Výsledky vyhľadávania - "паркинсонизм"
-
1
Autori: a ďalší
Prispievatelia: a ďalší
Zdroj: Vavilov Journal of Genetics and Breeding; Том 28, № 8 (2024); 927-939 ; Вавиловский журнал генетики и селекции; Том 28, № 8 (2024); 927-939 ; 2500-3259 ; 10.18699/vjgb-24-88
Predmety: биомаркер, amino acids, acylcarnitines, gene networks, genetic markers, Parkinson’s disease, vascular parkinsonism, neurodegeneration, dry plasma stains, biomarker, аминокислоты, ацилкарнитины, генные сети, генетический маркер, болезнь Паркинсона, сосудистый паркинсонизм, нейродегенерация, сухие пятна плазмы крови
Popis súboru: application/pdf
Relation: https://vavilov.elpub.ru/jour/article/view/4414/1899; Alexander G.E. Biology of Parkinson’s disease: pathogenesis and pathophysiology of a multisystem neurodegenerative disorder. Dialogues Clin. Neurosci. 2004;6(3):259-280. doi 10.31887/DCNS.2004.6.3/galexander; Ashby E.L., Kierzkowska M., Hull J., Kehoe P.G., Hutson S.M., Conway M.E. Altered expression of human mitochondrial branched chain aminotransferase in dementia with Lewy bodies and vascular dementia. Neurochem. Res. 2017;42(1):306-319. doi 10.1007/s11064-016-1855-7; Binder H., Wirth H., Arakelyan A., Lembcke K., Tiys E.S., Ivanisenko V.A., Kolchanov N.A., Kononikhin A., Popov I., Nikolaev E.N., Pastushkova L.K., Larina I.M. Time-course human urine proteomics in space-flight simulation experiments. BMC Genomics. 2014; 15(S12):S2. doi 10.1186/1471-2164-15-S12-S2; Børglum A.D., Flint T., Hansen L.L., Kruse T.A. Refined localization of the pyruvate dehydrogenase E1α gene (PDHA1) by linkage analysis. Hum. Genet. 1996;99(1):80-82. doi 10.1007/s004390050315; Braak H., Tredici K.D., Rüb U., De Vos R.A.I., Jansen Steur E.N.H., Braak E. Staging of brain pathology related to sporadic Parkinson’s disease. Neurobiol. Aging. 2003;24(2):197-211. doi 10.1016/S0197-4580(02)00065-9; Bragina E.Yu., Tiys E.S., Freidin M.B., Koneva L.A., Demenkov P.S., Ivanisenko V.A., Kolchanov N.A., Puzyrev V.P. Insights into pathophysiology of dystropy through the analysis of gene networks: an example of bronchial asthma and tuberculosis. Immunogenetics. 2014;66(7-8):457-465. doi 10.1007/s00251-014-0786-1; Bragina E.Yu., Tiys E.S., Rudko A.A., Ivanisenko V.A., Freidin M.B. Novel tuberculosis susceptibility candidate genes revealed by the reconstruction and analysis of associative networks. Infect. Genet. Evol. 2016;46:118-123. doi 10.1016/j.meegid.2016.10.030; Bragina E.Yu., Gomboeva D.E., Saik O.V., Ivanisenko V.A., Freidin M.B., Nazarenko M.S., Puzyrev V.P. Apoptosis genes as a key to identification of inverse comorbidity of Huntington’s disease and cancer. Int. J. Mol. Sci. 2023;24(11):9385. doi 10.3390/ijms24119385; Che Mohd Nassir C.M.N., Damodaran T., Yusof S.R., Norazit A., Chilla G., Huen I., Kn B.P., Mohamed Ibrahim N., Mustapha M. Aberrant neurogliovascular unit dynamics in cerebral small vessel disease: a rheological clue to vascular Parkinsonism. Pharmaceutics. 2021;13(8):1207. doi 10.3390/pharmaceutics13081207; Chen C.-H., Joshi A.U., Mochly-Rosen D. The role of mitochondrial aldehyde dehydrogenase 2 (ALDH2) in neuropathology and neurodegeneration. Acta Neurol. Taiwan. 2016;25(4)(4):111-123; Chen Y., Liu Q., Liu J., Wei P., Li B., Wang N., Liu Z., Wang Z. Revealing the modular similarities and differences among Alzheimer’s disease, vascular dementia, and Parkinson’s disease in genomic networks. Neuromol. Med. 2022;24(2):125-138. doi 10.1007/s12017-021-08670-2; Chen Y.-F., Tseng Y.-L., Lan M.-Y., Lai S.-L., Su C.-S., Liu J.-S., Chang Y.-Y. The relationship of leukoaraiosis and the clinical severity of vascular Parkinsonism. J. Neurol. Sci. 2014;346(1-2):255-259. doi 10.1016/j.jns.2014.09.002; Chiu C.-C., Yeh T.-H., Lai S.-C., Wu-Chou Y.-H., Chen C.-H., Mochly-Rosen D., Huang Y.-C., Chen Y.-J., Chen C.-L., Chang Y.-M., Wang H.-L., Lu C.-S. Neuroprotective effects of aldehyde dehydrogenase 2 activation in rotenone-induced cellular and animal models of parkinsonism. Exp. Neurol. 2015;263:244-253. doi 10.1016/j.expneurol.2014.09.016; Dalangin R., Kim A., Campbell R.E. The role of amino acids in neurotransmission and fluorescent tools for their detection. Int. J. Mol. Sci. 2020;21(17):6197. doi 10.3390/ijms21176197; De Holanda Paranhos L., Magalhães R.S.S., De Araújo Brasil A., Neto J.R.M., Ribeiro G.D., Queiroz D.D., Dos Santos V.M., Eleutherio E.C.A. The familial amyotrophic lateral sclerosis-associated A4V SOD1 mutant is not able to regulate aerobic glycolysis. Biochim. Biophys. Acta Gen. Subjt. 2024;1868(8):130634. doi 10.1016/j.bbagen.2024.130634; Demenkov P.S., Ivanisenko T.V., Kolchanov N.A., Ivanisenko V.A. ANDVisio: a new tool for graphic visualization and analysis of literature mined associative gene networks in the ANDSystem. In Silico Biol. 2012;11(3-4):149-161. doi 10.3233/ISB-2012-0449; Dimas P., Montani L., Pereira J.A., Moreno D., Trötzmüller M., Gerber J., Semenkovich C.F., Köfeler H.C., Suter U. CNS myelination and remyelination depend on fatty acid synthesis by oligodendrocytes. eLife. 2019;8:e44702. doi 10.7554/eLife.44702; Ferrari M., Martignoni E., Blandini F., Riboldazzi G., Bono G., Marino F., Cosentino M. Association of UDP-glucuronosyltransferase 1A9 polymorphisms with adverse reactions to catechol-O-methyltransferase inhibitors in Parkinson’s disease patients. Eur. J. Clin. Pharmacol. 2012;68(11):1493-1499. doi 10.1007/s00228-012-1281-y; George G., Singh S., Lokappa S.B., Varkey J. Gene co-expression network analysis for identifying genetic markers in Parkinson’s disease – a three-way comparative approach. Genomics. 2019a;111(4): 819-830. doi 10.1016/j.ygeno.2018.05.005; George G., Valiya Parambath S., Lokappa S.B., Varkey J. Construction of Parkinson’s disease marker-based weighted protein-protein interaction network for prioritization of co-expressed genes. Gene. 2019b;697:67-77. doi 10.1016/j.gene.2019.02.026; Grassi D., Howard S., Zhou M., Diaz-Perez N., Urban N.T., Guerrero-Given D., Kamasawa N., Volpicelli-Daley L.A., LoGrasso P., Lasmézas C.I. Identification of a highly neurotoxic α-synuclein species inducing mitochondrial damage and mitophagy in Parkinson’s disease. Proc. Natl. Acad. Sci. USA. 2018;115(11):E2634-E2643. doi 10.1073/pnas.1713849115; Grünblatt E., Riederer P. Aldehyde dehydrogenase (ALDH) in Alzheimer’s and Parkinson’s disease. J. Neural. Transm. 2016;123(2): 83-90. doi 10.1007/s00702-014-1320-1; Ivanisenko T.V., Saik O.V., Demenkov P.S., Ivanisenko N.V., Savostianov A.N., Ivanisenko V.A. ANDDigest: a new web-based module of ANDSystem for the search of knowledge in the scientific literature. BMC Bioinformatics. 2020;21(S11):228. doi 10.1186/s12859-020-03557-8; Ivanisenko T.V., Demenkov P.S., Kolchanov N.A., Ivanisenko V.A. The new version of the ANDDigest tool with improved ai-based short names recognition. Int. J. Mol. Sci. 2022;23(23):14934. doi 10.3390/ijms232314934; Ivanisenko V.A., Saik O.V., Ivanisenko N.V., Tiys E.S., Ivanisenko T.V., Demenkov P.S., Kolchanov N.A. ANDSystem: an Associative Network Discovery System for automated literature mining in the field of biology. BMC Syst. Biol. 2015;9(Suppl.2):S2. doi 10.1186/1752-0509-9-S2-S2; Ivanisenko V.A., Demenkov P.S., Ivanisenko T.V., Mishchenko E.L., Saik O.V. A new version of the ANDSystem tool for automatic extraction of knowledge from scientific publications with expanded functionality for reconstruction of associative gene networks by considering tissue-specific gene expression. BMC Bioinformatics. 