., Leow C.C., Zha J. et al. Notch signaling is required for normal prostatic epithelial cell proliferation and differentiation. Dev Biol 2006;290(1):66—80. DOI:10.1016/j.ydbio.2005.11.009. PMID: 16360140.; Wu X., Xu K., Zhang L. et al. Differentiation of the ductal epithelium and smooth muscle in the prostate gland are regulated by the Notch/PTEN-dependent mechanism. Dev Biol 2011;356(2):337—49. DOI:10.1016/j.ydbio.2011.05.659. PMID: 21624358.; LaTulippe E., Satagopan J., Smith A. et al. Comprehensive gene expression analysis of prostate cancer reveals distinct transcriptional programs associated with metastatic disease. Cancer Res 2002;62(15):4499— 506. PMID: 12154061.; Santagata S., Demichelis F., Riva A. et al. JAGGED1 expression is associated with prostate cancer metastasis and recurrence. Cancer Res 2004;64(19):6854—7. DOI:10.1158/0008-5472.CAN-04-2500. PMID: 15466172.; Zayzafoon M., Abdulkadir S.A., McDonald J.M. Notch signaling and ERK activation are important for the osteomi-metic properties of prostate cancer bone metastatic cell lines. J Biol Chem 2004;279(5):3662—70. DOI:10.1074/jbc.M308158200. PMID: 14602722.; Peruzzi B., Athauda G., Bottaro D.P. The von Hippel—Lindau tumor suppressor gene product represses oncogenic beta-catenin signaling in renal carcinoma cells. Proc Natl Acad Sci USA 2006;103(39): 14531-6. DOI:10.1073/pnas.0606850103. PMID: 16983094.; Turcotte S., Chan D.A., Sutphin P.D. et al. A molecule targeting VHL-deficient renal cell carcinoma that induces autophagy. Cancer Cell 2008;14(1):90-102. DOI:10.1016/j.ccr.2008.06.004. PMID: 18598947.; Ding M., Cui S., Li C. et al. Loss of the tumor suppressor Vhlh leads to upregula-tion of Cxcr4 and rapidly progressive glomerulonephritis in mice. Nat Med 2006;12(9):1081 —7. DOI:10.1038/nm1460. PMID: 16906157.; Patel U., Simpson E., Kingswood J.C., Saggar-Malik A.K. Tuberose sclerosis complex: analysis of growth rates aids differentiation of renal cell carcinoma from atypical or minimal-fat-containing angio-myolipoma. Clin Radiol 2005;60(6): 665—73. DOI:10.1016/j.crad.2005.01.009. PMID: 16038693.; Walker C. Molecular genetics of renal carcinogenesis. Toxicol Pathol 1998;26(1):113—20. DOI:10.1177/019262339802600113. PMID: 9502393.; Aparicio L.M., Villaamil V.M., Gallego G.A. et al. Expression of Notch1 to -4 and their ligands in renal cell carcinoma: a tissue microarray study. Cancer Genomics Proteomics 2011;8(2):93—101. PMID: 21471519.; Gustafsson M.V., Zheng X., Pereira T. et al. Hypoxia requires Notch signaling to maintain the undifferentiated cell state. Dev Cell 2005;9(5):617—28. DOI:10.1016/j.devcel.2005.09.010. PMID: 16256737.; Karbowniczek M., Zitserman D., Khabibullin D. et al. The evolutionarily conserved TSC/Rheb pathway activates Notch in tuberous sclerosis complex and Drosophila external sensory organ development. J Clin Invest 2010;120(1):93—102. DOI:10.1172/JCI40221. PMID: 20038815.; Bielesz B., Sirin Y., Si H. et al. Epithelial Notch signaling regulates interstitial fibrosis development in the kidneys of mice and humans. J Clin Invest 2010;120(11): 4040—54. DOI:10.1172/JCI43025. PMID: 20978353.; Sjolund J., Johansson M., Manna S. et al. Suppression of renal cell carcinoma growth by inhibition of Notch signaling in vitro and in vivo. J Clin Invest 2008;118(1):217—28. DOI:10.1172/JCI32086. PMID: 18079963.; Liang L., Zhang H.W., Liang J. et al. KyoT3, an isoform of murine FHL1, associates with the transcription factor RBP-J and represses the RBP-J-mediated