Suchergebnisse - "пропофол"

  1. 1
  2. 2
  3. 3
  4. 4

    Quelle: Messenger of ANESTHESIOLOGY AND RESUSCITATION; Том 22, № 1 (2025); 16-23 ; Вестник анестезиологии и реаниматологии; Том 22, № 1 (2025); 16-23 ; 2541-8653 ; 2078-5658

    Dateibeschreibung: application/pdf

    Relation: https://www.vair-journal.com/jour/article/view/1152/773; Александрович Ю. С., Акименко Т. И., Пшениснов К. В. Послеоперационная когнитивная дисфункция – является ли она проблемой для анестезиолога-реаниматолога? // Вестник анестезиологии и реаниматологии. – 2019. – Т. 16, № 4. – С. 5–11. https://doi.org/10.21292/2078-5658-2019-16-4-5-11.; Берикашвили Л. Б., Каданцева К. К., Ермохина Н. В. Послеоперационные нейрокогнитивные расстройства: некоторые итоги почти 400-летней истории вопроса (обзор) // Общая реаниматология. – 2023. – Т. 19, № 4. – С. 29–42. https://doi.org/10.15360/1813-9779-2023-4-29-42.; Боголепова А. Н. Послеоперационная когнитивная дисфункция // Журнал неврологии и психиатрии им. С. С. Корсакова. – 2022. – Т. 122, № 8. – С. 7–11. https://doi.org/10.17116/jnevro202212208174.; Войцеховский Д. В., Аверьянов Д. А., Щеголев А. В. Влияние глубокой анестезии на возникновение послеоперационной когнитивной дисфункции // Вестник анестезиологии и реаниматологии. – 2018. – Т. 15, № 1. – С. 5–9. https://doi.org/10.21292/2078-5658-2018-15-1-5-9.; Губайдуллин Р. Р., Михайлов Е. В., Кулаков В. В. Старческая астения: клинические аспекты периоперационного периода и анестезии // Вестник анестезиологии и реаниматологии. – 2020. – Т. 17, № 2. – С. 12–19. https://doi.org/10.21292/2078-5658-2020-17-2-12-19.; Заболотских И. Б., Горобец Е. С., Григорьев Е. В. Периоперационное ведение пациентов пожилого и старческого возраста. Методические рекомендации // Вестник интенсивной терапии им. А. И. Салтанова. – 2022. – Т. 3. – С. 7–26. https://doi.org/10.21320/1818-474X-2022-3-7-26.; Зозуля М. В., Ленькин А. И., Курапеев И. С., Лебединский К. М. Послеоперационные когнитивные расстройства: патогенез, методы профилактики и лечения (обзор литературы) // Анестезиология и реаниматология. – 2019. – Т. 3. – С. 25–33. https://doi.org/10.17116/anaesthesiology201903125.; Мороз В. В., Долгих В. Т., Карпицкая С. А. Влияние общей анестезии и антиоксидантов на когнитивные и стато-локомоторные функции при лапароскопической холецистэктомии // Общая реаниматология. – 2022. – Т. 18, № 2. – С. 4–11. https://doi.org/10.15360/1813-9779-2022-2-4-11.; Полушин Ю. С., Полушин А. Ю., Юкина Г. Ю., Кожемякина М. В. Послеоперационная когнитивная дисфункция – что мы знаем и куда двигаться далее // Вестник анестезиологии и реаниматологии. – 2019. – Т. 16, № 1. – С. 19–28. https://doi.org/10.21292/2078-5658-2019-16-1-19-28.; Субботин В. В., Душин И. Н., Камнев С. А., Антипов А. Ю. Некоторые аспекты формирования Z-счета для оценки когнитивных расстройств // Вестник анестезиологии и реаниматологии. – 2020. – Т. 17, № 5. – С. 25–30. https://doi.org/10.21292/2078-5658-2020-17-5-25-30.; Andrade C. Z Scores, Standard Scores, and Composite Test Scores Explained // Indian J Psychol Med. – 2021. – Vol. 43, № 6. – P. 555–557. https://doi.org/10.1177/02537176211046525.; Evered L., Silbert B., Knopman D. S. et al. Nomenclature consensus working grouP. recommendations for the nomenclature of cognitive change associated with anaesthesia and surgery-2018 // Anesthesiology. – 2018. – Vol. 129, № 5. – P. 872–879. https://doi.org/10.1097/ALN.0000000000002334. PMID: 30325806.; Hou R., Wang H., Chen L. et al. POCD in patients receiving total knee replacement under deep vs light anesthesia: A randomized controlled trial // Brain Behav. – 2018. – Vol. 8, № 2. – e00910. https://doi.org/10.1002/brb3.910.; Kampman J. M., Hermanides J., Hollmann M. W. et al. Mortality and morbidity after total intravenous anaesthesia versus inhalational anaesthesia: a systematic review and meta-analysis // eClinicalMedicine. – Vol. 72. – 102636. https://doi.org/10.1016/j.eclinm.2024.102636.; Kornak J., Fields J., Kremers W. et al. ARTFL/LEFFTDS Consortium. Nonlinear Z-score modeling for improved detection of cognitive abnormality // Alzheimers Dement (Amst). – 2019. – Vol. 11. – P. 797–808. https://doi.org/10.1016/j.dadm.2019.08.003.; Moller J. T., Cluitmans P., Rasmussen L. S. et al. Long-term postoperative cognitive dysfunction in the elderly ISPOCD1 study. ISPOCD investigators. International Study of Post-Operative Cognitive Dysfunction // Lancet. – 1998. – Vol. 351. – P. 857–861. https://doi.org/10.1016/s0140-6736(97)07382-0.; Sinderen K., Schwarte L. A., Schober P. Diagnostic criteria of postoperative cognitive dysfunction: a focused systematic review // Anesthesiol Res Pract. – 2020. – Vol. 2020. – 7384394. https://doi.org/10.1155/2020/7384394.; Weinstein A. M., Gujral S., Butters M. A. et al. Diagnostic precision in the detection of mild cognitive impairment: a comparison of two approaches // Am J Geriatr Psychiatry. – 2022. – Vol. 30, № 1. – P. 54–64. https://doi.org/10.1016/j.jagp.2021.04.004.; Xiao M. Z., Liu C. X., Zhou L. G. et al. Postoperative delirium, neuroinflammation, and influencing factors of postoperative delirium: A review // Medicine (Baltimore). – 2023. – Vol. 102, № 8. – e32991. https://doi.org/10.1097/MD.0000000000032991.

