Search Results - "оценка тяжести состояния"

Refine Results
  1. 1
  2. 2
  3. 3
  4. 4

    Source: Rossiyskiy Vestnik Perinatologii i Pediatrii (Russian Bulletin of Perinatology and Pediatrics); Том 65, № 3 (2020); 131-137 ; Российский вестник перинатологии и педиатрии; Том 65, № 3 (2020); 131-137 ; 2500-2228 ; 1027-4065 ; 10.21508/1027-4065-2020-65-3

    File Description: application/pdf

    Relation: https://www.ped-perinatology.ru/jour/article/view/1161/944; Rudd K.E., Johnson S.C., Agesa K.M., Shackelford K.A., Tsoi D., Kievlan D.R. et al. Global, regional, and national sepsis incidence and mortality, 1990–2017: analysis for the Global Burden of Disease Study. Lancet 2020; 395: 200–211. DOI:10.1016/ S0140-6736(19)32989-7; Bone R.C., Balk R.A., Cerra F.B., Dellinger R.P., Fein A.M., Knaus W.A. et al. Definitions for sepsis and organ failure and guidelines for the use of innovative therapies in sepsis. The ACCP/SCCM Consensus Conference Committee. American College of Chest Physicians/Society of Critical Care Medicine. Chest 1992; 101(6): 1644–1655.; Vincent J.L., Martin G., Levy M. qSOFA does not replace SIRS in the definition of sepsis. Critical Care 2016; 20(1): 210. DOI 10.1186/s13054-016-1389; Sprung C.L., Sakr Y., Vincent J.L., Le Gall J.R., Reinhart K., Ranieri V.M. et al. An evaluation of systemic inflammatory response syndrome signs in the Sepsis Occurrence in Acutely ill Patients (SOAP) study. Intensive Care Med 2006; 32: 421–427. DOI:10.1007/s00134-005-0039-8; Dulhunty J.M., Lipman J., Finfer S. Does severe non-infectious SIRS differ from severe sepsis? Results from a multi-centre Australian and New Zealand intensive care unit study. Intensive Care Med 2008; 34(9): 1654–1661. DOI:10.1007/s00134-008-1160-2.2008;34:1654–61; Churpek M.M., Zadravecz F.J., Winslow C., Howell M.D., Edelson D.P. Incidence and Prognostic Value of the Systemic Inflammatory Response Syndrome and Organ Dysfunctions in Ward Patients Am J Respir Crit Care Med 2015; 192: 958–964. DOI:10.1164/rccm.201502-0275OC; Singer M., Deutschman C.S., Seymour C.W., Shankar-Hari M., Annane D., Bauer M. et al. The third international consensus definitions for sepsis and septic shock (Sepsis‑3). JAMA 2016; 315: 801–810. DOI:10.1001/jama.2016.0287; Goldstein B., Giroir B., Randolph A. International pediatric sepsis consensus conference: definitions for sepsis and organ dysfunction in pediatrics. Pediatr Crit Care Med 2005; 6(01): 2–8. DOI:10.1097/01.PCC.0000149131.72248.E6; Raymond S.L., Lopez M.C., Baker H.V., Larson S.D., Efron P.A., Sweeney T.E. et al. Unique transcriptomic response to sepsis is observed among patients of different age groups. PLoS ONE 2017; 12(9): e0184159. DOI:10.1371/journal.pone.0184159; de Souza D.C., Machado F.R. Epidemiology of Pediatric Septic Shock. J Pediatr Intensive Care 2019; 8(1): 3–10. DOI:10.1055/s-0038-1676634; Scott H.F., Deakyne S.J., Woods J.M., Bajaj L. The prevalence and diagnostic utility of systemic inflammatory response syndrome vital signs in a pediatric emergency department. Acad Emerg Med 2015; 22: 381–389. DOI: 10,1111 / acem.12610; Agyeman P.K., Schlapbach L.J., Giannoni E., Stocker M., Posfay-Barbe K., Heininger U. et al. Epidemiology of blood culture-proven bacterial sepsis in children in Switzerland: a population-based cohort study. Lancet Child Adolesc Health 2017; 1: 