transactivation. Biochim Biophys Acta 2008;1779(12):805—10. DOI:10.1016/j.bbagrm.2008.08.001. PMID: 18760388.; Surendran K., Selassie M., Liapis H. et al. Reduced Notch signaling leads to renal cysts and papillary microadenomas. J Am Soc Nephrol 2010;21(5):819—32. DOI:10.1681/ASN.2009090925. PMID: 20378824.; https://portal.gdc.cancer.gov/.; Greife A., Jankowiak S., Steinbring J. et al. Canonical Notch signalling is inactive in urothelial carcinoma. BMC Cancer 2014;14:628. DOI:10.1186/1471-2407-14-628. PMID: 25167871.; Maraver A., Fernandez-Marcos P.J., Cash T.P. et al. NOTCH pathway inactivation promotes bladder cancer progression. J Clin Invest 2015;125(2):824—30. DOI:10.1172/JCI78185. PMID: 25574842.; Rampias T., Vgenopoulou P., Avgeris M. et al. A new tumor suppressor role for the Notch pathway in bladder cancer. Nat Med 2014;20(10):1199—205. DOI:10.1038/nm.3678. PMID: 25194568.; Xu T., Wu X., Chen Q. et al. The anti-apoptotic and cardioprotective effects of salvianolic acid A on rat cardiomyocytes following ischemia/reperfusion by DUSP-mediated regulation of the ERK1/2/JNK pathway. PLoS One 2015;9(7):e102292. DOI:10.1371/journal.pone.0102292. PMID: 25019380.; Kimura F., Florl A.R., Seifert H.H. et al. Destabilization of chromosome 9 in transitional cell carcinoma of the urinary bladder. Br J Cancer 2001;85(12):1887—93. DOI:10.1054/bjoc.2001.2154. PMID: 11747331.; Goriki A., Seiler R., Wyatt A.W. et al. Unravelling disparate roles of NOTCH in bladder cancer. Nat Rev Urol 2018;15(6):345—57. DOI:10.1038/s41585-018-0005-1. PMID: 29643502.; Garcia-Cao I., Duran A., Collado M. et al. Tumour-suppression activity of the proapoptotic regulator Par4. EMBO Rep 2005;6(6):577—83. DOI:10.1038/sj.em-bor.7400421. PMID: 15877079.; Hayashi T., Gust K.M., Wyatt A.W. et al. Not all NOTCH is created equal: the oncogenic role of NOT CH2 in bladder cancer and its implications for targeted therapy. Clin Cancer Res 2016;22(12):2981—92. DOI:10.1158/1078-0432.CCR-15-2360. PMID: 26769750.; Fan X., Mikolaenko I., Elhassan I. et al. Notch1 and Notch2 have opposite effects on embryonal brain tumor growth. Cancer Res 2004;64(21):7787—93. DOI:10.1158/0008-5472.CAN-04-1446. PMID: 15520184.; Mazur P.K., Einwachter H., Lee M. et al. Notch2 is required for progression of pancreatic intraepithelial neoplasia and development of pancreatic ductal adenocarcinoma. Proc Natl Acad Sci USA 2010;107(30):13438—43. DOI:10.1073/pnas.1002423107. PMID: 20624967.; Hanlon L., Avila J.L., Demarest R.M. et al. Notch1 functions as a tumor suppressor in a model of K-ras-induced pancreatic ductal adenocarcinoma. Cancer Res 2010;70(11):4280—6. DOI:10.1158/0008-5472.CAN-09-4645. PMID: 20484026.; Wu Y., Cain-Hom C., Choy L. et al. Therapeutic antibody targeting of individual Notch receptors. Nature 2010;464(7291):1052—7. DOI:10.1038/nature08878. PMID: 20393564.; Zhang H., Liu L., Liu C. et al. Notch3 overexpression enhances progression and chemoresistance of urothelial carcinoma. Oncotarget 2017;8(21):34362—73. DOI:10.18632/oncotarget.16156. PMID: 28416766.; Luistro L., He W., Smith M. et al. Preclinical profile of a potent y-secretase inhibitor targeting notch signaling with in vivo efficacy and pharmacodynamic properties. Cancer Res 2009;69(19):7672—80. DOI:10.1158/0008-5472.CAN-09-1843. PMID: 19773430.; Yuan X., Wu H., Xu H. et al. Notch signaling: An emerging therapeutic target for cancer treatment. Cancer Lett 2015;369(1):20—7. DOI:10.1016/j.can-let.2015.07.048. PMID: 26341688.; Doody