  5. 5
  6. 6
  7. 7

    Quelle: Neonatology, Surgery and Perinatal Medicine; Vol. 14 No. 1(51) (2024): NEONATOLOGY, SURGERY AND PERINATAL MEDICINE; 131-140
    Неонатология, хирургия и перинатальная медицина; Том 14 № 1(51) (2024): НЕОНАТОЛОГІЯ, ХІРУРГІЯ ТА ПЕРИНАТАЛЬНА МЕДИЦИНА; 131-140
    Неонатологія, хірургія та перинатальна медицина; Том 14 № 1(51) (2024): НЕОНАТОЛОГІЯ, ХІРУРГІЯ ТА ПЕРИНАТАЛЬНА МЕДИЦИНА; 131-140

    Dateibeschreibung: application/pdf

  8. 8

    Quelle: Neonatology, Surgery and Perinatal Medicine; Vol. 14 No. 1(51) (2024): NEONATOLOGY, SURGERY AND PERINATAL MEDICINE; 131-140 ; Неонатология, хирургия и перинатальная медицина; Том 14 № 1(51) (2024): НЕОНАТОЛОГІЯ, ХІРУРГІЯ ТА ПЕРИНАТАЛЬНА МЕДИЦИНА; 131-140 ; Неонатологія, хірургія та перинатальна медицина; Том 14 № 1(51) (2024): НЕОНАТОЛОГІЯ, ХІРУРГІЯ ТА ПЕРИНАТАЛЬНА МЕДИЦИНА; 131-140 ; 2413-4260 ; 2226-1230

    Dateibeschreibung: application/pdf

  9. 9
  10. 10

    Quelle: General Reanimatology; Том 20, № 4 (2024); 4-12 ; Общая реаниматология; Том 20, № 4 (2024); 4-12 ; 2411-7110 ; 1813-9779

    Dateibeschreibung: application/pdf

    Relation: https://www.reanimatology.com/rmt/article/view/2504/1849; https://www.reanimatology.com/rmt/article/view/2504/1850; Sessler C.N., Varney K. Patient focused sedation and analgesia in the ICU. Chest. 2008; 133 (2): 552–565. DOI:10.1378/chest.07-2026/ PMID: 18252923; Oddo M., Crippa I.A., Mehta S., Menon D., Payen J.-F., Taccone F.S., Citerio G., et al. Optimizing sedation in patients with acute brain injury. Crit. Care. 2016; 20 (1): 128. DOI:10.1186/s13054-016-1294-5. PMID: 27145814.; Hawryluk G.W.J., Aguilera S., Buki A., Bulger E., Citerio, G., Cooper, D.J., Arastia R.D. A management algorithm for patients with intracranial pressure monitoring: The Seattle International Severe Traumatic Brain Injury Consensus Conference (SIBICC). Intensive Care Med. 2019; 45 (12): 1783–1794. DOI:10.1007/s00134-019-05805-9. PMID: 31659383.; Likhvantsev V., Landoni G., Ermokhina N., Yadgarov M., Berikashvili L., Kadantseva K., Grebenchikov O., et al. Halogenated anesthetics vs intravenous hypnotics for short and long term sedation in the intensive care unit: a meta-analysis. Med Intensiva (Engl Ed). 2023; 47 (5): 267–279. DOI:10.1016/j.medine.2022.03.006. PMID: 36344342.; Devlin J.W., Skrobik Y., Gelinas C., Needham D.M., Slooter A.J.C., Pandharipande P.P., Watson P.L, et al. Clinical practice guidelines for the prevention and management of pain, Agitation/sedation, delirium, immobility, and sleep disruption in adult patients in the ICU. Crit. Care Med. 2018; 46 (9), e825–e873. DOI:10.1097/CCM.0000000000003299. PMID: 30113379.; Овечкин А.М., Политов М.Е., Сокологорский С.В., Евсюкова М.А. Пропофол или ингаляционные анестетики: можно ли говорить о ренессансе тотальной внутривенной анестезии? Анестезиология и реаниматология. 2021; 5: 71–79. DOI:10.17116/anaeusiansthesiology202105171.; Чернова А.П., Шорманов В.К., Давыдкина А.Е. Пропофол: применение, токсикологическая характеристика и особенности определения. Судебно-медицинская экспертиза. 2022; 65 (5): 46–51. DOI:10.17116/sudmed202265051460.; Krajčová A., Waldauf P., Anděl M., Duška F. Propofol infusion syndrome: a structured review of experimental studies and 153 published case reports. Crit Care. 2015; 19: 398. DOI:10.1186/s13054-015-1112-5. PMID: 26558513.; Lang J. Appraisal of clinical practice guideline: clinical practice guidelines for the prevention and management of pain, agitation/sedation, delirium, immobility, and sleep disruption in adult patients in the ICU. J Physiother. 2022; 68 (4): 282. DOI:10.1016/j.jphys.2022.08.005. PMID: 36270944.; Casault C., Soo A., Lee C.H., Couillard P., Niven D., Stelfox T., Fiest K. Sedation strategy and ICU delirium: a multicentre, population-based propensity score-matched cohort study. BMJ Open. 2021; 11 (7): e045087. DOI:10.1136/bmjopen2020-045087. PMID: 34285003.; Leppert J., Küchler J., Wagner A., Hinselmann N., Ditz C. Prospective observational study of volatile sedation with sevoflurane after aneurysmal subarachnoid hemorrhage using the sedaconda anesthetic conserving device. Neurocrit Care. 2024. DOI:10.1007/s12028-024-01959-7. PMID: 38485879.; Bosel J., Purrucker J.C., Nowak F., Renzland J., Schiller P., Perez E.B., Poli S., et al. Volatile isoflurane sedation in cerebrovascular intensive care patients using AnaConDa ( (R)): effects on cerebral oxygenation, circulation, and pressure. Intensive Care Med. 2012; 38 (12): 1955–1964. DOI:10.1007/s00134-012-2708-8. PMID: 23096426.; Villa F., Iacca C., Molinari A.F., Giussani C., Aletti G., Pesenti A., Citerio G. Inhalation versus endovenous sedation in subarachnoid hemorrhage patients: effects on regional cerebral blood flow. Crit Care Med. 2012; 40 (10): 2797–2804. DOI:10.1097/CCM.0b013e31825b8bc6. PMID: 22824929.; Soukup J., Scharff K., Kubosch K., Pohl C., Bomplitz M., Kompardt J. State of the art: sedation concepts with volatile anesthetics in critically Ill patients. J Crit Care. 2009; 24 (4): 535–544. DOI:10.1016/j.jcrc.2009.01.003. PMID: 19327951.; Meiser A., Volk T., Wallenborn J., Guenther U., Becher T., Bracht, H., Schwarzkopf K., et al. Inhaled isoflurane via the anaesthetic conserving device versus propofol for sedation of invasively ventilated patients in intensive care units in Germany and Slovenia: an open-label, phase 3, randomised controlled, non-inferiority trial. Lancet Respir. Med. 2021; 9 (11): 1231–1240. DOI:10.1016/S2213-2600(21)00323-4. PMID: 34454654.; Jerath A., Panckhurst J., Parotto M., Lightfoot N., Wasowicz M., Ferguson, N.D., Steel A., et al Safety and efficacy of volatile anesthetic agents compared with standard intravenous nidazolam/propofol sedation in ventilated critical care patients: a meta-analysis and systematic review of prospective trials. Anesth. Analg. 2017; 124 (4): 1190–1199. DOI:10.1213/ANE.0000000000001634. PMID: 27828800.; Martin J., Heymann A., Basell K., Baron R., Biniek R., Burkle H., Dall P., et al. Evidence and consensus-based German guidelines for the management of analgesia, sedation and delirium in intensive care — short version. Ger Med Sci. 2010; 8: Doc02. DOI:10.3205/000091. PMID: 20200655.; Потапов А.А., Крылов В.В., Гаврилов А.Г., Кравчук А.Д., Лихтерман Л.Б., Петриков С.С., Талыпов А.Э., с соавт. Рекомендации по диагностике и лечению тяжелой черепно-мозговой травмы. Часть 2. Интенсивная терапия и нейромониторинг. «Вопросы нейрохирургии» имени Н.Н. Бурденко. 2016; 80 (1): 98–106. DOI:10.17116/neiro201680198-106.; Carney N., Totten A.M., O»Reilly C., Ullman J.S., Hawryluk G.W., Bell M.J., Bartton S.L., et al. Guidelines for the management of severe traumatic brain injury, fourth edition. Neurosurgery. 2017; 80 (1): 6–15. DOI:10.1227/NEU.000000000001432. PMID: 27654000.; Purrucker J.C., Renzland J., Uhlmann L., Bruckner T., Hacke W., Steiner T., Bösel J. Volatile sedation with sevoflurane in intensive care patients with acute stroke or subarachnoid haemorrhage using AnaConDa (R): an observational study. Br J Anaesth. 2015; 114 (6): 934–943. DOI:10.1093/bja/aev070. PMID: 25823541.; Badenes R, Bilotta F. Inhaled sedation in acute brain injury patients. Br J Anaesth. 2016; 116 (6): 883–884. DOI:10.1093/bja/aew132. PMID: 27199322.; Müller M.B., Terpolilli N.A., Schwarzmaier S.M., Briegel J, Huge V. Balanced volatile sedation with isoflurane in critically ill patients with aneurysmal subarachnoid hemorrhage — a retrospective observational study. Front Neurol. 2023; 14: 1164860. DOI:10.3389/fneur.2023.1164860. PMID: 37426433.; Lehmann F., Müller M., Zimmermann J., Güresir A., Lehmann V., Putensen C., Vatter H., et al. Inhalational isoflurane sedation in patients with decompressive craniectomy suffering from severe subarachnoid hemorrhage: a case series. J Neuroanaesth Crit Care. 2019; 7: 27–33. DOI:10.1055/s-0039-1693525.; Гребенчиков О.А., Скрипкин Ю.В., Герасименко О.Н., Каданцева К.К., Бачинский А.Л., Берикашвили Л.Б., Лихванцев В.В. Неанестетические эффекты современных галогенсодержащих анестетиков. Патология кровообращения и кардиохирургия. 2020; 24 (2): 26–45. DOI:10.21688/1681-3472-2020-2-26-45.; Woldegerima N., Rosenblatt K., Mintz C.D. Neurotoxic properties of propofol sedation following traumatic brain injury. Crit Care Med. 2016; 44 (2): 455-6. DOI:10.1097/CCM.0000000000001322. PMID: 26771796.; Slupe A.M., Kirsch J.R. Effects of anesthesia on cerebral blood flow, metabolism, and neuroprotection. J Cereb Blood Flow Metab. 2018; 38 (12): 2192–2208. DOI:10.1177/0271678X18789273. PMID: 30009645.; Бочарников А.Д., Боева Е.А., Милованова М.А., Антонова В.В., Якупова Э.И., Гречко А.В. Оценка нейропротективных свойств анестетиков на моделях повреждения мозга. Общая реаниматология. 2024; 20 (2): 65–69. DOI:10.15360/1813-9779-2024-2-65-69.; Mirsattari S.M., Sharpe M.D., Young G.B. Treatment of refractory status epilepticus with inhalational anesthetic agents isoflurane and desflurane. Arch Neurol. 2004; 61 (8): 1254–1259. DOI:10.1001/archneur.61.8.1254. PMID: 15313843.; Ошоров А.В., Савин И.А., Горячев А.С. Внутричерепная гипертензия: патофизиология, мониторинг, лечение. Руководство для врачей. Издательство ИП Волков А.А.; 2021 г.; https://www.reanimatology.com/rmt/article/view/2504