2019; 20(S1):34. doi 10.1186/s12859-018-2567-6; Ivanisenko V.A., Gaisler E.V., Basov N.V., Rogachev A.D., Cheresiz S.V., Ivanisenko T.V., Demenkov P.S., Mishchenko E.L., Khripko O.P., Khripko Yu.I., Voevoda S.M., Karpenko T.N., Velichko A.J., Voevoda M.I., Kolchanov N.A., Pokrovsky A.G. Plasma metabolomics and gene regulatory networks analysis reveal the role of nonstructural SARS-CoV-2 viral proteins in metabolic dysregulation in COVID-19 patients. Sci. Rep. 2022;12(1):19977. doi 10.1038/s41598-022-24170-0; Ivanisenko V.A., Basov N.V., Makarova A.A., Venzel A.S., Rogachev A.D., Demenkov P.S., Ivanisenko T.V., Kleshchev M.A., Gaisler E.V., Moroz G.B., Plesko V.V., Sotnikova Y.S., Patrushev Y.V., Lomivorotov V.V., Kolchanov N.A., Pokrovsky A.G. Gene networks for use in metabolomic data analysis of blood plasma from patients with postoperative delirium. Vavilov J. Genet. Breed. 2023;27(7): 768-775. doi 10.18699/VJGB-23-89; Jones L.L., McDonald D.A., Borum P.R. Acylcarnitines: role in brain. Prog. Lipid Res. 2010;49(1):61-75. doi 10.1016/j.plipres.2009.08.004; Kanehisa M. KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 2000;28(1):27-30. doi 10.1093/nar/28.1.27; Kasakin M.F., Rogachev A.D., Predtechenskaya E.V., Zaigraev V.J., Koval V.V., Pokrovsky A.G. Targeted metabolomics approach for identification of relapsing-remitting multiple sclerosis markers and evaluation of diagnostic models. Med. Chem. Commun. 2019;10(10): 1803-1809. doi 10.1039/c9md00253g; Korczyn A.D. Vascular Parkinsonism – characteristics, pathogenesis and treatment. Nat. Rev. Neurol. 2015;11(6):319-326. doi 10.1038/nrneurol.2015.61; Larina I.M., Pastushkova L.Kh., Tiys E.S., Kireev K.S., Kononikhin A.S., Starodubtseva N.L., Popov I.A., Custaud M.-A., Dobrokhotov I.V., Nikolaev E.N., Kolchanov N.A., Ivanisenko V.A. Permanent proteins in the urine of healthy humans during the Mars-500 experiment. J. Bioinform. Comput. Biol. 2015;13(01):1540001. doi 10.1142/S0219720015400016; Levin O.S., Bogolepova A.N., Lobzin V.Yu. General mechanisms of the pathogenesis of neurodenerative and cerebrovascular diseases and the possibilities of their correction. Zhurnal Nevrologii i Psikhiatrii Imeni S.S. Korsakova = S.S. Korsakov Journal of Neurology and Psychiatry. 2022;122(5):11-16. doi 10.17116/jnevro202212205111 (in Russian); Lin L., Tao J.-P., Li M., Peng J., Zhou C., Ouyang J., Si Y.-Y. Mechanism of ALDH2 improves the neuronal damage caused by hypoxia/reoxygenation. Eur. Rev. Med. Pharmacol. Sci. 2022;26(8):2712-2720. doi 10.26355/eurrev_202204_28601; Maksoud E., Liao E.H., Haghighi A.P. A neuron-glial trans-signaling cascade mediates LRRK2-induced neurodegeneration. Cell Rep. 2019;26(7):1774-1786.e4. doi 10.1016/j.celrep.2019.01.077; Mercatelli D., Scalambra L., Triboli L., Ray F., Giorgi F.M. Gene regulatory network inference resources: a practical overview. Biochim. Biophys. Acta Gene Regul. Mech. 2020;1863(6):194430. doi 10.1016/j.bbagrm.2019.194430; Michel T.M., Käsbauer L., Gsell W., Jecel J., Sheldrick A.J., Cortese M., Nickl-Jockschat T., Grünblatt E., Riederer P. Aldehyde dehydrogenase 2 in sporadic Parkinson’s disease. Parkinsonism Relat. Disord. 2014;20:S68-S72. doi 10.1016/S1353-8020(13)70018-X; Miki Y., Tanji K., Mori F., Kakita A., Takahashi H., Wakabayashi K. Alteration of mitochondrial protein PDHA1 in Lewy body disease and PARK14. Biochem. Biophys. Res. Commun. 2017;489(4):439-444. doi 10.1016/j.bbrc.2017.05.162; Mor D.E., Sohrabi S., Kaletsky R., Keyes W., Tartici A., Kalia V., Miller G.W., Murphy C.T. Metformin rescues Parkinson’s disease phenotypes caused by hyperactive mitochondria. Proc. Natl. Acad. Sci. USA. 2020;117(42):26438-26447. doi 10.1073/pnas.2009838117; Nalls M.A., Pankratz N., Lill C.M., Do C.B., Hernandez D.G., Saad M., DeStefano A.L., Kara E., Bras J., Sharma M., … Brice A., Scott W.K., Gasser T., Bertram L., Eriksson N., Foroud T., Singleton A.B. Large-scale meta-analysis of genome-wide association data identifies six new risk loci for Parkinson’s disease. Nat. Genet. 2014; 46(9):989-993. doi 10.1038/ng.3043; Narasimhan M., Schwartz R., Halliday G. Parkinsonism and cerebrovascular disease. J. Neurol. Sci. 2022;433:120011. doi 10.1016/j.jns.2021.120011; Narendra D.P., Jin S.M., Tanaka A., Suen D.-F., Gautier C.A., Shen J., Cookson M.R., Youle R.J. PINK1 is selectively stabilized on impaired mitochondria to activate Parkin. PLoS Biol. 2010;8(1):e1000298. doi 10.1371/journal.pbio.1000298; Odongo R., Bellur O., Abdik E., Çakır T. Brain-wide transcriptomebased metabolic alterations in Parkinson’s disease: human inter-region and human-experimental model correlations. Mol. Omics. 2023; 19(7):522-537. doi 10.1039/D2MO00343K; Okui T., Iwashita M., Rogers M.A., Halu A., Atkins S.K., Kuraoka S., Abdelhamid I., Higashi H., Ramsaroop A., Aikawa M., Singh S.A., Aikawa E. CROT (Carnitine O-Octanoyltransferase) is a novel contributing factor in vascular calcification via promoting fatty acid metabolism and mitochondrial dysfunction. Arterioscler. Thromb. Vasc. Biol. 2021;41(2):755-768. doi 10.1161/ATVBAHA.120.315007; Ostrakhovitch E.A., Song E.-S., Macedo J.K.A., Gentry M.S., Quintero J.E., Van Horne C., Yamasaki T.R. Analysis of circulating metabolites to differentiate Parkinson’s disease and essential tremor. Neurosci. Lett. 2022;769:136428. doi10.1016/j.neulet.2021.136428; Pastushkova L.Kh., Kireev K.S., Kononikhin A.S., Tiys E.S., Popov I.A., Starodubtseva N.L., Dobrokhotov I.V., Ivanisenko V.A., Larina I.M., Kolchanov N.A., Nikolaev E.N. Detection of renal tissue and urinary tract proteins in the human urine after space flight. PLoS One. 2013;8(8):e71652. doi 10.1371/journal.pone.0071652; Pastushkova L.Kh., Kashirina D.N., Brzhozovskiy A.G., Kononikhin A.S., Tiys E.S., Ivanisenko V.A., Koloteva M.I., Nikolaev E.N., Larina I.M. Evaluation of cardiovascular system state by urine proteome after manned space flight. Acta Astronaut. 2019;160:594-600. doi 10.1016/j.actaastro.2019.02.015; Pavlú-Pereira H., Florindo C., Carvalho F., Tavares De Almeida I., Vicente J., Morais V., Rivera I. Evaluation of mitochondrial function on pyruvate dehydrogenase complex deficient patient-derived cell lines. Endocr. Metab. Immune Disord. Drug Targets. 2024;24(16):20. doi 10.2174/0118715303280072231004082458; Penney J., Tsurudome K., Liao E.H., Kauwe G., Gray L., Yanagiya A., Calderon M.R., Sonenberg N., Haghighi A.P. LRRK2 regulates retrograde synaptic compensation at the Drosophila neuromuscular junction. Nat. Commun. 2016;7(1):12188. doi 10.1038/ncomms12188; Rappaport N., Twik M., Nativ N., Stelzer G., Bahir I., Stein T.I., Safran M., Lancet D. MalaCards: a comprehensive automaticallymined database of human diseases. Curr. Protoc. Bioinformatics. 2014;47(1):1.24.1-19. doi 10.1002/0471250953.bi0124s47; Rocha E.M., De Miranda B., Sanders L.H. Alpha-synuclein: pathology, mitochondrial dysfunction and neuroinflammation in Parkinson’s disease. Neurobiol. Dis. 2018;109:249-257. doi 10.1016/j.nbd.2017.04.004; Rogachev A.D., Alemasov N.A., Ivanisenko V.A., Ivanisenko N.V., Gaisler E.V., Oleshko O.S., Cheresiz S.V., Mishinov S.V., Stupak V.V., Pokrovsky A.G. Correlation of metabolic profiles of plasma and cerebrospinal fluid of high-grade glioma patients. Metabolites. 2021;11(3):133. doi 10.3390/metabo11030133; Saik O.V., Ivanisenko T.V., Demenkov P.S., Ivanisenko V.A. Interactome of the hepatitis C virus: literature mining with ANDSystem. Virus Res. 2016;218:40-48. doi 10.1016/j.virusres.2015.12.003; Saik O.V., Demenkov P.S., Ivanisenko T.V., Bragina E.Yu., Freidin M.B., Dosenko V.E., Zolotareva O.I., Choynzonov E.L., Hofestaedt R., Ivanisenko V.A. Search for new candidate genes involved in the comorbidity of asthma and hypertension based on automatic analysis of scientific literature. J. Integr. Bioinform. 2018; 15(4):20180054. doi 10.1515/jib-2018-0054; Saik O.V., Nimaev V.V., Usmonov D.B., Demenkov P.S., Ivanisenko T.V., Lavrik I.N., Ivanisenko V.A. Prioritization of genes involved in endothelial cell apoptosis by their implication in lymphedema using an analysis of associative gene networks with ANDSystem. BMC Med. Genomics. 