124–133. DOI:10.1016/S2352-4642(17)30010-X; Schlapbach L.J., Straney L., Bellomo R., MacLaren G., Pilcher D. Prognostic accuracy of age-adapted SOFA, SIRS, PELOD-2, and qSOFA for in-hospital mortality among children with suspected infection admitted to the intensive care unit. Int Care Med 2018; 44: 179–188. DOI:10.1007/s00134-017-5021-8; Schlapbach L. J., Kissoon N. Defining pediatric sepsis. JAMA Pediatr 2018; 172: 312–314. DOI:10.1001 / jamapediatrics.2017.5208; Davis A.L.; Carcillo J.A., Aneja R.K., Deymann A.J., Lin J.C., Nguyen T.C. et al. American College of Critical Care Medicine Clinical practice parameters for hemodynamic support of pediatric and neonatal septic shock. Crit Care Med 2017; 45: 1061–1093. DOI:10.1097/CCM.00do00000000002425; Balamuth F., Weiss S.L., Neuman M.I., Scott H., Brady P.W., Paul R. et al. Pediatric severe sepsis in U.S. children’s hospitals. Pediatr Crit Care Med 2014; 15(09): 798–805. DOI:10.1097/PCC.0000000000000225; Weiss S.L., Fitzgerald J.C., Pappachan J., Wheeler D., Jaramillo- Bustamante J.C., Salloo A. et al. Sepsis Prevalence, Outcomes, and Therapies (SPROUT) Study Investigators and Pediatric Acute Lung Injury and Sepsis Investigators (PALISI) Network. Global epidemiology of pediatric severe sepsis: the sepsis prevalence, outcomes, and therapies study. Am J Respir Crit Care Med 2015; 191(10): 1147–115. DOI:10.1164 / rccm.201412-2323OC; Killien E.Y., Farris R.W.D., Watson R.S., Dervan L.A., Zimmerman J.J. Health-Related Quality of Life Among Survivors of Pediatric Sepsis. Pediatr Crit Care Med 2019; 20: 501–509. DOI:10.1097/PCC.0000000000001886; Boeddha N., Schlapbach N., Driessen G., Herberg J., Rivero- Calle I., Cebey-López M. Mortality and morbidity in community- acquired sepsis in European pediatric intensive care units: a prospective cohort study from the European Childhood Life-threatening Infectious Disease Study (EUCLIDS). Critical Care 2018; 22: 143. DOI:10.1186/s13054-018-2052-7; Leclerc F., Duhamel A., Deken V., Grandbastien B., Leteurtre S., Biarent D. et al. Can the pediatric logistic organ dysfunction- 2 score on day 1 be used in clinical criteria for sepsis in children? Pediatr Crit Care Med 2017; 18: 758–763. DOI:10.1097/PCC.0000000000001182; Matics T.J., Pinto N.P., Sanchez-Pinto L.N. Association of Organ Dysfunction Scoresand Functional Outcomes Following Pediatric Critical Illness. Pediatr Crit Care Med 2019; 20: 722–727. DOI:10.1097/PCC.0000000000001999; Dewi R., Somasetia D.H., Risan N.A. Procalcitonin, C-Reactive Protein and its Correlation with Severity Based on Pediatric Logistic OrganDysfunction-2 (PELOD-2) Score in Pediatric Sepsis. Am J Epidemiol Infect Dis 2016; 4(3): 64–67. DOI:10.12691/ajeid-4-3-3; Scott H.F., Brou L., Deakyne S.J., Kempe A., Fairclough D.L., Bajaj L. Association between early lactate levels and 30-day mortality in clinically suspected sepsis in children. JAMA Pediatr 2017; 171(3): 249–255. DOI: 10,1001 / jamapediatrics.2017.1598; Лекманов А.У., Миронов П.И., Руднов В.А., Кулабухов В.В. Современные дефиниции и принципы интенсивной терапии сепсиса у детей. Вестник анестезиологии и реаниматологии 2018; 15(4): 60-68. DOI:10.21292/2078-5658-2018-15-4-61-69

  5. 5

    Source: Research and Practical Medicine Journal; Том 7, № 2 (2020); 116-128 ; Research'n Practical Medicine Journal; Том 7, № 2 (2020); 116-128 ; 2410-1893 ; 10.17709/2409-2231-2020-7-2