  11. 11
  12. 12
  13. 13
  14. 14
  15. 15

    Quelle: Current Pediatrics; Том 22, № 2 (2023); 188-194 ; Вопросы современной педиатрии; Том 22, № 2 (2023); 188-194 ; 1682-5535 ; 1682-5527

    Dateibeschreibung: application/pdf

    Relation: https://vsp.spr-journal.ru/jour/article/view/3185/1290; Simons SH, Tibboel D. Pain perception development and maturation. Semin Fetal Neonatal Med. 2006;11(4):227–231. doi: https://doi.org/10.1016/j.siny.2006.02.010; Andrews K, Fitzgerald M. Cutaneous flexion reflex in human neonates: a quantitative study of threshold and stimulus-response characteristics after single and repeated stimuli. Dev Med Child Neurol. 1999;41(10):696–703. doi: https://doi.org/10.1017/s0012162299001425; Carbajal R, Rousset A, Danan C, et al. Epidemiology and treatment of painful procedures in neonates in intensive care units. JAMA. 2008;300(1):60–70. doi: https://doi.org/10.1001/jama.300.1.60; Porter FL, Wolf CM, Miller JP. Procedural pain in newborn infants: the influence of intensity and development. Pediatrics. 1999; 104(1):e13. doi: https://doi.org/10.1542/peds.104.1.e13; Guinsburg R, Kopelman BI, Anand KJ, et al. Physiological, hormonal, and behavioral responses to a single fentanyl dose in intubated and ventilated preterm neonates. J Pediatr. 1998;132(6):954–959. doi: https://doi.org/10.1016/s0022-3476(98)70390-7; Craig KD, Whitfield MF, Grunau RVE, et al. Pain in the preterm neonate: behavioural and physiological indices. Pain. 1993;52(3): 287–299. doi: https://doi.org/10.1016/0304-3959(93)90162-I; Lago P, Boccuzzo G, Garetti E, et al. Pain management during invasive procedures at Italian NICUs: has anything changed in the last five years? J Matern Fetal Neonatal Med. 2013;26(3):303–305. doi: https://doi.org/10.3109/14767058.2012.733783; Roofthooft DW, Simons SH, Anand KJ, et al. Eight years later, are we still hurting newborn infants? Neonatology. 2014;105(3): 218–226. doi: https://doi.org/10.1159/000357207; COMMITTEE ON FETUS AND NEWBORN and SECTION ON ANESTHESIOLOGY AND PAIN MEDICINE. Prevention and Management of Procedural Pain in the Neonate: An Update. Pediatrics. 2016;137(2):e20154271. doi: https://doi.org/10.1542/peds.2015-4271; Barker DP, Rutter N. Stress, severity of illness, and outcome in ventilated preterm infants. Arch Dis Child Fetal Neonatal Ed. 1996; 75(3):F187–F190. doi: https://doi.org/10.1136/fn.75.3.f187; Hall RW, Boyle E, Young T. Do ventilated neonates require pain management? Semin Perinatol. 2007;31(5):289–297. doi: https://doi.org/10.1053/j.semperi.2007.07.002; Saarenmaa E, Huttunen P, Leppäluoto J, Fellman V. Alfentanil as procedural pain relief in newborn infants. Arch Dis Child Fetal Neonatal Ed. 1996;75(2):F103–F107. doi: https://doi.org/10.1136/fn.75.2.f103; Behnke J, Lemyre B, Czernik C, et al. Non-Invasive Ventilation in Neonatology. Dtsch Arztebl Int. 2019;116(11):177–183. doi: https://doi.org/10.3238/arztebl.2019.0177; Sand L, Szatkowski L, Kwok TC, et al. Observational cohort study of changing trends in non-invasive ventilation in very preterm infants and associations with clinical outcomes. Arch Dis Child Fetal Neonatal Ed. 2022;107(2):150–155. doi: https://doi.org/10.1136/archdischild-2021-322390; Walsh MC, Morris BH, Wrage LA, et al. Extremely low birthweight neonates with protracted ventilation: mortality and 18-month neurodevelopmental outcomes. J Pediatr. 2005;146(6):798–804. doi: https://doi.org/10.1016/j.jpeds.2005.01.047; Зиганшин И.М., Баялиева А.Ж., Бабинцева А.А., Шай марданова Г.Р. Эффективность искусственной вентиляции легких с гарантированным объемом у новорожденных // Российский вестник детской хирургии, анестезиологии и реаниматологии. — 2020. — Т. 10. — № 2. — С. 165–172. — doi: https://doi.org/10.17816/psaic611; Greco P, Nencini G, Piva I, et al. Pathophysiology of hypoxic-ischemic encephalopathy: a review of the past and a view on the future. Acta Neurol Belg. 2020;120(2):277–288. doi: https://doi.org/10.1007/s13760-020-01308-3; Williams EE, Greenough A. Lung Protection During Mechanical Ventilation in the Premature Infant. Clin Perinatol. 2021;48(4): 869–880. doi: https://doi.org/10.1016/j.clp.2021.08.006; Hummler H, Schulze A. New and alternative modes of mechanical ventilation in neonates. Semin Fetal Neonatal Med. 2009;14(1): 42–48. doi: https://doi.org/10.1016/j.siny.2008.08.006; Ancora G, Lago P, Garetti E, et al. Evidence-based clinical guidelines on analgesia and sedation in newborn infants undergoing assisted ventilation and endotracheal intubation. Acta Paediatr. 2019;108(2):208–217. doi: https://doi.org/10.1111/apa.14606; American Academy of Pediatrics Committee on Fetus and Newborn; American Academy of Pediatrics Section on Surgery; Canadian Paediatric Society Fetus and Newborn Committee, Batton DG, Barrington KJ, Wallman C. Prevention and management of pain in the neonate: an update. Pediatrics. 2006;118(5): 2231–2241. doi: https://doi.org/10.1542/peds.2006-2277; Vittinghoff M, Lönnqvist PA, Mossetti V, et al. Postoperative pain management in children: Guidance from the pain committee of the European Society for Paediatric Anaesthesiology (ESPA Pain Management Ladder Initiative). Paediatr Anaesth. 