R.S., Raman R., Farlow M. et al. A phase 3 trial of semagacestat for treatment of Alzheimer’s disease. N Engl J Med 2013;369(4):341—50. DOI:10.1056/NEJMoa1210951. PMID: 23883379.; Dobranowski P., Ban F., Contreras-Sanz A. et al. Perspectives on the discovery of NOTCH2-specific inhibitors. Chem Biol Drug Des 2018;91(3):691—706. DOI:10.1111/cbdd.13132. PMID: 29078041.; Ferrarotto R., Mitani Y., Diao L. et al. Activating NOTCH1 mutations define a distinct subgroup of patients with adenoid cystic carcinoma who have poor prognosis, propensity to bone and liver metastasis, and potential responsiveness to Notch1 inhibitors. J Clin Oncol 2017;35(3):352–60. DOI:10.1200/JCO.2016.67.5264. PMID: 27870570.; Yen W.C., Fischer M.M., Axelrod F. et al. Targeting notch signaling with a Notch2/ Notch3 antagonist (Tarextumab) inhibits tumor growth and decreases tumor-initiating cell frequency. Clin Cancer Res 2015;21(9):2084—95. DOI:10.1158/1078-0432.CCR-14-2808. PMID: 25934888.; Lee D., Kim D., Choi Y.B. et al. Simultaneous blockade of VEGF and Dll4 by HD105, a bispecific antibody, inhibits tumor progression and angiogenesis. MAbs 2016;8(5):892—904. DOI:10.1080/19420862.2016.1171432. PMID: 27049350.; Andersson E.R., Lendahl U. Therapeutic modulation of Notch signaling — are we there yet? Nat Rev Drug Discov 2014;13(5):357—78. DOI:10.1038/nrd4252. PMID: 24781550.; Espinoza I., Pochampally R., Xing F. et al. Notch signaling: targeting cancer stem cells and epithelial-to-mesenchymal transition. Onco Targets Ther 2013;6:1249-59. DOI:10.2147/OTT. S36162. PMID: 24043949.; Kangsamaksin T., Murtomaki A., Kofler N.M. et al. NOTCH decoys that selectively block DLL/NOTCH or JAG/ NOTCH disrupt angiogenesis by unique mechanisms to inhibit tumor growth. Cancer Discov 2015;5(2):182—97. DOI:10.1158/2159-8290.CD-14-0650. PMID: 25387766.; https://oncourology.abvpress.ru/oncur/article/view/876
-
4
Autoři: a další
Zdroj: Malignant tumours; № 2 (2016); 22-27 ; Злокачественные опухоли; № 2 (2016); 22-27 ; 2587-6813 ; 2224-5057
Témata: резистентность к химиотерапии, breast cancer, Notch signaling pathway, CD44+/CD24 low phenotype, chemotherapy resistance, рак молочной железы, сигнальный путь Notch, CD44+/CD24 low фенотип
Popis souboru: application/pdf
Relation: https://www.malignanttumors.org/jour/article/view/229/218; Visvander J. E., Lindeman G. J. // Cell Stem Cell. 2012. V.10. N5. P. 717–728.; Luo Y., Zhou X., Yakisich J. S. // Onco Targets Ther. 2014. V. 7. P. 1129–1134.; Plaks V., Kong N., Werb Z. // Cell Stem Cell. 2015. V. 16. № 3. P. 225–238.; Torre LA, Bray F, Siegel RL, Ferlay J., Lortet-Tieulent J, Jemal A. Global cancer statistics, 2012. CA Cancer J. Clin 2015;65:87–108.; Li X., Lewis M. T., Huang J. et al. Intrinsic resistance of tumorigenic breast cancer cells to chemotherapy. J Natl Cancer Inst 2008;100(9):672–9.; Lee H. E., Kim J. H., Kim Y. J. et al. An increase in cancer stem cell population after primary systemic therapy is a poor prognostic factor in breast cancer. Br J Cancer 2011;104:1730–8.; Morimoto K., Kim S. J., Tanei T. et al. Stem cell marker aldehyde dehydrogenase 1-positive breast cancers are characterized by negative estrogen receptor, positive human epidermal growth factor receptor type 2, and high Ki67 expression. Cancer Sci 2009;100:1062–8.; Tanei T., Morimoto K., Shimazu K. et al. Association of breast cancer stem cells identified by aldehyde dehydrogenase 1 expression with resistance to sequential Paclitaxel and epirubicin-based chemotherapy for breast cancers. Clin Cancer Res 2009; 15:4234–41.; Peitzsch C, Kurth I, Kunz-Schughart L, Baumann M, Dubrovska A. Discovery of the cancer stem cell related determinants of radioresistance. Radiother Oncol 2013;108:378–387.; Schwanbeck R., Martini S., Bernoth K. et al. // The Notch signaling pathway: Molecular basis of cell content dependency // 2011. 