2019;12(S2):47. doi 10.1186/s12920-019-0492-9; Saiki S., Hatano T., Fujimaki M., Ishikawa K.-I., Mori A., Oji Y., Okuzumi A., Fukuhara T., Koinuma T., Imamichi Y., Nagumo M., Furuya N., Nojiri S., Amo T., Yamashiro K., Hattori N. Decreased long-chain acylcarnitines from insufficient β-oxidation as potential early diagnostic markers for Parkinson’s disease. Sci. Rep. 2017; 7(1):7328. doi 10.1038/s41598-017-06767-y; Schlaepfer I.R., Joshi M. CPT1A-mediated fat oxidation, mechanisms, and therapeutic potential. Endocrinology. 2020;161(2):bqz046. doi 10.1210/endocr/bqz046; Shortall K., Djeghader A., Magner E., Soulimane T. Insights into aldehyde dehydrogenase enzymes: a structural perspective. Front. Mol. Biosci. 2021;8:659550. doi 10.3389/fmolb.2021.659550; Sohrabi S., Mor D.E., Kaletsky R., Keyes W., Murphy C.T. Highthroughput behavioral screen in C. elegans reveals Parkinson’s disease drug candidates. Commun. Biol. 2021;4(1):203. doi 10.1038/s42003-021-01731-z; Song M., Schnettler E., Venkatachalam A., Wang Y., Feldman L., Argenta P., Rodriguez-Rodriguez L., Ramakrishnan S. Increased expression of collagen prolyl hydroxylases in ovarian cancer is associated with cancer growth and metastasis. Am. J. Cancer Res. 2023;13(12):6051-6062; Thanvi B., Lo N., Robinson T. Vascular parkinsonism – an important cause of parkinsonism in older people. Age Ageing. 2005;34(2): 114-119. doi 10.1093/ageing/afi025; Tomkins J.E., Manzoni C. Advances in protein-protein interaction network analysis for Parkinson’s disease. Neurobiol. Dis. 2021;155: 105395. doi 10.1016/j.nbd.2021.105395; Trabjerg M.S., Andersen D.C., Huntjens P., Mørk K., Warming N., Kullab U.B., Skjønnemand M.-L.N., Oklinski M.K., Oklinski K.E., Bolther L., Kroese L.J., Pritchard C.E.J., Huijbers I.J., Corthals A., Søndergaard M.T., Kjeldal H.B., Pedersen C.F.M., Nieland J.D.V. Inhibition of carnitine palmitoyl-transferase 1 is a potential target in a mouse model of Parkinson’s disease. NPJ Parkinsons Dis. 2023; 9(1):6. doi 10.1038/s41531-023-00450-y; Tukey R.H., Strassburg C.P. Human UDP-glucuronosyltransferases: metabolism, expression, and disease. Annu. Rev. Pharmacol. Toxicol. 2000;40(1):581-616. doi 10.1146/annurev.pharmtox.40.1.581; Urban D., Lorenz J., Meyborg H., Ghosh S., Kintscher U., Kaufmann J., Fleck E., Kappert K., Stawowy P. Proprotein convertase furin enhances survival and migration of vascular smooth muscle cells via processing of pro-nerve growth factor. J. Biochem. 2013;153(2): 197-207. doi 10.1093/jb/mvs137; Vale T.C., Barbosa M.T., Caramelli P., Cardoso F. Vascular Parkinsonism and cognitive impairment: literature review, Brazilian studies and case vignettes. Dement. Neuropsychol. 2012;6(3):137-144. doi 10.1590/S1980-57642012DN06030005; Valente E.M., Abou-Sleiman P.M., Caputo V., Muqit M.M.K., Harvey K., Gispert S., Ali Z., Del Turco D., Bentivoglio A.R., Healy D.G., Albanese A., Nussbaum R., González-Maldonado R., Deller T., Salvi S., Cortelli P., Gilks W.P., Latchman D.S., Harvey R.J., Dallapiccola B., Auburger G., Wood N.W. Hereditary early-onset Parkinson’s disease caused by mutations in PINK1. Science. 2004;304(5674):1158-1160. doi 10.1126/science.1096284; Virmani A., Pinto L., Bauermann O., Zerelli S., Diedenhofen A., Binienda Z.K., Ali S.F., Van Der Leij F.R. The carnitine palmitoyl transferase (CPT) system and possible relevance for neuropsychiatric and neurological conditions. Mol. Neurobiol. 2015;52(2): 826-836. doi 10.1007/s12035-015-9238-7; Vos M., Geens A., Böhm C., Deaulmerie L., Swerts J., Rossi M., Craessaerts K., Leites E.P., Seibler P., Rakovic A., Lohnau T., De Strooper B., Fendt S.-M., Morais V.A., Klein C., Verstreken P. Cardiolipin promotes electron transport between ubiquinone and complex I to rescue PINK1 deficiency. J. Cell Biol. 2017;216(3):695-708. doi 10.1083/jcb.201511044; Wang Mingyue, Xie Y., Qin D. Proteolytic cleavage of proBDNF to mBDNF in neuropsychiatric and neurodegenerative diseases. Brain Res. Bull. 2021;166:172-184. doi 10.1016/j.brainresbull.2020.11.005; Wang Muyun, Wang K., Liao X., Hu H., Chen L., Meng L., Gao W., Li Q. Carnitine palmitoyltransferase system: a new target for antiinflammatory and anticancer therapy? Front. Pharmacol. 2021;12: 760581. doi 10.3389/fphar.2021.760581; Wang Yu, Yu W., Li S., Guo D., He J., Wang Yugang. Acetyl-CoA carboxylases and diseases. Front. Oncol. 2022;12:836058. doi 10.3389/fonc.2022.836058; Wey M.C.-Y., Fernandez E., Martinez P.A., Sullivan P., Goldstein D.S., Strong R. Neurodegeneration and motor dysfunction in mice lacking cytosolic and mitochondrial aldehyde dehydrogenases: implications for Parkinson’s disease. PLoS One. 2012;7(2):e31522. doi 10.1371/journal.pone.0031522; Wichaiyo S., Koonyosying P., Morales N.P. Functional roles of furin in cardio-cerebrovascular diseases. ACS Pharmacol. Transl. Sci. 2024; 7(3):570-585. doi 10.1021/acsptsci.3c00325; Wishart D.S., Guo A., Oler E., Wang F., Anjum A., Peters H., Dizon R., Sayeeda Z., Tian S., Lee B.L., Berjanskii M., Mah R., Yamamoto M., Jovel J., Torres-Calzada C., Hiebert-Giesbrecht M., Lui V.W., Varshavi Dorna, Varshavi Dorsa, Allen D., Arndt D., Khetarpal N., Sivakumaran A., Harford K., Sanford S., Yee K., Cao X., Budinski Z., Liigand J., Zhang L., Zheng J., Mandal R., Karu N., Dambrova M., Schiöth H.B., Greiner R., Gautam V. HMDB 5.0: the human metabolome database for 2022. Nucleic Acids Res. 2022;50(D1): D622-D631. doi 10.1093/nar/gkab1062; Wuolikainen A., Jonsson P., Ahnlund M., Antti H., Marklund S.L., Moritz T., Forsgren L., Andersen P.M., Trupp M. Multi-platform mass spectrometry analysis of the CSF and plasma metabolomes of rigorously matched amyotrophic lateral sclerosis, Parkinson’s di sease and control subjects. Mol. BioSyst. 2016;12(4):1287-1298. doi 10.1039/C5MB00711A; Xu Y., Xia D., Huang K., Liang M. Hypoxia-induced P4HA1 overexpression promotes post-ischemic angiogenesis by enhancing endothelial glycolysis through downregulating FBP1. J. Transl. Med. 2024;22(1):74. doi 10.1186/s12967-024-04872-x; Yakala G.K., Cabrera-Fuentes H.A., Crespo-Avilan G.E., Rattanasopa C., Burlacu A., George B.L., Anand K., Mayan D.C., Corlianò M., Hernández-Reséndiz S., Wu Z., Schwerk A.M.K., Tan A.L.J., Trigueros-Motos L., Chèvre R., Chua T., Kleemann R., Liehn E.A., Hausenloy D.J., Ghosh S., Singaraja R.R. FURIN inhibition reduces vascular remodeling and atherosclerotic lesion progression in mice. Arterioscler. Thromb. Vasc. Biol. 2019;39(3):387-401. doi 10.1161/ATVBAHA.118.311903; Yamada M., Hayashi H., Yuuki M., Matsushima N., Yuan B., Takagi N. Furin inhibitor protects against neuronal cell death induced by activated NMDA receptors. Sci. Rep. 2018;8(1):5212. doi 10.1038/s41598-018-23567-0; Yao V., Kaletsky R., Keyes W., Mor D.E., Wong A.K., Sohrabi S., Murphy C.T., Troyanskaya O.G. An integrative tissue-network approach to identify and test human disease genes. Nat. Biotechnol. 2018;36(11):1091-1099. doi 10.1038/nbt.4246; Zhao H., Wang C., Zhao N., Li W., Yang Z., Liu X., Le W., Zhang X. Potential biomarkers of Parkinson’s disease revealed by plasma metabolic profiling. J. Chromatogr. B. 2018;1081-1082:101-108. doi 10.1016/j.jchromb.2018.01.025; Zijlmans J.C.M., Thijssen H.O.M., Vogels O.J.M., Kremer H.P.H.M.P., Poels P.J.E., Schoonderwaldt H.C., Merx J.L., van’t Hof M.A., Thien Th., Horstink M.W.I.M. MRI in patients with suspected vascular parkinsonism. Neurology. 1995;45(12):2183-2188. doi 10.1212/WNL.45.12.2183; Zolotareva O., Saik O.V., Königs C., Bragina E.Yu., Goncharova I.A., Freidin M.B., Dosenko V.E., Ivanisenko V.A., Hofestädt R. Comorbidity of asthma and hypertension may be mediated by shared genetic dysregulation and drug side effects. Sci. Rep. 2019;9(1): 16302. doi 10.1038/s41598-019-52762-w; https://vavilov.elpub.ru/jour/article/view/4414
-
2
Autori: a ďalší
Prispievatelia: a ďalší