    File Description: application/pdf

    Relation: https://www.rpmj.ru/rpmj/article/view/545/364; Azoulay E, Schellongowski P, Darmon M, Bauer PR, Benoit D, Depuydt P, et al. The Intensive Care Medicine research agenda on critically ill oncology and hematology patients. Intensive Care Med. 2017 Sep; 43(9): 1366–1382. https://doi.org/10.1007/s00134–017–4884-z; Феоктистов П.И., Карманов И. Е. Экстремальная операционная кровопотеря в онкохирургии: приговор пациенту или вызов персоналу? Клиническая практика. 2019; 10(3): 42–48. https://doi.org/10.17816/clinpract10342–48; Loh KP, Ramdass S, McHugh C, Mohile SG, Maggiore R. Assessing Frailty and Vulnerability in Older Adults with Cancer. Current Geriatrics Reports. 2017 Dec 1; 6(4): 231–238. https://doi.org/10.1007/s13670–017–0222–0; Shimabukuro-Vornhagen A, Böll B, Kochanek M, Azoulay É, von Bergwelt-Baildon MS. Critical care of patients with cancer. CA Cancer J Clin. 2016 Nov 12; 66(6): 496–517. https://doi.org/10.3322/caac.21351; Удалов Ю.Д., Гордиенко А.В., Самойлов А.С., Бахарев С.А. Прогнозирование и минимизация рисков фатальных исходов планового хирургического лечения онкологических больных с коморбидной соматической патологией. Медицина экстремальных ситуаций. 2018; 20(2): 136–145.; Александрович Ю.С., Гордеев В.И. Оценочные и прогностические шкалы в медицине критических состояний. 3 е изд., дополн. И исправл.— СПб.: ЭЛБИ-СПб, 2015.; Ghaffar S, Pearse RM, Gillies MA. ICU admission after surgery: who benefits? Curr Opin Crit Care. 2017 Oct; 23(5): 424–429. https://doi.org/10.1097/MCC.0000000000000448; Кашия Ш. Р. Особенности раннего послеоперационного периода при мультиорганных вмешательствах по поводу местнораспространенных злокачественных опухолей. Диссертация на соискание ученой степени кандидата медицинских наук. 2005. Доступно по: https://rusneb.ru/catalog/000199_000009_004065949/; Белялов Ф.И. Использование шкал прогноза в клинической медицине. Российский кардиологический журнал. 2016; 21(12): 23–27. https://doi.org/10.15829/1560–4071–2016–12–23–27; Darvall JN, Byrne T, Douglas N, Anstey JR. Intensive Care Practice in the Cancer Patient Population: Special Considerations and Challenges. Curr Anesthesiol Rep. 2018 Dec 1; 8(4): 439–447. https://doi.org/10.1007/s40140–018–0293–2; Белялов Ф.И. Прогнозирование заболеваний с помощью шкал. Комплексные проблемы сердечно-сосудистых заболеваний. 2018; 7(1): 84–93. https://doi.org/10.17802/2306–1278–2018–7-1–84–93; Karagoz S, TekdosSeker Y, Cukurova Z, Hergunsel O. The Effectiveness of Scoring Systems in the Prediction of Diagnosis-Based Mortality. TherApherDial. 2019 Oct; 23(5): 418–424. https://doi.org/10.1111/1744–9987.12780; Потанина О.К. Сравнение эффективности существующих прогностических моделей для оценки тяжести состояния реанима¬ццционных больных хирургического профиля. Диссертация на соискание ученой степени кандидата медицинских наук. 2012; 23 c.; Евтюков Г.М., Александрович Ю.С., Иванов Д.О. Оценка тяжести состояния больных, находящихся в критическом состоянии. Перспективы И Пути Развития Неотложной Педиатрии. 2006; 72–76.; Kingah P, Alzubaidi N, Yafawi JZD, Shehada E, Alshabani K, Soubani AO. Factors Associated with Mortality in Patients with a Solid Malignancy Admitted to the Intensive Care Unit — A Prospective Observational Study. J Crit Care Med (Targu Mures). 2018 Oct 1; 4(4): 137–142. https://doi.org/10.2478/jccm-2018–0019; Basile M, Press A, Adia AC, Wang JJ, Herman SW, Lester J, et al. Does Calculated Prognostic Estimation Lead to Different Outcomes Compared with Experience-Based Prognostication in the ICU? A Systematic Review. Crit Care Explor. 2019 Feb 1; 1(2): e0004. https://doi.org/10.1097/CCE.0000000000000004; Wijeysundera DN. Predicting outcomes: Is there utility in risk scores? Can J Anaesth. 2016 Feb; 63(2): 148–158. https://doi.org/10.1007/s12630–015–0537–2; Śmiechowicz J. Prognostic scoring systems for mortality in intensive care units — the APACHE model. Anaesthesiol Intensive Ther. 2015; 47(1): 87–88. https://doi.org/10.5603/AIT.2015.0009; Moreno RP, Nassar AP Jr. Is APACHE II a useful tool for clinical research? Rev Bras TerIntensiva. 