2018;28(6): 493–506. doi: https://doi.org/10.1111/pan.13373; Hohmeister J, Kroll A, Wollgarten-Hadamek I, et al. Cerebral processing of pain in school-aged children with neonatal nociceptive input: an exploratory fMRI study. Pain. 2010;150(2):257–267. doi: https://doi.org/10.1016/j.pain.2010.04.004; Taddio A, Shah V, Gilbert-MacLeod C, Katz J. Conditioning and hyperalgesia in newborns exposed to repeated heel lances. JAMA. 2002;288(7):857–861. doi: https://doi.org/10.1001/jama.288.7.857; Bellù R, Romantsik O, Nava C, et al. Opioids for newborn infants receiving mechanical ventilation. Cochrane Database Syst Rev. 2021;3(3):CD013732. doi: https://doi.org/10.1002/14651858.CD013732.pub2; Bellù R, de Waal K, Zanini R. Opioids for neonates receiving mechanical ventilation: a systematic review and meta-analysis. Arch Dis Child Fetal Neonatal Ed. 2010;95(4):F241–F251. doi: https://doi.org/10.1136/adc.2008.150318; McPherson C, Miller SP, El-Dib M, et al. The influence of pain, agitation, and their management on the immature brain. Pediatr Res. 2020;88(2):168–175. doi: https://doi.org/10.1038/s41390-019-0744-6; Pillai Riddell RR, Racine NM, Gennis HG, et al. Non-pharmacological management of infant and young child procedural pain. Cochrane Database Syst Rev. 2015;2015(12):CD006275. doi: https://doi.org/10.1002/14651858.CD006275.pub3; Neonatology Branch of Chinese Medical Association; Editorial Board of Chinese Journal of Contemporary Pediatrics. Expert consensus on neonatal pain assessment and analgesia management (2020 edition). Zhongguo Dang Dai Er Ke Za Zhi. 2020;22(9): 923–930. doi: https://doi.org/10.7499/j.issn.1008-8830.2006181; Kassab M, Foster JP, Foureur M, Fowler C. Sweet-tasting solutions for needle-related procedural pain in infants one month to one year of age. Cochrane Database Syst Rev. 2012;12(12):CD008411. doi: https://doi.org/10.1002/14651858.CD008411.pub2; Shendurnikar N, Gandhi K. Analgesic effects of breastfeeding on heel lancing. Indian Pediatr. 2005;42(7):730–732.; Gomes Neto M, da Silva Lopes IA, Araujo ACCLM, et al. The effect of facilitated tucking position during painful procedure in pain management of preterm infants in neonatal intensive care unit: a systematic review and meta-analysis. Eur J Pediatr. 2020;179(5): 699–709. doi: https://doi.org/10.1007/s00431-020-03640-5; Cignacco E, Hamers JP, Stoffel L, et al. The efficacy of nonpharmacological interventions in the management of procedural pain in preterm and term neonates. A systematic literature review. Eur J Pain. 2007;11(2):139–152. doi: https://doi.org/10.1016/j.ejpain.2006.02.010; Ferber SG, Makhoul IR. Neurobehavioural assessment of skinto-skin effects on reaction to pain in preterm infants: a randomized, controlled within-subject trial. Acta Paediatr. 2008;97(2):171–176. doi: https://doi.org/10.1111/j.1651-2227.2007.00607.x; Ludington-Hoe SM, Hosseini R, Torowicz DL. Skin-to-skin contact (Kangaroo Care) analgesia for preterm infant heel stick. AACN Clin Issues. 2005;16(3):373–387. doi: https://doi.org/10.1097/00044067-200507000-00010; Nemergut ME, Yaster M, Colby CE. Sedation and analgesia to facilitate mechanical ventilation. Clin Perinatol. 2013;40(3): 539–558. doi: https://doi.org/10.1016/j.clp.2013.05.005; Weissman A, Aranovitch M, Blazer S, Zimmer EZ. Heel-lancing in newborns: behavioral and spectral analysis assessment of pain control methods. Pediatrics. 2009;124(5):e921–e926. doi: https://doi.org/10.1542/peds.2009-0598; Aldrink JH, Ma M, Wang W, et al. Safety of ketorolac in surgical neonates and infants 0 to 3 months old. J Pediatr Surg. 2011;46(6):1081–1085. doi: https://doi.org/10.1016/j.jpedsurg.2011.03.031; El-Mashad AE, El-Mahdy H, El Amrousy D, Elgendy M. Comparative study of the efficacy and safety of paracetamol, ibuprofen, and indomethacin in closure of patent ductus arteriosus in preterm neonates. Eur J Pediatr. 2017;176(2):233–240. doi: https://doi.org/10.1007/s00431-016-2830-7; Roofthooft DWE, Simons SHP, van Lingen RA, et al. Randomized Controlled Trial Comparing Different Single Doses of Intravenous Paracetamol for Placement of Peripherally Inserted Central Catheters in Preterm Infants. Neonatology. 2017;112(2):150–158. doi: https://doi.org/10.1159/000468975; Ohlsson A, Shah PS. Paracetamol (acetaminophen) for prevention or treatment of pain in newborns. Cochrane Database Syst Rev. 2020;1(1):CD011219. doi: https://doi.org/10.1002/14651858.CD011219.pub4; Rana D, Bellflower B, Sahni J, et al. Reduced narcotic and sedative utilization in a NICU after implementation of pain management guidelines. J Perinatol. 2017;37(9):1038–1042. doi: https://doi.org/10.1038/jp.2017.88; Truog R, Anand KJ. Management of pain in the postoperative neonate. Clin Perinatol. 1989;16(1):61–78.; Anderson BJ, Holford NH, Armishaw JC, Aicken R. Predicting concentrations in children presenting with acetaminophen overdose. J Pediatr. 1999;135(3):290–295. doi: https://doi.org/10.1016/s0022-3476(99)70122-8; Anderson BJ, van Lingen RA, Hansen TG, et al. Acetaminophen developmental pharmacokinetics in premature neonates and infants: a pooled population analysis. Anesthesiology. 2002;96(6):1336– 1345. doi: https://doi.org/10.1097/00000542-200206000-00012; Arana A, Morton NS, Hansen TG. Treatment with paracetamol in infants. Acta Anaesthesiol Scand. 2001;45(1):20–29. doi: https://doi.org/10.1034/j.1399-6576.2001.450104.x; van der Marel CD, Peters JW, Bouwmeester NJ, et al. Rectal acetaminophen does not reduce morphine consumption after major surgery in young infants. Br J Anaesth. 2007;98(3):372–379. doi: https://doi.org/10.1093/bja/ael371; Tinner EM, Hoesli I, Jost K, et al. Rectal paracetamol in newborn infants after assisted vaginal delivery may increase pain response. J Pediatr. 2013;162(1):62–66. doi: https://doi.org/10.1016/j.jpeds.2012.06.020; van den Anker JN, Tibboel D. Pain relief in neonates: when to use intravenous paracetamol. Arch Dis Child. 2011;96(6):573–574. doi: https://doi.org/10.1136/adc.2011.211060; Dani C, Lista G, Bianchi S, et al. Intravenous paracetamol in comparison with ibuprofen for the treatment of patent ductus arteriosus in preterm infants: a randomized controlled trial. Eur J Pediatr. 2021;180(3):807–816. doi: https://doi.org/10.1007/s00431-020-03780-8; Carbajal R, Eriksson M, Courtois E, et al. Sedation and analgesia practices in neonatal intensive care units (EUROPAIN): results from a prospective cohort study. Lancet Respir Med. 2015;3(10):796–812. doi: https://doi.org/10.1016/S2213-2600(15)00331-8; Donato J, Rao K, Lewis T. Pharmacology of Common Analgesic and Sedative Drugs Used in the Neonatal Intensive Care Unit. Clin Perinatol. 2019;46(4):673–692. doi: https://doi.org/10.1016/j.clp.2019.08.004; Olischar M, Palmer GM, Orsini F, et al. The addition of tramadol to the standard of i.v. acetaminophen and morphine infusion for postoperative analgesia in neonates offers no clinical benefit: a randomized placebo-controlled trial. Paediatr Anaesth. 