Zdroj: Safety and Risk of Pharmacotherapy; Том 13, № 1 (2025); 70-85 ; Безопасность и риск фармакотерапии; Том 13, № 1 (2025); 70-85 ; 2619-1164 ; 2312-7821 ; 10.30895/2312-7821-2025-13-1
Predmety: фармакогенетическое тестирование, schizophrenia, antipsychotic-induced parkinsonism, adverse drug reactions, diagnostic algoritm, early diagnosis, risk factors, riskometer, therapeutic drug monitoring, homovanillic acid, pharmacogenetic testing, шизофрения, антипсихотик-индуцированный паркинсонизм, нежелательные реакции, алгоритм диагностики, ранняя диагностика, факторы риска, рискометр, терапевтический лекарственный мониторинг, гомованилиновая кислота
Popis súboru: application/pdf
Relation: https://www.risksafety.ru/jour/article/view/418/1357; https://www.risksafety.ru/jour/article/downloadSuppFile/418/449; https://www.risksafety.ru/jour/article/downloadSuppFile/418/515; https://www.risksafety.ru/jour/article/downloadSuppFile/418/516; https://www.risksafety.ru/jour/article/downloadSuppFile/418/527; Левин ОС, ред. Экстрапирамидные расстройства — вчера, сегодня, завтра. М.: МЕДпресс-информ; 2015.; Шнайдер НА, Вайман ЕЭ, Незнанов НГ, Насырова РФ. Фармакогенетика антипсихотик-индуцированных экстрапирамидных расстройств. СПб: Издательство ДЕАН; 2022.; Вайман ЕЭ, Шнайдер НА, Незнанов НГ, Насырова РФ. Лекарственно-индуцированный паркинсонизм. Социальная и клиническая психиатрия. 2021;31(1):96–103. EDN: MWEAHI; Mentzel CL, Bakker PR, van Os J, Drukker M, Matroos GE, Tijssen MAJ, vanHarten PN. Blink rate is associated with drug-induced parkinsonism in patients with severe mental illness but does not meet requirements to serve as a clinical test: The Curacao extrapyramidal syndromes study XIII. J Negat Results Biomed. 2017;16(1):15. https://doi.org/10.1186/s12952-017-0079-y; Левин ОС. Диагностика и лечение экстрапирамидных гиперкинезов. Лечащий врач. 2005;(6):20–6.; Иванова СА, Алифирова ВМ, Жукова ИА, Бойко АС, Федоренко ОЮ, Бохан Н.А. Ассоциация DRD3 гена с болезнью Паркинсона. Журнал неврологии и психиатрии им. С.С. Корсакова. 2016;116(5):71–4. https://doi.org/10.17116/jnevro20161165171-74; Koning JP, Vehof J, Burger H, Wilffert B, Al Hadithy A, Alizadeh B, et al. Genetic Risk and Outcome in Psychosis (GROUP) investigators. Association of two DRD2 gene polymorphisms with acute and tardive antipsychotic-induced movement disorders in young Caucasian patients. Psychopharmacology (Berl). 2012;219(3):727–36. https://doi.org/10.1007/s00213-011-2394-1; Knol W, van Marum RJ, Jansen PA, Strengman E, Al Hadithy AF, Wilffert B, et al. Genetic variation and the risk of haloperidol-related parkinsonism in elderly patients: a candidate gene approach. J Clin Psychopharmacol. 2013;33(3):405–10. https://doi.org/10.1097/JCP.0b013e3182902708; Vaiman EE, Shnayder NA, Novitsky MA, Dobrodeeva VS, Goncharova PS, Bochanova EN, et al. Candidate genes encoding dopamine receptors as predictors of the risk of antipsychotic-induced parkinsonism and tardive dyskinesia in schizophrenic patients. Biomedicines. 2021;9:879. https://doi.org/10.3390/biomedicines9080879; Shnayder NA, Abdyrakhmanova AK, Nasyrova RF. Oxidation of antipsychotics. Encyclopedia. 2022;2:974–89. https://doi.org/10.3390/encyclopedia2020064; Preskorn SH. Drug-drug interactions (DDIs) in psychiatric practice, Part 9: Interactions mediated by drug-metabolizing cytochrome P450 enzymes. J Psychiatr Pract. 2020;26(2):126–34. https://doi.org/10.1097/PRA.0000000000000458; Шнайдер НА, Хасанова АК, Насырова РФ. Первая фаза метаболизма антипсихотиков в печени: роль окисления. Фармакогенетика и фармакогеномика. 2022;(1):15–30. https://doi.org/10.37489/2588-0527-2022-1-15-30; Nasyrova RF, Shnayder NA, Osipova SM, Khasanova AK, Efremov IS, Al-Zamil M, et al. Genetic predictors of antipsychotic efflux impairment via blood-brain barrier: Role of transport proteins. Genes. 2023;14:1085. https://doi.org/10.3390/genes14051085; Ravyn D, Ravyn V, Lowney R, Nasrallah HA. CYP450 pharmacogenetic treatment strategies for antipsychotics: A review of the evidence. Schizophr Res. 2013;149(1–3):1–14. https://doi.org/10.1016/j.schres.2013.06.035; Насырова РФ, Добродеева ВС, Скопин СД, Шнайдер НА, Незнанов НГ. Проблемы и перспективы внедрения фармакогенетического тестирования в реальной клинической практике в Российской Федерации. Вестник неврологии, психиатрии и нейрохирургии. 2020;(3):6–12. https://doi.org/10.33920/med-01-2003-01; Костюк ГП, Захарова НВ, Резник АМ, Суркова ЕИ, Ильинский ВВ. Перспективы применения фармакогенетических тестов в психиатрии и неврологии. Журнал неврологии и психиатрии им. С.С. Корсакова. 2019;119(9):131–5. https://doi.org/10.17116/jnevro2019119091131; Вайман ЕЭ, Шнайдер НА, Незнанов НГ, Насырова РФ. Методы диагностики лекарственно-индуцированного паркинсонизма: обзор отечественной и зарубежной литературы. Сибирский вестник психиатрии и наркологии. 2020;4(109):64–72. https://doi.org/10.26617/1810-3111-2020-4(109)-64-72; Temmingh HS, van den Brink W, Howells F, Sibeko G, Stein DJ. Methamphetamine use and antipsychotic-related extrapyramidal side-effects in patients with psychotic disorders. J Dual Diagn. 2020;16(2):208–17. https://doi.org/10.1080/15504263.2020.1714099; Chouinard G, Cosci F, Chouinard VA, Alphs L. The Extrapyramidal Symptom Rating Scale and its abbreviated version: A critical review of clinimetric properties. Psychother Psychosom. 2023;92(6):359–66. https://doi.org/10.1159/000535113; Martínez-Martín P, Rodríguez-Blázquez C, Mario Alvarez, Arakaki T, Arillo VC, Chaná P, et al. Parkinson’s disease severity levels and MDS-Unified Parkinson’s Disease Rating Scale. Parkinsonism Relat Disord. 2015;21(1):50–4. https://doi.org/10.1016/j.parkreldis.2014.10.026; Opara J, Małecki A, Małecka E, Socha T. Motor assessment in Parkinson’s disease. Ann Agric Environ Med. 2017;24(3):411–5. https://doi.org/10.5604/12321966.1232774; Kapoor S, Saluja A, Margekar SL, Agarwal M, Mondal S, Dhamija RK. Neurogenic supine hypertension and cardiovascular autonomic dysfunction in patients with Parkinson’s disease. Ann Indian Acad Neurol. 2023;26(1):33–8. https://doi.org/10.4103/aian.aian_476_22; Bersani G, Grispini A, Marini S, Pasini A, Valducci M, Ciani N. 5-HT2 antagonist ritanserin in neuroleptic-induced parkinsonism: A double-blind comparison with orphenadrine and placebo. Clin Neuropharmacol. 1990;13(6):500–6. https://doi.org/10.1097/00002826-199012000-00003; Rajput AH, Offord KP, Beard CM, Kurland LT. Epidemiology of parkinsonism: Incidence, classification, and mortality. Ann Neurol. 1984;16(3):278–82. https://doi.org/10.1002/ana.410160303; Kennedy PF, Hershon HI, McGuire RJ. Extrapyramidal disorders after prolonged phenothiazine therapy. Br J Psychiatry. 1971;118(546):509–18.; Левин ОС, Шиндряева НН, Аникина МА. Лекарственный паркинсонизм. Журнал неврологии и психиатрии. 2012;8:69–74. EDN: PDXMSD; Вайман ЕЭ, Шнайдер НА, Незнанов НГ, Насырова РФ. Гены-кандидаты развития антипсихотик-индуцированного паркинсонизма у пациентов с шизофренией. Обозрение психиатрии и медицинской психологии имени В.М. Бехтерева. 2021;57(4):15–35. https://doi.org/10.31363/2313-7053-2021-57-4-15-35; Micheli FE, Cersosimo MG. Drug-induced parkinsonism. Handb Clin Neurol. 2007;84:399–416. https://doi.org/10.1016/S0072-9752(07)84051-6; Caligiuri MR, Jeste DV, Lacro JP. Antipsychotic-induced movement disorders in the elderly: Epidemiology and treatment recommendations. Drugs Aging. 2000;17(5):363–84. https://doi.org/10.2165/00002512-200017050-00004; Thanvi B, Treadwell S. Drug induced parkinsonism: A common cause of parkinsonism in older people. Postgrad Med J. 2009;85(1004):322–6. https://doi.org/10.1136/pgmj.2008.073312; López-Sendón JL, Mena MA, de Yébenes JG. Drug-induced parkinsonism in the elderly: Incidence, management and prevention. Drugs Aging. 2012;29(2):105–18. https://doi.org/10.2165/11598540-000000000-00000; Van Gerpen JA. Drug-induced parkinsonism. Neurologist. 