2017 Sep; 29(3): 264–267. https://doi.org/10.5935/0103–507X.20170046; Le Gall J R, Loirat P, Alperovitch A, Glaser P, Granthil C, Mathieu D, et al. A simplified acute physiology score for ICU patients. Crit Care Med. 1984 Nov; 12(11): 975–977. https://doi.org/10.1097/00003246–198411000–00012; Le Gall JR, Lemeshow S, Saulnier F. A new Simplified Acute Physiology Score (SAPS II) based on a European/North American multicenter study. JAMA. 1993 Dec 22; 270(24): 2957–2963. https://doi.org/10.1001/jama.270.24.2957; Jones HJ, de Cossart L. Risk scoring in surgical patients. Br J Surg. 1999 Feb; 86(2): 149–157. https://doi.org/10.1046/j.1365–2168.1999.01006.x; Moreno RP, Metnitz PGH, Almeida E, Jordan B, Bauer P, Campos RA, et al. SAPS 3— From evaluation of the patient to evaluation of the intensive care unit. Part 2: Development of a prognostic model for hospital mortality at ICU admission. Intensive Care Med. 2005 Oct; 31(10): 1345–1355. https://doi.org/10.1007/s00134–005–2763–5; Falcão ALE, Barros AG de A, Bezerra AAM, Ferreira NL, Logato CM, Silva FP, et al. The prognostic accuracy evaluation of SAPS 3, SOFA and APACHE II scores for mortality prediction in the surgical ICU: an external validation study and decision-making analysis. Ann Intensive Care. 2019 Jan 30; 9(1): 18. https://doi.org/10.1186/s13613–019–0488–9; Lemeshow S, Teres D, Klar J, Avrunin JS, Gehlbach SH, Rapoport J. Mortality Probability Models (MPM II) based on an international cohort of intensive care unit patients. JAMA. 1993 Nov 24; 270(20): 2478–2486.; Biskup E, Cai F, Vetter M, Marsch S. Oncological patients in the intensive care unit: prognosis, decision-making, therapies and end-of-life care. Swiss Med Wkly. 2017; 147: w14481. https://doi.org/10.4414/smw.2017.14481; Flavin K, Vasdev N, Ashead J, Lane T, Hanbury D, Nathan P, et al. Perioperative Considerations in Metastatic Renal Cell Carcinoma. Rev Urol. 2016; 18(3): 133–142. https://doi.org/10.3909/riu0697; Hong S, Wang S, Xu G, Liu J. Evaluation of the POSSUM, p POSSUM, o POSSUM, and APACHE II scoring systems in predicting postoperative mortality and morbidity in gastric cancer patients. Asian J Surg. 2017 Apr; 40(2): 89–94. https://doi.org/10.1016/j.asjsur.2015.07.004; González-Martínez S, Martín-Baranera M, Martí-Saurí I, Borrell-Grau N, Pueyo-Zurdo JM. Comparison of the risk prediction systems POSSUM and P POSSUM with the Surgical Risk Scale: A prospective cohort study of 721 patients. Int J Surg. 2016 May; 29: 19–24. https://doi.org/10.1016/j.ijsu.2016.03.005; Sekulic AD, Trpkovic SV, Pavlovic AP, Marinkovic OM, Ilic AN. Scoring Systems in Assessing Survival of Critically Ill ICU Patients. Med Sci Monit. 2015 Sep 4; 21: 2621–2629. https://doi.org/10.12659/MSM.894153; Потанина О.К., Дорфман А. Г., Швырёв С.Л., Зарубина Т.В., Петрова М.В. Опыт использования зарубежных нозонеспецифичных прогностических шкал у больных хирургического и онкологического профиля. Вестник Российского Научного Центра Рентгенорадиологии Минздрава России. 2011; (11–3): 74–85.; Fang Y, Wu C, Gu X, Li Z, Xiang J, Chen Z. Perioperative mortality and morbidity prediction using POSSUM, P POSSUM and APACHE II in Chinese gastric cancer patients: surgical method is a key independent factor affecting prognosis. Int J Clin Oncol. 2014 Feb; 19(1): 74–80. https://doi.org/10.1007/s10147–013–0525-x; Butterfield R, Stedman W, Herod R, Aneman A. Does adding ICU data to the POSSUM score improve the prediction of outcomes following surgery for upper gastrointestinal malignancies? Anaesth Intensive Care. 2015 Jul; 43(4): 490–496. https://doi.org/10.1177/0310057X1504300412; Kądziołka I, Świstek R, Borowska K, Tyszecki P, Serednicki W. Validation of APACHE II and SAPS II scales at the intensive care unit along with assessment of SOFA scale at the admission as an isolated risk of death predictor. Anaesthesiol Intensive Ther. 2019; 51(2): 107–111. https://doi.org/10.5114/ait.2019.86275; Орлов А.И. Экспертные оценки. Учебное пособие.М., 2002, 31 с. Доступно по: http://www.aup.ru/books/m154/; Данелян Т.Я. Формальные методы экспертных оценок. Экономика, статистика и экономика. Вестник УМО. 2015; (1): 183–187. https://doi.org/10.21686/2500–3925–2015–1-183–187; Dolan JG, Veazie PJ. Harnessing Expert Judgment to Support Clinical Decisions When the Evidence Base Is Weak. Med Decis Making. 2019; 39(1): 74–79. https://doi.org/10.1177/0272989X18810178; Денисова А.Л., Зайцев Е.В. Теория и практика экспертной оценки товаров и услуг. Учебное пособие. Тамбов: Изд-во Тамб. гос. техн. ун-та, 2002. 72 с.; https://www.rpmj.ru/rpmj/article/view/545