90 (6–7). P. 572–81.; Eiken H. M., Adams R. M. // Dynamics of endothelial cell behavior in sprouting angiogenesis // Curr Opin cell Biol. – 2010. – 22(5). P, 617–25.; Louvi A., Artavanis-Tsakonas S. // Notch and disease: a growing field. Semin Cell Dev Biol 2012; 23(4): 473–80.; Zhai B, Yan HX, Liu SQ, et al. Reduced expression of E-cadherin/catenin complex in hepatocellular carcinomas. World J Gastroenterol 2008;14:5665–73.; Deus Moura R, Wludarski SC, Carvalho FM, et al. Immunohistochemistry applied to the differential diagnosis between ductal and lobular carcinoma of the breast. Appl Immunohistochem Mol Morphol 2013;21:1–12.; Dabbs DJ, Schnitt SJ, Geyer FC, et al. Lobular neoplasia of the breast revisited with emphasis on the role of E-cadherin immunohistochemistry. Am J Surg Pathol 2013;37: e1–e11.; Tang D, Xu S, Zhang Q, et al. The expression and clinical significance of the androgen receptor and E-cadherin in triplenegative breast cancer. Med Oncol 2012;29:526–33.; Gupta P. B., Onder T. T., Jiang G. et al. Identification of selective inhibitors of cancer stem cells by high-throughput screening // Cell. – 2009. – 138. – P. 645–59.; Perrone G, Gaeta LM, Zagami M, Nasorri F, Coppola R, Borzomati D, et al. In situ identification of CD44+/CD24-cancer cells in primary human breast carcinomas. PLoS One 2012;7: e43110.; G tte M, Yip GW. Heparanase, hyaluronan, and CD44 in cancers: a breast carcinoma perspective. Cancer Res 2006;66:10233–10237.; Schabath H, Runz S, Joumaa S, Altevogt P. CD24 affects CXCR4 function in pre-B lymphocytes and breast carcinoma cells. J Cell Sci 2006;119(Pt 2):314–325.; Balicki D. Moving forward in human mammary stem cell biology and breast cancer prognostication using ALDH1. Cell Stem Cell 2007;1:485–487.; Shackleton M., Vaillanl F., Simpson K. J. et al. Generation of a functional mammary gland from a single stem cell // Nature. 2006. Vol. 439. P. 84–88.; Ponti D., Costa A., Zaffaroni N. et al. Isolation and in vitro propagation of tumorigenic breast cancer cells with stem/progenitor cell properties // Cancer Res. 2005. Vol. 65. P. 5506–5511.; Patrawala L., Calhoun T., Schneider-Broussard R et al. Side population is enriched in tumorigenic, stem-like cancer cells, whereas ABCG2+ and ABCG2cancer cells are similarly tumorigenic // Cancer Res. 2005. Vol. 65. P. 6207–6219.; Li H. Z., Yi T. B., Wu Z. Y. Suspension culture combined with chemotherapeutic agents for sorting of breast cancer stem cells // BMC Cancer. 2008. Vol. 8. P. 135.; Creighton C. J., Li X., Landis M. et al. Residual breast cancers after conventional therapy display mesenchymal as well as tumor-initiating features // Proc. Natl. Acad. Sci. USA. 2009. Vol. 106. P. 13820–13825.; Abraham B. K., Fritz P., McClellan M. et al. Prevalence of CD44+/CD24-/low cells in breast cancer may not be associated with clinical outcome but may favor distant metastasis. Clin Cancer Res 2005;11(3): 1154–9.; Yu F., Yao H., Zhu P. et al. let‑7 regulates self renewal and tumorigenicity of breast cancer cells. Cell 2007;131(6):1109–23.; Dean M., Fojo T., Bates S. Tumour stem cells and drug resistance // Nat. Rev. Cancer. 