2002;8(6):363–70 https://doi.org/10.1097/00127893-200211000-00006; Stefani A, Pierantozzi M, Olivola E, Galati S, Cerroni R, D’Angelo V, et al. Homovanillic acid in CSF of mild stage Parkinson’s disease patients correlates with motor impairment. Neurochem Int. 2017;105:58–63. https://doi.org/10.1016/j.neuint.2017.01.007; Chia LG, Cheng FC, Kuo JS. Monoamines and their metabolites in plasma and lumbar cerebrospinal fluid of Chinese patients with Parkinson’s disease. J Neurol Sci. 1993;116(2):125–34. https://doi.org/10.1016/0022-510x(93)90316-q; Khasanova AK. Pharmacogenetic factors of clozapine-induced metabolic syndrome. Personalized Psychiatry and Neurology. 2023;3(2):38–47. https://doi.org/10.52667/2712-9179-2023-3-2-38-47; Neznanov NG. A paradigm shift to treat psychoneurological disorders. Personalized Psychiatry and Neurology. 2021;1(1):1–2.; Lara DV, Melo DO, Silva RAM, Santos PCJL. Pharmacogenetic testing in psychiatry and neurology: An overview of reviews. Pharmacogenomics. 2021;22(8):505–13. https://doi.org/10.2217/pgs-2020-0187; Redenšek S, Dolžan V. The role of pharmacogenomics in the personalization of Parkinson’s disease treatment. Pharmacogenomics. 2020;21(14):1033–43. https://doi.org/10.2217/pgs-2020-0031; Dahl ML. Cytochrome p450 phenotyping/genotyping in patients receiving antipsychotics: Useful aid to prescribing? Clin Pharmacokinet. 2002;41(7):453–70. https://doi.org/10.2165/00003088-200241070-00001; Bousman CA, Bengesser SA, Aitchison KJ, Amare AT, Aschauer H, Baune BT, et al. Review and consensus on pharmacogenomic testing in psychiatry. Pharmacopsychiatry. 2021;54(1):5–17. https://doi.org/10.1055/a-1288-1061; Eum S, Lee AM, Bishop JR. Pharmacogenetic tests for antipsychotic medications: Clinical implications and considerations. Dialogues Clin Neurosci. 2016;18(3):323–37. https://doi.org/10.31887/DCNS.2016.18.3/jbishop; Urban AE, Cubała WJ. Therapeutic drug monitoring of atypical antipsychotics. Psychiatr Pol. 2017;51(6):1059–77. https://doi.org/10.12740/PP/65307; Mauri MC, Paletta S, Di Pace C, Reggiori A, Cirnigliaro G, Valli I, et al. Clinical pharmacokinetics of atypical antipsychotics: An update. Clin Pharmacokinet. 2018;57(12):1493–528. https://doi.org/10.1007/s40262-018-0664-3; Потанин СС, Морозова МА, Бениашвили АГ, Бурминский ДС, Мирошниченко ИИ. Рекомендации по применению терапевтического лекарственного мониторинга антипсихотиков для индивидуализации подбора терапии при обострении шизофрении. Обозрение психиатрии и медицинской психологии имени В.М. Бехтерева. 2023;57(4):111–9. https://doi.org/10.31363/2313-7053-2023-778; Milosavljevic F, Bukvic N, Pavlovic Z, Miljevic C, Pešic V, Molden E, et al. Association of CYP2C19 and CYP2D6 poor and intermediate metabolizer status with antidepressant and antipsychotic exposure: A systematic review and meta-analysis. JAMA Psychiatry. 2021;78(3):270–80. https://doi.org/10.1001/jamapsychiatry.2020.3643; Luvsantseren S, Whirl-Carrillo M, Sangkuhl K, Shin N, Wen A, Empey P, et al. Variant interpretation in current pharmacogenetic testing. J Pers Med. 2020;10(4):204. https://doi.org/10.3390/jpm10040204; Aronson JK. Francis Galton and the invention of terms for quantiles. J Clin Epidemiol. 2001;54(12):1191–4. https://doi.org/10.1016/s0895-4356(01)00420-6; Ward KM, Citrome L. Antipsychotic-related movement disorders: Drug-induced parkinsonism vs. tardive dyskinesia — key differences in pathophysiology and clinical management. Neurol Ther. 2018;7(2):233–48. https://doi.org/10.1007/s40120-018-0105-0; Сычев ДА, Кутузова ЛС, Васькова ЛБ. Современный подход к персонализации дозирования варфарина: где и как можно сделать фармакогенетическое тестирование в России? Фармакогенетика и фармакогеномика. 2016;(1):24–8. EDN: WCLOWD; https://www.risksafety.ru/jour/article/view/418
-
3
Autori: a ďalší
Zdroj: Медицина в Кузбассе, Vol 23, Iss 2, Pp 76-80 (2024)
Popis súboru: electronic resource
Relation: https://mednauki.ru/index.php/MK/article/view/1099; https://doaj.org/toc/1819-0901; https://doaj.org/toc/2588-0411
Prístupová URL adresa: https://doaj.org/article/c21b8a5cff514f35a36f16615ac767dd
-
4
Zdroj: Медицина в Кузбассе, Vol 23, Iss 2, Pp 76-80 (2024)
Prístupová URL adresa: https://doaj.org/article/c21b8a5cff514f35a36f16615ac767dd
-
5
Autori: Yevtushenko, S.K.
Zdroj: INTERNATIONAL NEUROLOGICAL JOURNAL; № 8.78 (2015); 60-72
МЕЖДУНАРОДНЫЙ НЕВРОЛОГИЧЕСКИЙ ЖУРНАЛ; № 8.78 (2015); 60-72
МІЖНАРОДНИЙ НЕВРОЛОГІЧНИЙ ЖУРНАЛ; № 8.78 (2015); 60-72Predmety: болезнь Паркинсона, таупатии, синуклеопатии, болезнь телец Леви, кортикобазальная дегенерация, мультисистемная атрофия, сосудистый паркинсонизм, мадопар, мирапекс, мидантан, неупро (ротитин), дофаминовая помпа, хвороба Паркінсона, таупатії, синуклеопатії, хвороба тілець Леві, кортикобазальна дегенерація, мультисистемна атрофія, судинний паркінсонізм, мірапекс, мідантан, дофамінова помпа, Parkinson's disease, tauopathy, synucleopathy, Lewy body disease, corticobasal degeneration, multiple system atrophy, vascular parkinsonism, madopar, mirapex, midantan, neupro (rotigotine), dopamine pump, 3. Good health
Popis súboru: application/pdf
-
6
Autori: a ďalší
Zdroj: Medicine in Kuzbass; Том 23, № 2 (2024): июнь; 76-80 ; Медицина в Кузбассе; Том 23, № 2 (2024): июнь; 76-80 ; 2588-0411 ; 1819-0901
Predmety: extrapontine myelinolysis, parkinsonism, behavioral disorders, экстрапонтинный миелинолиз, паркинсонизм, поведенческие нарушения
Popis súboru: text/html; application/pdf
Relation: http://mednauki.ru/index.php/MK/article/view/1099/1881; http://mednauki.ru/index.php/MK/article/view/1099/1901; http://mednauki.ru/index.php/MK/article/downloadSuppFile/1099/1692; http://mednauki.ru/index.php/MK/article/downloadSuppFile/1099/1693; http://mednauki.ru/index.php/MK/article/downloadSuppFile/1099/1694; http://mednauki.ru/index.php/MK/article/view/1099
-
7
Autori: Karaban, I.N.
Zdroj: INTERNATIONAL NEUROLOGICAL JOURNAL; № 1.95 (2018); 56-61
МЕЖДУНАРОДНЫЙ НЕВРОЛОГИЧЕСКИЙ ЖУРНАЛ; № 1.95 (2018); 56-61
МІЖНАРОДНИЙ НЕВРОЛОГІЧНИЙ ЖУРНАЛ; № 1.95 (2018); 56-61Predmety: болезнь Паркинсона, паркинсонизм, леводопаиндуцированные дискинезии, амантадин, хвороба Паркінсона, паркінсонізм, леводопаіндуковані дискінезії, Parkinson's disease, parkinsonism, levodopa-induced dyskinesias, amantadine, 3. Good health
Popis súboru: application/pdf
-
8
Autori: a ďalší
Zdroj: INTERNATIONAL NEUROLOGICAL JOURNAL; Том 16, № 3 (2020); 7-15
МЕЖДУНАРОДНЫЙ НЕВРОЛОГИЧЕСКИЙ ЖУРНАЛ; Том 16, № 3 (2020); 7-15
МІЖНАРОДНИЙ НЕВРОЛОГІЧНИЙ ЖУРНАЛ; Том 16, № 3 (2020); 7-15Predmety: neurotoxin MPTP, parkinsonism, nigral neurons, malondialdehyde and antioxidant enzymes of the brain, behavioral reactions, нейротоксин МФТП, паркінсонізм, нейрони чорної субстанції, малоновий діальдегід та антиоксидантні ферменти головного мозку, поведінкові реакції, паркинсонизм, нейроны черной субстанции, малоновый диальдегид и антиоксидантные ферменты головного мозга, поведенческие реакции
Popis súboru: application/pdf
-
9
Autori: a ďalší
Zdroj: INTERNATIONAL NEUROLOGICAL JOURNAL; Том 16, № 6 (2020); 5-14
МЕЖДУНАРОДНЫЙ НЕВРОЛОГИЧЕСКИЙ ЖУРНАЛ; Том 16, № 6 (2020); 5-14
МІЖНАРОДНИЙ НЕВРОЛОГІЧНИЙ ЖУРНАЛ; Том 16, № 6 (2020); 5-14Predmety: left-handedness complete, latent, comorbid, ischemic stroke, discogenic-venous radiculomyeloischemia, vegetative-vascular dystonia, multiple sclerosis, parkinsonism, лівшество повне, приховане, коморбідне, ішемічний інсульт, дискогенно-венозна радикуломієлоішемія, вегетосудинна дистонія, розсіяний склероз, паркінсонізм, левшество полное, скрытое, коморбидное, ишемический инсульт, дискогенно-венозная радикуломиелоишемия, вегетососудистая дистония, рассеянный склероз, паркинсонизм, 3. Good health
Popis súboru: application/pdf
Prístupová URL adresa: http://inj.zaslavsky.com.ua/article/view/215136
-
10
Autori: Tkachyshyn, V.S.