2014;24(11):1149–1157. doi: https://doi.org/10.1111/pan.12477; Schmidt B, Adelmann C, Stützer H, et al. Comparison of sufentanil versus fentanyl in ventilated term neonates. Klin Padiatr. 2010;222(2):62–66. doi: https://doi.org/10.1055/s-0029-1225348; Anand KJ, Hall RW, Desai N, et al. Effects of morphine analgesia in ventilated preterm neonates: primary outcomes from the NEOPAIN randomised trial. Lancet. 2004;363(9422):1673–1682. doi: https://doi.org/10.1016/S0140-6736(04)16251-X; MacGregor R, Evans D, Sugden D, et al. Outcome at 5-6 years of prematurely born children who received morphine as neonates. Arch Dis Child Fetal Neonatal Ed. 1998;79(1):F40–F43. doi: https://doi.org/10.1136/fn.79.1.f40; Monk V, Moultrie F, Hartley C, et al. Oral morphine analgesia for preventing pain during invasive procedures in non-ventilated premature infants in hospital: the Poppi RCT. Southampton (UK): NIHR Journals Library; 2019.; Duong P, Tauzin M, Decobert F, et al. Continuous intravenous to oral morphine switch in very premature ventilated infants: A retrospective study on efficacy, efficiency, and tolerability. Paediatr Neonatal Pain. 2020;1(2):45–52. doi: https://doi.org/10.1002/pne2.12011; Saarenmaa E, Huttunen P, Leppäluoto J, et al. Advantages of fentanyl over morphine in analgesia for ventilated newborn infants after birth: A randomized trial. J Pediatr. 1999;134(2):144–150. doi: https://doi.org/10.1016/s0022-3476(99)70407-5; Franck LS, Vilardi J, Durand D, Powers R. Opioid withdrawal in neonates after continuous infusions of morphine or fentanyl during extracorporeal membrane oxygenation. Am J Crit Care. 1998;7(5):364–369.; Anand KJ, Willson DF, Berger J, et al. Tolerance and withdrawal from prolonged opioid use in critically ill children. Pediatrics. 2010;125(5): e1208–e1225. doi: https://doi.org/10.1542/peds.2009-0489; Ancora G, Lago P, Garetti E, et al. Efficacy and safety of continuous infusion of fentanyl for pain control in preterm newborns on mechanical ventilation. J Pediatr. 2013;163(3):645–651.e1. doi: https://doi.org/10.1016/j.jpeds.2013.02.039; Lago P, Benini F, Agosto C, Zacchello F. Randomised controlled trial of low dose fentanyl infusion in preterm infants with hyaline membrane disease. Arch Dis Child Fetal Neonatal Ed. 1998;79(3): F194–F197. doi: https://doi.org/10.1136/fn.79.3.f194; Orsini AJ, Leef KH, Costarino A, et al. Routine use of fentanyl infusions for pain and stress reduction in infants with respiratory distress syndrome. J Pediatr. 1996;129(1):140–145. doi: https://doi.org/10.1016/s0022-3476(96)70201-9; Puia-Dumitrescu M, Comstock BA, Li S, et al. Assessment of 2-Year Neurodevelopmental Outcomes in Extremely Preterm Infants Receiving Opioids and Benzodiazepines. JAMA Netw Open. 2021;4(7):e2115998. doi: https://doi.org/10.1001/jamanetworkopen.2021.15998; Jacobwitz M, Mulvihill C, Kaufman MC, et al. Ketamine for Management of Neonatal and Pediatric Refractory Status Epilepticus. Neurology. 2022;99(12):e1227–e1238. doi: https://doi.org/10.1212/WNL.0000000000200889; Samanta D. Ketamine in Refractory Neonatal Seizures. Pediatr Neurol. 2020;106:76. doi: https://doi.org/10.1016/j.pediatrneurol.2019.11.012; Hall RW, Shbarou RM. Drugs of choice for sedation and analgesia in the neonatal ICU. Clin Perinatol. 2009;36(2):15–26. doi: https://doi.org/10.1016/j.clp.2009.04.001; Mion G, Villevieille T. Ketamine pharmacology: an update (pharmacodynamics and molecular aspects, recent findings). CNS Neurosci Ther. 2013;19(6):370–380. doi: https://doi.org/10.1111/cns.12099; Poonai N, Canton K, Ali S, et al. Intranasal ketamine for procedural sedation and analgesia in children: A systematic review. PLoS One. 2017;12(3):e0173253. doi: https://doi.org/10.1371/journal.pone.0173253; Khoshrang H, Emir Alavi C, Rimaz S, et al. Efficacy of intranasal ketamine and midazolam for pediatric sedation: A double-blind, randomized clinical trial. Caspian J Intern Med. 2021;12(4): 539–543. doi: https://doi.org/10.22088/cjim.12.4.539; Green SM, Roback MG, Krauss B, et al. Predictors of emesis and recovery agitation with emergency department ketamine sedation: an individual-patient data meta-analysis of 8,282 children. Ann Emerg Med. 2009;54(2):171–180.e804. doi: https://doi.org/10.1016/j.annemergmed.2009.04.004; Buonsenso D, Barone G, Valentini P, et al. Utility of intranasal Ketamine and Midazolam to perform gastric aspirates in children: a double-blind, placebo controlled, randomized study. BMC Pediatr. 2014;14:67. doi: https://doi.org/10.1186/1471-2431-14-67; Stevens RA, Butler BD, Kokane SS, et al. Neonatal inhibition of Na+-K+-2Cl−-cotransporter prevents ketamine induced spatial learning and memory impairments. Neurotoxicol Teratol. 2017; 60:82–86. doi: https://doi.org/10.1016/j.ntt.2016.11.001; Huang H, Zhao C, Hu Q, et al. Neonatal Anesthesia by Ketamine in Neonatal Rats Inhibits the Proliferation and Differentiation of Hippocampal Neural Stem Cells and Decreases Neurocognitive Function in Adulthood via Inhibition of the Notch1 Signaling Pathway. Mol Neurobiol. 2021;58(12):6272–6289. doi: https://doi.org/10.1007/s12035-021-02550-3; Zhang Z, Bai H, Ma X, et al. Blockade of the NLRP3/caspase-1 axis attenuates ketamine-induced hippocampus pyroptosis and cognitive impairment in neonatal rats. J Neuroinflammation. 2021;18(1):239. doi: https://doi.org/10.1186/s12974-021-02295-9; de Tristan MA, Martin-Marchand L, Roué JM, et al. Association of Continuous Opioids and/or Midazolam During Early Mechanical Ventilation with Survival and Sensorimotor Outcomes at Age 2 Years in Premature Infants: Results from the French Prospective National EPIPAGE 2 Cohort. J Pediatr. 2021;232:38–47.e8. doi: https://doi.org/10.1016/j.jpeds.2020.12.069; Jacqz-Aigrain E, Daoud P, Burtin P, et al. Placebo-controlled trial of midazolam sedation in mechanically ventilated newborn babies. Lancet. 1994;344(8923):646–650. doi: https://doi.org/10.1016/s0140-6736(94)92085-0; Arya V, Ramji S. Midazolam sedation in mechanically ventilated newborns: a double blind randomized placebo controlled trial. Indian Pediatr. 