2005. Vol. 5. P. 275–284. 20. Smalley M. J., Clarke R. B. The mammary gland «side population»: A putative stem/progenitor cell marker? // J Mammary Gland. Biol. Neoplasia. 2005. Vol. 10. P. 37–47.; Marcato P., Dean C. A., Pan D. et al. Aldehyde dehydrogenase activity of breast cancer stem cells is primarily due to isoform ALDH1A3 and its expression is predictive of metastasis. Stem Cells 2011;29(1):32–45.; Marangoni E., Lecomte N., Durand L. et al. CD44 targeting reduces tumour growth and prevents post-chemotherapy relapse of human breast cancers xenografts // Br. J. Cancer. 2009. Vol. 100. P. 918–922.; Visus C., Wang Y., Lozano-Leon A. et al. Targeting ALDHbright human carcinoma-initiating cells with ALDHlAlspecific CD8+ T Cells // Clin. Cancer Res. 2011. Vol. 17. P. 6174–6184.; Stylianou S., Clarke R. B., Brennan K. Aberrant activation of notch signaling in human breast cancer // Cancer Res. 2006. Vol. 66. P. 1517–1525.; Sjolund J., Manetopoulos C., Stockhausen M. T., Axelson H. The Notch pathway in cancer: Differentiation gone awry // Eur. J. Cancer. 2005. Vol. 41. P. 2620–2629.; Farnie G., Clarke R. B., Spence K. et al. Novel cell culture technique for primary ductal carcinoma in situ: Role of Notch and epidermal growth factor receptor signaling pathways // J. Natl. Cancer Inst. 2007. Vol. 99. P. 616–627.; Hirsch H. A., Iliopoulos D., Tsichlis P. N., Struhl K. Metformin selectively targets cancer stem cells, and acts together with chemotherapy to block tumor growth and prolong remission. Cancer Res 2009;69(19): 7507–11.; Ginestier C., Liu S., Diebel M. E. et al. CXCR1 blockade selectively targets human breast cancer stem cells in vitro and in xenografts. J Clin Invest 2010;120(2): 485–97.; https://www.malignanttumors.org/jour/article/view/229
-
5
Autoři: a další
Témata: опухолевые стволовые клетки, рак молочной железы, сигнальный путь Notch, CD44+/CD24 low фенотип, резистентность к химиотерапии
Popis souboru: text/html
-
6
Autoři:
Popis souboru: text/html
Dostupnost: http://cyberleninka.ru/article/n/rol-signalnogo-puti-notch-v-differentsirovke-mezenhimnyh-stvolovyh-kletok-zhirovoy-tkani-cheloveka
http://cyberleninka.ru/article_covers/16063764.png -
7
Zdroj: Злокачественные опухоли.
Témata: 03 medical and health sciences, 0302 clinical medicine, опухолевые стволовые клетки, рак молочной железы, сигнальный путь Notch, CD44+/CD24 low фенотип, резистентность к химиотерапии, 3. Good health
Popis souboru: text/html
-
8
Zdroj: Вестник Санкт-Петербургского университета. Серия 3. Биология.
Popis souboru: text/html
Přístupová URL adresa: http://cyberleninka.ru/article_covers/16063764.png
http://cyberleninka.ru/article/n/rol-signalnogo-puti-notch -v-differentsirovke-mezenhimnyh-stvolovyh-kletok-zhirovoy-tkani-cheloveka -
9
Autoři: a další
Přispěvatelé: a další
Témata: Сигнальный путь Notch, кальцификация аортального клапана, интерстициальные клетки, Notch signaling pathway, calcification of aortic valve, interstitial cells
Relation: 037222; http://hdl.handle.net/11701/12443
Dostupnost: http://hdl.handle.net/11701/12443
-
10
Autoři: a další
Přispěvatelé: a další
Témata: Аортальный стеноз, сигнальный путь Notch, кальцификация, бикуспидальный аортальный клапан, трикуспидальный аортальный клапан, Aortic valve stenosis, Notch signaling, calcification, bicuspid aortic valve, tricuspid aortic valve
Relation: 045342; http://hdl.handle.net/11701/4894
Dostupnost: http://hdl.handle.net/11701/4894
Nájsť tento článok vo Web of Science
Full Text Finder