Zdroj: EMERGENCY MEDICINE; № 5.100 (2019); 40-44
МЕДИЦИНА НЕОТЛОЖНЫХ СОСТОЯНИЙ; № 5.100 (2019); 40-44
МЕДИЦИНА НЕВІДКЛАДНИХ СТАНІВ; № 5.100 (2019); 40-44Predmety: 03 medical and health sciences, марганец, интоксикация, поражение центральной нервной системы, энцефалопатия, паркинсонизм, клиника, диагностика, лечение, профилактика, экспертиза трудоспособности, manganese, intoxication, defeat of the central nervous system, encephalopathy, parkinsonism, clinical picture, diagnosis, treatment, prophylaxis, functional capacity evaluation, 0302 clinical medicine, марганець, інтоксикація, ураження центральної нервової системи, енцефалопатія, паркінсонізм, клініка, діагностика, лікування, профілактика, експертиза працездатності, 3. Good health
Popis súboru: application/pdf
Prístupová URL adresa: http://emergency.zaslavsky.com.ua/article/view/177016
-
11
Autori: a ďalší
Zdroj: Yakut Medical Journal. :119-122
-
12
Autori: a ďalší
Zdroj: Сборник статей
Predmety: PANTOTHENATE KINASE-ASSOCIATED NEURODEGENERATION, GALLERVORDEN-SPATZ DISEASE, PARKINSONISM, DYSTONIA, TREMOR, COGNITIVE IMPAIRMENT, ПАНТОТЕНАТКИНАЗА-АССОЦИИРОВАННАЯ НЕЙРОДЕГЕНЕРАЦИЯ, БОЛЕЗНЬ ГАЛЛЕРВОРДЕНА-ШПАТЦА, ПАРКИНСОНИЗМ, ДИСТОНИЯ, ТРЕМОР, КОГНИТИВНЫЕ НАРУШЕНИЯ
Popis súboru: application/pdf
Relation: Актуальные вопросы современной медицинской науки и здравоохранения: сборник статей VIII Международной научно-практической конференции молодых учёных и студентов, Екатеринбург, 19-20 апреля 2023 г.; http://elib.usma.ru/handle/usma/14334
Dostupnosť: http://elib.usma.ru/handle/usma/14334
-
13
Autori: a ďalší
Zdroj: Pharmacokinetics and Pharmacodynamics; № 4 (2021); 47-52 ; Фармакокинетика и Фармакодинамика; № 4 (2021); 47-52 ; 2686-8830 ; 2587-7836
Predmety: мыши С57BL/6, MPTP, DNA-comet assay, parkinsonism, С57BL/6 mice, МФТП, метод ДНК-комет, паркинсонизм
Popis súboru: application/pdf
Relation: https://www.pharmacokinetica.ru/jour/article/view/299/288; Tissingh P, Bergmans J, Booij A et al. Drug-naive patients with Parkinson’s disease in Hoehn and Yahr stages I and II show a bilateral decrease in striatal dopamine transporters as revealed by [123I]beta-CIT SPECT. J Neurol. 1998;245(1):14–20. DOI:10.1007/s004150050168.; Абаимов Д.А., Зимин И.А., Ковалев Г.И. Влияние гимантана на основные подсистемы дофаминовых рецепторов стриатума крыс ex vivo. Экспериментальная и клиническая фармакология. 2008;71(1):18–21.; Абаимов Д.А., Зимин И.А., Кудрин В.С., Ковалев Г.И. Влияние противопаркинсонического препарата гимантана на содержание и метаболизм нейромедиаторных моноаминов в структурах головного мозга мышей линии С57 Bl/6. Экспериментальная и клиническая фармакология. 2009;72(1):64–67.; Андяржанова Э.А., Вальдман Е.А., Кудрин В.С. и др. Влияние нового потенциального противопаркинсонического средства гимантана на содержание моноаминов и их метаболитов в стриатуме крыс (микродиализное исследование). Экспериментальная и клиническая фармакология. 2001;64(6):13–17.; Вальдман Е.А., Воронина Т.А., Аксенова Л.Н. и др. Влияние нового противопаркинсонического препарата гимантана на активность моноаминооксидаз. Экспериментальная и клиническая фармакология. 2003;5:3–5.; Вальдман Е.А., Капица И.Г., Неробкова Л.Н. и др. Влияние длительного введения мышам изатина и гимантана на чувствительность моноаминоксидазы Б мозга к ингибированию депренилом in vivo и in vitro. Биомедицинская химия. 2004;50(5): 509-513.; Елшанская М.В., Соболевский А.И., Вальдман Е.А., Ходоров Б.И. Взаимодействие потенциального противопаркинсонического средства производного адамантана с ионными каналами глутаматных рецепторов MNDA подтипа. Экспериментальная и клиническая фармакология. 2001;64(1):18–21.; Нежинская Г.И., Вальдман Е.А., Назаров П.Г., Сапронов Н.С. Оценка пролонгированного иммунотропного эффекта гимантана – потенциального противопаркинсонического средства. Экспериментальная и клиническая фармакология. 2003;66(3):44–46. DOI:10.30906/0869-2092-2003-66-3-44-46.; Иванова Е.А., Капица И.Г., Золотов Н.Н., Вальдман Е.А., Непоклонов А.В., Колясникова К.Н., Воронина Т.А. Влияние гимантана на уровень продуктов перекисного окисления липидов в головном мозге при экспериментальном паркинсоническом синдроме. Фармакокинетика и фармакодинамика. 2016;(3):9–12.; Halliwell B. Reactive oxygen species and the central nervous system. J Neurochem. 1992;59(5):1609–1623. DOI:10.1111/j.1471–4159.1992.tb10990.x.; Hald A, Lotharius J. Oxidative stress and inflammation in Parkinson’s disease: is there a causal link? Experimental Neurology. 2005;193(2):279–290. DOI:10.1016/j.expneurol.2005.01.013.; Дурнев А.Д., Меркулов В.А., Жанатаев А.К. и др. Методические рекомендации по оценке ДНК-повреждений методом щелочного гель-электрофореза отдельных клеток в фармакологических исследованиях. Руководство по проведению доклинических исследований лекарственных средств. Часть первая. Под ред. А.Н. Миронова. Москва: 2012;115-128.; Непоклонов А.В. Изучение эффектов гимантана на ранних стадиях развития болезни Паркинсона и при индуцированных леводопой дискинезиях (экспериментальное исследование). Дис. канд. мед. наук. – Москва. 2013.; Konca K, Lankoff A, Banasik A. A cross-platform public domain PC image-analysis program for the comet assay. Mutat Res. 2003;534(1-2): 15–20. DOI:10.1016/s1383-5718(02)00251-6.; Moller P., Loft S. Statistical analysis of comet assay results. Front Genet. 2014;5:292. DOI:10.3389/fgene.2014.00292.; Schmidt N, Ferger B. Neurochemical findings in the MPTP model of Parkinson’s disease. J Neural Transm (Vienna). 2001;108(11):1263–1282. DOI:10.1007/s007020100004.; Hoang T, Choi DK, Nagai M. et al. Neuronal NOS and cyclooxygenase-2 contribute to DNA damage in a mouse model of Parkinson disease. Free Radic Biol Med. 2009;47(7):1049–1056. DOI:10.1016/j.freeradbiomed.2009.07.013.; Jackson-Lewis V, Jakowec M, Burke RE, Przedborski S. Time course and morphology of dopaminergic neuronal death caused by the neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine. Neurodegeneration. 1995;4(3):257–269. DOI:10.1016/1055-8330(95)90015-2.; Жанатаев А.К., Анисина Е.А., Чайка З.В., Мирошкина И.А., Дурнев А.Д. Феномен атипичных ДНК-комет. Цитология. 2017;59(3):163-168.; Coetsee N, Pretorius PJ, Terre Blanche G, Bergh JJ. Investigating the potential neuroprotective effects of statins on DNA damage in mouse striatum. Food Chem Toxicol. 2008;46(9):3186–3192. DOI:10.1016/j.fct.2008.07.006.; Meredith GE, Rademacher DJ. MPTP mouse models of Parkinson's disease: an update. J Parkinsons Dis. 2011;1(1):19–33. DOI:10.3233/JPD-2011-11023.; Pickrell AM, Pinto M, Hida A, Moraes CT. Striatal dysfunctions associated with mitochondrial DNA damage in dopaminergic neurons in a mouse model of Parkinson's disease. J Neurosci. 2011;31(48):17649–17658. DOI:10.1523/JNEUROSCI.4871-11.2011.; https://www.pharmacokinetica.ru/jour/article/view/299
-
14
Autori: a ďalší
Prispievatelia: a ďalší
Zdroj: Almanac of Clinical Medicine; Vol 50, No 5 (2022); 310-314 ; Альманах клинической медицины; Vol 50, No 5 (2022); 310-314 ; 2587-9294 ; 2072-0505
Predmety: multiple system atrophy, differential diagnosis, parkinsonism, ataxia, autonomic failure, мультисистемная атрофия, дифференциальная диагностика, паркинсонизм, атаксия, вегетативная недостаточность
Popis súboru: application/pdf
Relation: https://almclinmed.ru/jour/article/view/1729/1514; https://almclinmed.ru/jour/article/downloadSuppFile/1729/3034; https://almclinmed.ru/jour/article/downloadSuppFile/1729/3035; https://almclinmed.ru/jour/article/downloadSuppFile/1729/3134; https://almclinmed.ru/jour/article/downloadSuppFile/1729/3135; https://almclinmed.ru/jour/article/downloadSuppFile/1729/3136; https://almclinmed.ru/jour/article/downloadSuppFile/1729/3137; https://almclinmed.ru/jour/article/downloadSuppFile/1729/3138; https://almclinmed.ru/jour/article/downloadSuppFile/1729/3139; https://almclinmed.ru/jour/article/view/1729
-
15
Autori: a ďalší
Zdroj: Российские биомедицинские исследования, Vol 6, Iss 1 (2021)
Predmety: болезнь Паркинсона, паркинсонизм, клиническая картина, ось микробиота кишечник мозг, микрофлора кишечника, желудочно кишечный тракт, Medicine (General), R5-920
Popis súboru: electronic resource