2001;38(9):967–972.; Stevens MF, Werdehausen R, Gaza N, et al. Midazolam activates the intrinsic pathway of apoptosis independent of benzodiazepine and death receptor signaling. Reg Anesth Pain Med. 2011;36(4): 343–349. doi: https://doi.org/10.1097/AAP.0b013e318217a6c7; Duerden EG, Guo T, Dodbiba L, et al. Midazolam dose correlates with abnormal hippocampal growth and neurodevelopmental outcome in preterm infants. Ann Neurol. 2016;79(4):548–559. doi: https://doi.org/10.1002/ana.24601; Козлов И.А. Дексмедетомидин при анестезиолого-реаниматологическом обеспечении кардиохирургических вмешательств. Часть 1. Общие сведения об агонистах 2-адренорецепторов и их фармакодинамике // Кардиология и сердечно-сосудистая хирургия. — 2014. — Т. 7. — № 3. — С. 63–73.; Mahmoud M, Barbi E, Mason KP. Dexmedetomidine: What’s New for Pediatrics? A Narrative Review. J Clin Med. 2020;9(9):2724. doi: https://doi.org/10.3390/jcm9092724; O’Mara K, Gal P, Ransommd JL, et al. Successful use of dexmedetomidine for sedation in a 24-week gestational age neonate. Ann Pharmacother. 2009;43(10):1707–1713. doi: https://doi.org/10.1345/aph.1M245; Chrysostomou C, Schulman SR, Herrera Castellanos M, et al. A phase II/III, multicenter, safety, efficacy, and pharmacokinetic study of dexmedetomidine in preterm and term neonates. J Pediatr. 2014;164(2):276–282.e823. doi: https://doi.org/10.1016/j.jpeds.2013.10.002; Gertler R, Brown HC, Mitchell DH, Silvius EN. Dexmedetomidine: a novel sedative-analgesic agent. Proc (Bayl Univ Med Cent). 2001;14(1): 13–21. doi: https://doi.org/10.1080/08998280.2001.11927725; Sellas MN, Kyllonen KC, Lepak MR, Rodriguez RJ. Dexmedetomidine for the Management of Postoperative Pain and Sedation in Newborns. J Pediatr Pharmacol Ther. 2019;24(3):227–233. doi: https://doi.org/10.5863/1551-6776-24.3.227; Ren X, Ma H, Zuo Z. Dexmedetomidine Postconditioning Re duces Brain Injury after Brain Hypoxia-Ischemia in Neonatal Rats. J Neuroimmune Pharmacol. 2016;11(2):238–247. doi: https://doi.org/10.1007/s11481-016-9658-9; Ezzati M, Kawano G, Rocha-Ferreira E, et al. Dexmedetomidine Combined with Therapeutic Hypothermia Is Associated with Cardiovascular Instability and Neurotoxicity in a Piglet Model of Perinatal Asphyxia. Dev Neurosci. 2017;39(1-4):156–170. doi: https://doi.org/10.1159/000458438; Naveed M, Bondi DS, Shah PA. Dexmedetomidine Versus Fentanyl for Neonates With Hypoxic Ischemic Encephalopathy Undergoing Therapeutic Hypothermia. J Pediatr Pharmacol Ther. 2022;27(4): 352–357. doi: https://doi.org/10.5863/1551-6776-27.4.352; Cosnahan AS, Angert RM, Jano E, Wachtel EV. Dexmedetomidine versus intermittent morphine for sedation of neonates with ence phalopathy undergoing therapeutic hypothermia. J Perinatol. 2021;41(9): 2284–2291. doi: https://doi.org/10.1038/s41372-021-00998-8; O’Mara K, Gal P, Wimmer J, et al. Dexmedetomidine versus standard therapy with fentanyl for sedation in mechanically ventilated premature neonates. J Pediatr Pharmacol Ther. 2012;17(3): 252–262. doi: https://doi.org/10.5863/1551-6776-17.3.252; Morton SU, Labrecque M, Moline M, et al. Reducing Benzodiazepine Exposure by Instituting a Guideline for Dexmedetomidine Usage in the NICU. Pediatrics. 2021;148(5):e2020041566. doi: https://doi.org/10.1542/peds.2020-041566; Dersch-Mills DA, Banasch HL, Yusuf K, Howlett A. Dexmedetomidine Use in a Tertiary Care NICU: A Descriptive Study. Ann Pharmacother. 2019;53(5):464–470. doi: https://doi.org/10.1177/1060028018812089; Estkowski LM, Morris JL, Sinclair EA. Characterization of dexmedetomidine dosing and safety in neonates and infants. J Pediatr Pharmacol Ther. 2015;20(2):112–118. doi: https://doi.org/10.5863/1551-6776-20.2.112; Cortes-Ledesma C, Arruza L, Sainz-Villamayor A, MartínezOrgado J. Dexmedetomidine affects cerebral activity in preterm infants. Arch Dis Child Fetal Neonatal Ed. 2022;fetalneonatal-2021- 323411. doi: https://doi.org/10.1136/archdischild-2021-323411; van Dijkman SC, De Cock PAJG, Smets K, et al. Dose rationale and pharmacokinetics of dexmedetomidine in mechanically ventilated new-borns: impact of design optimisation. Eur J Clin Pharmacol. 2019;75(10):1393–1404. doi: https://doi.org/10.1007/s00228-019-02708-y; Chidambaran V, Costandi A, D’Mello A. Correction to: Propofol: A Review of its Role in Pediatric Anesthesia and Sedation. CNS Drugs. 2018;32(9):873. doi: https://doi.org/10.1007/s40263-018-0561-1; Fuentes R, Cortínez LI, Contreras V, et al. Propofol pharmacokinetic and pharmacodynamic profile and its elec troencephalographic interaction with remifentanil in children. Paediatr Anaesth. 2018;28(12):1078–1086. doi: https://doi.org/10.1111/pan.13486; Michelet R, Van Bocxlaer J, Allegaert K, Vermeulen A. The use of PBPK modeling across the pediatric age range using propofol as a case. J Pharmacokinet Pharmacodyn. 2018;45(6):765–785. doi: https://doi.org/10.1007/s10928-018-9607-8; Ulgey A, Güneş I, Bayram A, et al. Decreasing the need for mechanical ventilation after surgery for retinopathy of prematurity: sedoanalgesia vs. general anesthesia. Turk J Med Sci. 2015; 45(6):1292–1299. doi: https://doi.org/10.3906/sag-1401-24; Dekker J, Lopriore E, van Zanten HA, et al. Sedation during minimal invasive surfactant therapy: a randomised controlled trial. Arch Dis Child Fetal Neonatal Ed. 2019;104(4):F378–F383. doi: https://doi.org/10.1136/archdischild-2018-315015; Smits A, Thewissen L, Caicedo A, et al. Propofol Dose-Finding to Reach Optimal Effect for (Semi-)Elective Intubation in Neonates. J Pediatr. 2016;179:54–60.e9. doi: https://doi.org/10.1016/j.jpeds.2016.07.049; Slavik VC, Zed PJ. Combination ketamine and propofol for procedural sedation and analgesia. Pharmacotherapy. 2007;27(11): 1588–1598. doi: https://doi.org/10.1592/phco.27.11.1588; Jager MD, Aldag JC, Deshpande GG. A presedation fluid bolus does not decrease the incidence of propofol-induced hypotension in pediatric patients. Hosp Pediatr. 2015;5(2):85-91. doi: https://doi.org/10.1542/hpeds.2014-0075