Relation: http://ojs3.gpmu.org/index.php/biomedical-research/article/view/2625; https://doaj.org/toc/2658-6584; https://doaj.org/toc/2658-6576
Prístupová URL adresa: https://doaj.org/article/b2a5340ffd374af9a88c074d5d67bcc3
-
16
Autori: a ďalší
Zdroj: Neurology, Neuropsychiatry, Psychosomatics; Vol 13, No 6 (2021); 91-97 ; Неврология, нейропсихиатрия, психосоматика; Vol 13, No 6 (2021); 91-97 ; 2310-1342 ; 2074-2711 ; 10.14412/2074-2711-2021-6
Predmety: нежелательные реакции, drug-induced parkinsonism, drugs, adverse drug reactions, лекарственно-индуцированный паркинсонизм, лекарственные средства
Popis súboru: application/pdf
Relation: https://nnp.ima-press.net/nnp/article/view/1712/1348; https://nnp.ima-press.net/nnp/article/view/1712/1349; Tisdale JE, Miller DA, eds. Drug-induced diseases: prevention, detection, and management 3rd edition. Bethesda, Md: American Society of Health-System Pharmacists; 2018.; Shin HW, Chung SJ. Drug-induced parkinsonism. J Clin Neurol. 2012 Mar;8(1):15-21. doi:10.3988/jcn.2012.8.1.15; Левин ОС, Шиндряева НН, Аникина МА. Лекарственный паркинсонизм. Журнал неврологии и психиатрии им. С.С. Корсакова. 2012;112(8):76-81.; Нодель МР. Лекарственный паркинсонизм: возможности минимизации риска. Нервные болезни. 2015;(3):18-22.; Kumsa A, Girma S, Alemu B, Agenagnew L. Psychotropic medicationsinduced tardive dyskinesia and associated factors among patients with mental illness in Ethiopia. Clin Pharmacol. 2020 Dec 1;12:179-87. doi:10.2147/CPAA.S285585. eCollection 2020.; Leucht S, Cipriani A, Spineli L, et al. Comparative efficacy and tolerability of 15 antipsychotic drugs in schizophrenia: a multiple-treatments meta-analysis. Lancet. 2013 Sep 14;382(9896):951-62. doi:10.1016/S0140-6736(13)60733-3. Epub 2013 Jun 27.; Chyou TY, Nishtala R, Nishtala PS. Comparative risk of Parkinsonism associated with olanzapine, risperidone and quetiapine in older adults – a propensity score matched cohort study. Pharmacoepidemiol Drug Saf. 2020 Jun;29(6):692-700. doi:10.1002/pds.5007. Epub 2020 Apr 16.; Bondon-Guitton E, Perez-Lloret S, Bagheri H, et al. Drug-induced parkinsonism: a review of 17 years' experience in a regional pharmacovigilance center in France. Mov Disord. 2011 Oct;26(12):2226-31. doi:10.1002/mds.23828. Epub 2011 Jun 14.; Tsai SC, Sheu SY, Chien LN, et al. High exposure compared with standard exposure to metoclopramide associated with a higher risk of parkinsonism: a nationwide population-based cohort study. Br J Clin Pharmacol. 2018 Sep;84(9):2000-9. doi:10.1111/bcp.13630. Epub 2018 Jun 19.; Lai CH, Yeh YC, Chen YY. Metoclopramide as a prokinetic agent for diabetic gastroparesis: revisiting the risk of Parkinsonism. Ther Adv Drug Saf. 2019 Jun 20;10:2042098619854007. doi:10.1177/2042098619854007. eCollection 2019.; Leung JG, Breden EL. Tetrabenazine for the treatment of tardive dyskinesia. Ann Pharmacother. 2011 Apr;45(4):525-31. doi:10.1345/aph.1P312. Epub 2011 Apr 12.; Sahin T, Yilmaz R, Akbostanci MC. Predictive factors for tolerability of tetrabenazine in patients with hyperkinetic movement disorders. Parkinsonism Relat Disord. 2020 May;74:36-7. doi:10.1016/j.parkreldis.2020.04.007. Epub 2020 Apr 14.; Guay DR. Tetrabenazine, a monoaminedepleting drug used in the treatment of hyperkinetic movement disorders. Am J Geriatr Pharmacother. 2010 Aug;8(4):331-73. doi:10.1016/j.amjopharm.2010.08.006; Kenney C, Hunter C, Jankovic J. Long-term tolerability of tetrabenazine in the treatment of hyperkinetic movement disorders. Mov Disord. 2007 Jan 15;22(2):193-7. doi:10.1002/mds.21222; Teive HA, Troiano AR, Germiniani FM, Werneck LC. Flunarizine and cinnarizineinduced parkinsonism: a historical and clinical analysis. Parkinsonism Relat Disord. 2004 Jun;10(4):243-5. doi:10.1016/j.parkreldis.2003.12.004; Lin HL, Lin HC, Tseng YF, et al. Risk of parkinsonism induced by flunarizine or cinnarizine: a population-based study. Eur J Clin Pharmacol. 2017 Mar;73(3):365-71. doi:10.1007/s00228-016-2181-3; Miguel R, Correia AS, Bugalho P. Iatrogenic parkinsonism: the role of flunarizine and cinnarizine. J Parkinsons Dis. 2014;4(4):645-9. doi:10.3233/JPD-140414; Kim S, Cheon SM, Suh HS. Association between drug exposure and occurrence of parkinsonism in Korea: a population-based case-control study. Ann Pharmacother. 2019 Nov;53(11):1102-10. doi:10.1177/1060028019859543. Epub 2019 Jun 19.; Jhang KM, Huang JY, Nfor ON, et al. Flunarizine related movement disorders: a nationwide population-based study. Sci Rep. 2019 Feb 8;9(1):1705. doi:10.1038/s41598-018-37901-z; Liang CY, Yeh YC, Lee CJ, Chen YY. Flunarizine and the risk of parkinsonism in a newly diagnosed type 2 diabetic population in Taiwan: A nested case-control study. J Clin Neurosci. 2018 Apr;50:281-6. doi:10.1016/j.jocn.2018.01.017. Epub 2018 Feb 1.; Padrell MD, Navarro M, Faura CC, Horga JF. Verapamil-induced parkinsonism. Am J Med. 1995 Oct;99(4):436. doi:10.1016/s0002-9343(99)80195-8; Revet A, Montastruc F, Roussin A, et al. Antidepressants and movement disorders: a postmarketing study in the world pharmacovigilance database. BMC Psychiatry. 2020 Jun 16;20(1):308. doi:10.1186/s12888-020-02711-z; Miletic V, Relja M. Citalopram-induced parkinsonian syndrome: case report. Clin Neuropharmacol. Mar-Apr 2011;34(2):92-3. doi:10.1097/WNF.0b013e318210ea3e; Ak S, Anil Yagcioglu AE. Escitalopraminduced Parkinsonism. Gen Hosp Psychiatry. Jan-Feb 2014;36(1):126.e1-2. doi:10.1016/j.genhosppsych.2013.09.010. Epub 2013 Oct 5.; Kuloglu M, Caykoylu A, Ekinci O, et al. Successful management of depression with reboxetine in a patient who developed Parkinsonism related to paroxetine use. J Psychopharmacol. 2010 Apr;24(4):623-4. doi:10.1177/0269881108099962. Epub 2008 Dec 12.; Christodoulou C, Papadopoulou A, Rizos E, et al. Extrapyramidal side effects and suicidal ideation under fluoxetine treatment: a case report. Ann Gen Psychiatry. 2010 Jan 18;9:5. doi:10.1186/1744-859X-9-5; Gray JA. Parkinsonism and rabbit syndrome after discontinuation of low-dose ziprasidone and concomitant initiation of sertraline. J Clin Psychopharmacol. 2012 Feb;32(1):142-3. doi:10.1097/JCP.0b013e31823f912a; Pina Latorre MA, Modrego PJ, Rodilla F, et al. Parkinsonism and Parkinson's disease associated with long-term administration of sertraline. J Clin Pharm Ther. 2001 Apr;26(2):111-2. doi:10.1046/j.1365-2710.2001.00307.x; Bayrak A, Cetin B, Meteris H, Kesebir S. Parkinsonism secondary to duloxetine use: a case report. North Clin Istanb. 2015 Dec 25;2(3):243-6. doi:10.14744/nci.2015.63634. eCollection 2015.; Hong JY, Sunwoo MK, Oh JS, et al. Persistent drug-induced parkinsonism in patients with normal dopamine transporter imaging. PLoS One. 2016 Jun 13;11(6):e0157410. doi:10.1371/journal.pone.0157410. eCollection 2016.; Sarwar AI. Trazodone and parkinsonism: the link strengthens. Clin Neuropharmacol. May/Jun 2018;41(3):106-8. doi:10.1097/WNF.0000000000000278; Brugger F, Bhatia KP, Besag FM. Valproateassociated parkinsonism: a critical review of the literature. CNS Drugs. 2016 Jun;30(6):527-40. doi:10.1007/s40263-016-0341-8; Yomtoob J, Koloms K, Bega D. DAT-SPECT imaging in cases of drug-induced parkinsonism in a specialty movement disorders practice. Parkinsonism Relat Disord. 2018 Aug;53:37-41. doi:10.1016/j.parkreldis.2018.04.037. Epub 2018 May 5.; Ristic AJ, Vojvodic N, Jankovic S, et al. The frequency of reversible parkinsonism and cognitive decline associated with valproate treatment: a study of 364 patients with different types of epilepsy. Epilepsia. 2006 Dec;47(12):2183-5. doi:10.1111/j.1528-1167.2006.00711.x; Muralidharan A, Rahman J, Banerjee D, et al. Parkinsonism: a rare adverse effect of valproic acid. Cureus. 2020 Jun 23;12(6):e8782. doi:10.7759/cureus.8782; Pacheco-Paez T, Montastruc F, Rousseau V, et al. Parkinsonism associated with gabapentinoid drugs: A pharmacoepidemiologic study. Mov Disord. 2020 Jan;35(1):176-80. doi:10.1002/mds.27876. Epub 2019 Oct 21.; Rissardo JP, Caprara ALF. Carbamazepine-, oxcarbazepine-, eslicarbazepine-associated movement disorder: a literature review. Clin Neuropharmacol. May/Jun 2020;43(3):66-80. doi:10.1097/WNF.0000000000000387; Marras C, Herrmann N, Fischer HD, et al. Lithium use in older adults is associated with increased prescribing of parkinson medications. Am J Geriatr Psychiatry. 