  16. 16

    Quelle: Messenger of ANESTHESIOLOGY AND RESUSCITATION; Том 20, № 4 (2023); 40-45 ; Вестник анестезиологии и реаниматологии; Том 20, № 4 (2023); 40-45 ; 2541-8653 ; 2078-5658

    Dateibeschreibung: application/pdf

    Relation: https://www.vair-journal.com/jour/article/view/831/651; Ambesh S.P., Dubey P.K., Sinha P.K. Ondansetron pretreatment to alleviate pain on propofol injection. Anesthesia and Analgesia, 1999, vol. 89, no. 1, pp. 197–199. Doi:10.1097/00000539-199907000-00035.; Barker P., Langton J.A. Effect of prior administration of cold saline on pain during propofol injection. Anaesthesia, 1991, vol. 46, no. 12 , pp. 1069–1070. Doi:10.1111/j.1365-2044.1991.tb09927.x.; Basaranoglu G., Erden V., Delatioglu H. Reduction of pain on injection ofpropofol: A comparison of fentanyl with remifentanil. Anesth Analg., 2002, vol. 94, pp. 1040–1041. Doi:10.1097/00000539-200204000-00053. 4. Cheong Mi A. Ephedrine reduces the pain from propofol injection. Anesthesia and Analgesia, 2002, vol. 95, no. 5, pp. 1293–1296. Doi:10.1097/00000539- 200211000-00035.; Eriksson M., Englesson S., Niklasson F. et al. Effect of lignocaine and pH on propofol-induced pain. Br J Anaesth., 1997, vol. 78, pp. 502–506. Doi:10.1093/bja/78.5.502.; Helmers J.H., Kraaijenhagen R.J., Leeuwen L.V. et al. Reduction of pain on injection caused by propofol. Can J Anaesth., 1990, vol. 37, pp. 267–268. Doi:10.1007/BF03005485.; King S.Y., Davis F.M., Wells J.E. et al. Lidocaine for the prevention of pain due to injection of propofol. Anesth Analg., 1992, vol. 74, pp. 246–249. Doi:10.1213/00000539-199202000-00013.; Kizilcik N., Ferdi Menda F., Bilgen S. et al. Effect of fentanyl-Propofol mixture on propofol injection pain: a randomized clinical trial. Korean J Anesthesiol., 2015, vol. 68, no. 6, pp. 556–560. Doi:10.4097/kjae.2015.68.6.556.; Koo S.-W., Cho S.-J., Kim Y.R. et al. Small dose ketamine reduces the pain of propofol injection. Anesthesia and Analgesia, 2006, vol. 103, no. 6, pp. 1444–1447. Doi:10.1213/01.ane.0000243334.83816.53.; Mangar D., Holak E.J. A tourniquet at 50 mmHg followed by intravenous lidocaine diminishes hand pain associated with propofol injection. Anesthesia and Analgesia, 1992, vol. 74, pp. 250–252. Doi:10.1213/00000539-199202000-00014.; Pang W.W., Mok M.S., Huang S. et al. The analgesic effect of fentanyl, morphine, meperidine, and lidocaine in the peripheral veins: A comparative study. Anesth Analg, 1998, vol. 86, pp. 382–386. Doi:10.1097/00000539-1 99802000-00031.; Picard P., Tramèr M.R. Prevention of pain on injection with propofol: A quantitative systematic review. Anesth Analg, 2000, vol. 90, pp. 963–969. Doi:10.1097/00000539-200004000-00035.; Scott R.P., Saunders D.A., Norman J. Propofol: clinical strategies for preventing the pain of injection. Anesthesia, 1988, vol. 43, pp. 492–494. Doi:10.1111/j.1365-2044.1988.tb06641.x.; Silva L.M., Braz L.G., Módolo N.S. Emergence agitation in pediatric anesthesia: current features. J. Pediatr (Rio J)., 2008, vol. 84, pp. 107–13. Doi:10.2223/JPED.1763.; Smithburger P.L., Patel M.K. Pharmacologic Considerations surrounding sedation, delirium, and sleep in critically ill adults: a narrative review. J Pharm Pract., 2019 , vol. 32, no. 3, pp. 271–291. Doi:10.1177/0897190019840120.; Smith I., White P.F., Nathanson M. et al. Propofol: an update on its clinical uses. Anesthesiology, 1994, vol. 81, pp. 1005–1043.; Stark R.D., Binks S.M., Dutka V.N. et al. A review of the safety and tolerance of propofol (‘Diprivan’). Postgraduate Medical Journal, 1985, vol. 61, no. 5, pp. 152–156. PMID: 3877284.; Stewart J.T., Warren F.W., Maddox F.C. et al. The stability of remifentanil hydrochloride and propofol mixtures in polypropylene syringes and polyvinylchloride bags at 22 degrees-24 degrees C. Anesth Analg., 2000, vol. 90, pp. 1450–1451. Doi:10.1097/00000539-200006000-00037.; Zhang Q., Yu Y., Lu Y. et al. Systematic review and meta-analysis of propofol versus barbiturates for controlling refractory status epilepticus. BMC Neurol., 2019, vol. 19, no. 1, pp. 55. Doi:10.1186/s12883-019-1281-y.; Wagner D.S., Yap J.M., Bradley K.M. et al. Assessing parent’s preferences for the avoidance of undesirable anesthesia side effects in their children undergoing surgical procedures. Paediatr Anaesth., 2007, vol. 17, pp. 1035–1042. Doi:10.1111/j.1460-9592.2007.02261.x.

  17. 17

    Quelle: Messenger of ANESTHESIOLOGY AND RESUSCITATION; Том 20, № 3 (2023); 27-37 ; Вестник анестезиологии и реаниматологии; Том 20, № 3 (2023); 27-37 ; 2541-8653 ; 2078-5658

    Dateibeschreibung: application/pdf

    Relation: https://www.vair-journal.com/jour/article/view/812/636; Андрющенко А. В., Дробижев М. Ю., Добровольский А. В. Сравнительная оценка шкал CES-D, BDI и HADS(D) в диагностике депрессий в общемедицинской практике // Журнал неврологии и психиатрии им. С. С. Корсакова. – 2003. – № 5. – С. 11–18.; Насреддин З. Монреальская шкала оценки когнитивных функций – Мока-тест (от англ. Montreal Cognitive Assessmnet, сокращенно МоСА): пер. с англ. О. В. Посохина, А. Ю. Смирнова. – 2004. – URL: www.mocatest.org.; Овезов А., Пантелеева М. В., Князев А. В., Луговой А. В., Брагина С. В. Когнитивная дисфункция и общая анестезия: от патогенеза к профилактике и коррекции // Неврология, нейропсихиатрия, психосоматика. – Т. 8, № 3. – С. 101–105. Doi:10.14412/2074-2711-2016-3-101-105.; Проценко Д. Н. Международные рекомендации по лечению возбуждения и делирия у взрослых пациентов отделений реанимации и интенсивной терапии // Медицинский алфавит. – 2014. – Т. 2, № 9. – С. 27–30.; Chen X., Zheng X., Cai J. et al. Effect of Anesthetics on Functional Connectivity of Developing Brain // Front. Hum. Neurosci. – 2022. – Vol. 11. – P. 16:853816. Doi:10.3389/fnhum.2022.853816.; Evered L. A., Chan M. T. V., Han R. Anaesthetic depth and delirium after major surgery: a randomised clinical trial // Br. J. Anaesth. – 2021. – Vol. 127, № 5. – P. 704–712. Doi:10.1016/j.bja.2021.07.021.; Iggena D., Maier P. M., Häußler S. M. et al. Post-encoding modulation of spatial memory consolidation by propofol // Cortex. – 2022. – Vol. 156. – P. 1–12. Doi:10.1016/j.cortex.2022.08.004.; Jia L., Wang W., Luo Y. et al. Inhibition of PARP-1 participates in the mechanisms of propofol-induced amnesia in mice and human // Brain Res. – 2016. – Vol. 1637. – P. 137–145. Doi:10.1016/j.brainres.2016.02.031.; Linassi F., Obert D. P., Maran E. et al. Implicit Memory and Anesthesia: A Systematic Review and Meta-Analysis // Life (Basel). – 2021. – Vol. 11, № 8. – P. 850. Doi:10.3390/life11080850.; Marco C. Awareness during emergence from anesthesia: Features and future research directions // World J. Clin. Cases. – 2020. – Vol. 2, № 8. – P. 245–254. Doi:10.12998/wjcc.v8.i2.245.; Moon D. U., Esfahani-Bayerl N., Finke C. et al. Propofol modulates early memory consolidation in humans // Eneuro. – 2020. – Vol. 3, № 7. – P. 1–29. Doi:10.1523/ENEURO.0537-19.2020.; Nagashima K., Zorumski C. F., Izumi Y. Propofol inhibits long-term potentiation but not long-term depression in rat hippocampal slices // Anesthesiology. – 2005. – Vol. 103, № 2. – P. 318–326. Doi:10.1097/00000542-200508000-00015.; Pryor K. O., Root J. C., Mehta M. et al. Effect of propofol on the medial temporal lobe emotional memory system: a functional magnetic resonance imaging study in human subjects // Br. J. Anaesth. – 2015. – Vol. 115, Suppl. 1. – P. 104–113. Doi:10.1093/bja/aev038.; Reul J. M., de Kloet E. R. Two receptor systems for corticosterone in rat brain: microdistribution and differential occupation // Endocrinology. – 1985. – Vol. 117, № 6. – Р. 2505–2511. Doi:10.1210/endo-117-6-2505. PMID: 2998738.; Rolls E. T. The cingulate cortex and limbic systems for emotion, action and memory // Brain Struct. Funct. – 2019. – Vol. 9, № 224. – P. 3001–3018. Doi:10.1007/s00429-019-01945-2.; Runyan J. D., Moore A. N., Dash P. K. Coordinating what we’ve learned about memory consolidation: Revisiting a unified theory // Neurosci. Biobehav. Rev. – 2019. – Vol. 100. – P. 77–84. Doi:10.1016/j.neubiorev.2019.02.010.; Shinone Y., Higuchi S., Sasaki M. et al. Changes in brain activation induced by visual stimulus during and after propofol conscious sedation: a functional MRI study // NeuroReport. – 2016. – Vol. 27, № 17. – P. 1256–1260. Doi:10.1097/WNR.0000000000000688.; Singh A., Brenna C. T. A., Broad J. et al. The Effects of Dexmedetomidine on perioperative neurocognitive outcomes after cardiac surgery: a systematic review and meta-analysis of randomized controlled trials // Ann. Surg. – 2022. – Vol. 275, № 5. – P. 864–871. Doi:10.1097/SLA.0000000000005196.; Sohn H. M., Na H. S., Lim D. et al. Immediate retrograde amnesia induced by midazolam: a prospective, nonrandomized cohort study // Int. J. Clin. Pract. – 2021. – P. e14745. Doi:10.1111/ijcp.14745.; Standarts for basic anesthetic monitoring / American Society of Anesthesiologists. – 2020. URL: https://www.asahq.org/standards-andguidelines/standards-for-basic-anesthetic-monitoring.; Takamatsu I., Sekiguchi M., Wada K. et al. Propofol-mediated impairment of CA1 long-term potentiation in mouse hippocampal slices // Neurosci Lett. – 2005. – Vol. 389, № 3. – Р. 129–132. Doi:10.1016/j.neulet.2005.07.043.; Timofeev I., Chauvette S. Sleep, anesthesia and plasticity // Neuron. – 2018. – Vol. 97, № 6. – Р. 1200–1202. Doi:10.1016/j.neuron.2018.03.013.; Veselis R. A., Pryor K. O., Reinsel R. A. et al. Propofol and midazolam inhibit conscious memory processes very soon after encoding: an event-related potential study of familiarity and recollection in volunteers // Anesthesiology. – 2009. – Vol. 110, № 2. – P. 295–312. Doi:10.1097/ALN.0b013e3181942ef0.; Yan J., Gao C., Wang Y. et al. ED50 for intravenous midazolam-induced amnesia and its duration in surgical patients // Ann. Ital. Chir. – 2021. – Vol. 92. – P. 406–411. PMID: 34524117.; Yang W., Chini M., Pöpplau J. A. et al. Anesthetics fragment hippocampal network activity, alter spine dynamics, and affect memory consolidation // PLoS Biol. – 2021. – Vol. 19, № 4. – Р. e3001146. Doi:10.1371/journal.pbio.3001146.; Zhang J., Zhang X., Jiang W. Propofol impairs spatial memory consolidation and prevents learning-induced increase in hippocampal matrix metalloproteinase-9 levels in rat // Neuroreport. – 2013. – Vol. 24, № 15. – P. 831–836. Doi:10.1097/WNR.0b013e328364fe69.

  18. 18
  19. 19
  20. 20