2016 Apr;24(4):301-9. doi:10.1016/j.jagp.2015.11.004. Epub 2015 Dec 10.; Gmitterova K, Minar M, Zigrai M, et al. Tacrolimus-induced parkinsonism in a patient after liver transplantation – case report. BMC Neurol. 2018 Apr 20;18(1):44. doi:10.1186/s12883-018-1052-1; Ling H, Bhidayasiri R. Reversible Parkinsonism after chronic cyclosporin treatment in renal transplantation. Mov Disord. 2009 Sep 15;24(12):1848-9. doi:10.1002/mds.22530; Montastruc JL, Durrieu G. Amiodarone and Parkinsonism: a pharmacovigilance study. Fundam Clin Pharmacol. 2021 Aug;35(4):781-4. doi:10.1111/fcp.12618. Epub 2020 Nov 9.; Dotti MT, Federico A. Amiodaroneinduced parkinsonism: a case report and pathogenetic discussion. Mov Disorders. 1995 Mar;10(2):233-4. doi:10.1002/mds.870100223; Malaterre HR, Renou C, Kallee K, Gauthier A. Akinesia and amiodarone therapy. Int J Cardiol. 1997 Mar;59(1):107-8. doi:10.1016/s0167-5273(96)02891-4; Ishida S, Sugino M, Hosokawa T, et al. Amiodarone-induced liver cirrhosis and parkinsonism: a case report. Clin Neuropathol. MarApr 2010;29(2):84-8. doi:10.5414/npp29084; Sandyk R. Parkinsonism induced by captopril. Clin Neuropharmacol. 1985;8(2):197-8. doi:10.1097/00002826-198506000-00013; Fisher JF, Dewald J. Parkinsonism associated with intraventricular amphotericin B. J Antimicrob Chemother. 1983 Jul;12(1):97-9. doi:10.1093/jac/12.1.97; Miguelez C, Morera-Herreras T, Torrecilla M, et al. Interaction between the 5-HT system and the basal ganglia: functional implication and therapeutic perspective in Parkinson's disease. Front Neural Circuits. 2014 Mar 17;8:21. doi:10.3389/fncir.2014.00021. eCollection 2014.; Guiard BP, El Mansari M, Merali Z, Blier P. Functional interactions between dopamine, serotonin and norepinephrine neurons: an in-vivo electrophysiological study in rats with monoaminergic lesions. Int J Neuropsychopharmacol. 2008 Aug;11(5):625-39. doi:10.1017/S1461145707008383. Epub 2008 Jan 21.; Вайман ЕЭ, Шнайдер НА, Незнанов НГ, Насырова РФ. Лечение антипсихотик-индуцированного паркинсонизма у пациентов с шизофренией. Неврология, нейропсихиатрия, психосоматика. 2021;13(4):4-11. doi:10.14412/2074-2711-20214-4-11; Ward KM, Citrome L. Antipsychotic-related movement disorders: drug-induced parkinsonism vs. tardive dyskinesia-key differences in pathophysiology and clinical management. Neurol Ther. 2018 Dec;7(2):233-248. doi:10.1007/s40120-018-0105-0. Epub 2018 Jul 19.; Wisidagama S, Selladurai A, Wu P, et al. Recognition and management of antipsychoticinduced parkinsonism in older adults: a narrative review. Medicines (Basel). 2021 May 26;8(6):24. doi:10.3390/medicines8060024; De Germay S, Montastruc F, Carvajal A, et al. Drug-induced parkinsonism: Revisiting the epidemiology using the WHO pharmacovigilance database. Parkinsonism Relat Disord. 2020 Jan;70:55-9. doi:10.1016/j.parkreldis.2019.12.011. Epub 2019 Dec 17.; Pieters LE, Bakker PR, van Harten PN. Asymmetric drug-induced parkinsonism and psychopathology: a prospective naturalistic study in long-stay psychiatric patients. Front Psychiatry. 2018 Feb 5;9:18. doi:10.3389/fpsyt.2018.00018. eCollection 2018.; Savica R, Grossardt BR, Bower JH, et al. Incidence and time trends of drug-induced parkinsonism: A 30-year population-based study. Mov Disord. 2017 Feb;32(2):227-34. doi:10.1002/mds.26839. Epub 2016 Oct 25.; Munhoz RP, Bertucci Filho D, Teive HA. Not all drug-induced parkinsonism are the same: the effect of drug class on motor phenotype. Neurol Sci. 2017 Feb;38(2):319-24. doi:10.1007/s10072-016-2771-y. Epub 2016 Nov 16.; Foubert-Samier A, Helmer C, Perez F, et al. Past exposure to neuroleptic drugs and risk of Parkinson disease in an elderly cohort. Neurology. 2012 Oct 9;79(15):1615-21. doi:10.1212/WNL.0b013e31826e25ce. Epub 2012 Sep 26.; Jeong S, Cho H, Kim YJ, et al. Drug-induced Parkinsonism: A strong predictor of idiopathic Parkinson's disease. PLoS One. 2021 Mar 1;16(3):e0247354. doi:10.1371/journal.pone.0247354. eCollection 2021.; Erro R, Bhatia KP, Tinazzi M. Parkinsonism following neuroleptic exposure: A double-hit hypothesis? Mov Disord. 2015 May;30(6):780-5. doi:10.1002/mds.26209. Epub 2015 Mar 18.; The American Psychiatric Association. Practice guideline for the treatment of patients with schizophrenia. 3rd ed. Washington, DC: American Psychiatric Association; 2021. doi:10.1176/appi.books.9780890424841; Morley JF, Duda JE. Use of hyposmia and other non-motor symptoms to distinguish between drug-induced parkinsonism and Parkinson's disease. J Parkinsons Dis. 2014;4(2):169-73. doi:10.3233/JPD-130299; Naranjo CA, Busto U, Sellers EM, et al. A method for estimating the probability of adverse drug reactions. Clin Pharmacol Ther. 1981 Aug;30(2):239-45. doi:10.1038/clpt.1981.154; Сычев ДА, Остроумова ОД, Переверзев АП и др. Лекарственно-индуцированные заболевания: подходы к диагностике, коррекции и профилактике. Фармаконадзор. Фарматека. 2020;(6):113-26. doi:10.18565/pharmateca.2020.6.113-126; Сапронова МР, Дмитренко ДВ, Шнайдер НА, Молгачев АА. Диагностика болезни Паркинсона. Часть 1. Возможности функциональной нейровизуализации. Доктор.Ру. 2020;19(9):6-12. doi:10.31550/1727-2378-2020-19-9-6-12; Morbelli S, Esposito G, Arbizu J, et al. EANM practice guideline/SNMMI procedure standard for dopaminergic imaging in Parkinsonian syndromes 1.0. Eur J Nucl Med Mol Imaging. 2020 Jul;47(8):1885-912. doi:10.1007/s00259-020-04817-8. Epub 2020 May 9.; Bega D, Kuo PH, Chalkidou A, et al. Clinical utility of DaTscan in patients with suspected Parkinsonian syndrome: a systematic review and meta-analysis. NPJ Parkinsons Dis. 2021 May 24;7(1):43. doi:10.1038/s41531-021-00185-8; Lee PH, Kim JS, Shin DH, et al. Cardiac 123I-MIBG scintigraphy in patients with drug induced parkinsonism. J Neurol Neurosurg Psychiatry. 2006 Mar;77(3):372-4. doi:10.1136/jnnp.2005.073999. Epub 2005 Aug 15.; Tachibana K, Matsuura K, Shindo A, et al. Symptomatic characteristics of parkinson's disease induced by neuroleptic drugs, based on a functional neuroimaging diagnosis. Intern Med. 2020;59(4):485-90. doi:10.2169/internalmedicine.2553-18. Epub 2020 Feb 15.; Caproni S, Colosimo C. Diagnosis and differential diagnosis of parkinson disease. Clin Geriatr Med. 2020 Feb;36(1):13-24. doi:10.1016/j.cger.2019.09.014. Epub 2019 Sep 17.
-
17
Autori: a ďalší
Zdroj: Бюллетень сибирской медицины, Vol 19, Iss 4, Pp 235-240 (2021)
Predmety: паркинсонизм, болезнь паркинсона, двигательные расстройства, болезнь гентингтона, экспансия cag-повторов, htt, нейродегенеративные заболевания, генетика, Medicine
Relation: https://bulletin.ssmu.ru/jour/article/view/4173; https://doaj.org/toc/1682-0363; https://doaj.org/toc/1819-3684; https://doaj.org/article/e893760408d04c12a8654aceb7524b6c
-
18
Zdroj: Российские биомедицинские исследования, Vol 6, Iss 1 (2021)
Predmety: Medicine (General), R5-920, болезнь Паркинсона, желудочно кишечный тракт, клиническая картина, ось микробиота кишечник мозг, паркинсонизм, микрофлора кишечника
Prístupová URL adresa: https://doaj.org/article/b2a5340ffd374af9a88c074d5d67bcc3
-
19
Autori:
Zdroj: Science Review; No 1(36) (2021): Science Review
Science Review; № 1(36) (2021): Science ReviewPredmety: mRNA expression of DJ1 gene, lung tissue, 0301 basic medicine, 0303 health sciences, striatum, 16. Peace & justice, heart tissue, 3. Good health, Experimental parkinsonism, Kapikor, 03 medical and health sciences, medulla oblongata, mRNA expression of PINK1 gene, 10. No inequality, Экспериментальный паркинсонизм, экспрессия мРНК гена DJ1, экспрессия мРНК гена PINK1, продолговатый мозг, стриатум, легочная ткань, ткань сердца, Капикор
Popis súboru: application/pdf
-
20
Zdroj: Качественная клиническая практика, Vol 0, Iss 2, Pp 47-54 (2018)
Predmety: интеллектуальная информационная система, паркинсонизм, Medical technology, R855-855.5, Pharmacy and materia medica, RS1-441
Popis súboru: electronic resource
Relation: https://www.clinvest.ru/jour/article/view/324; https://doaj.org/toc/2588-0519; https://doaj.org/toc/2618-8473
Prístupová URL adresa: https://doaj.org/article/9153f268cf3a46a4a81480e7cc84eda3
Nájsť tento článok vo Web of Science