  6. 6
  7. 7

    Source: Messenger of ANESTHESIOLOGY AND RESUSCITATION; Том 14, № 3 (2017); 35-43 ; Вестник анестезиологии и реаниматологии; Том 14, № 3 (2017); 35-43 ; 2541-8653 ; 2078-5658

    File Description: application/pdf

    Relation: https://www.vair-journal.com/jour/article/view/159/197; Abraham E. New definitions for sepsis and septic shock: continuing evolution but with much still to be done // JAMA. – 2016. – Vol. 315. – P. 757–759.; Almansa R., Heredia-Rodríguez M., Gomez-Sanchez E. et al. Transcriptomic correlates of organ failure extent in sepsis // J. Infect. – 2015. – Vol. 70, № 4. – P. 445–456.; Bagshaw S. M., McDermid R. C. The role of frailty in outcomes from critical illness // Curr. Opin. Crit. Care. – 2013. – Vol. 19, № 5. – Р. 496–503.; Bermejo-Martin J. F., Tamayo E., Andaluz-Ojeda D. et al. Characterising Systemic Immune Dysfunction Syndrome (SIDS) to fill in the gaps of SEPSIS-2 and SEPSIS-3 definitions // Chest 2017(Accepted).; Buchman T. G., Billiar T. R., Elster E. et al. Precision medicine for critical illness and injury // Crit. Care Med. – 2016. – Vol. 44. – P. 1635–1638.; Chan I. S., Ginsburg G. S. Personalized medicine: progress and promise // Ann. Rev. Genomics Hum. Genet. – 2011. – Vol. 12. – P. 217–244.; Cohen J., Vincent J. L., Adhikari N. K. et al. Sepsis: A roadmap for future research // Lancet Infect. Dis. – 2015. – Vol. 15. – P. 581–614.; Collins F. S., Varmus H. A new initiative on precision medicine // New Engl. J. Med. – 2015. – Vol. 372. – P. 793–795.; Cong L., Ran F. A., Cox D. et al. Multiplex genome engineering using CRISPR/Cas systems // Science. – 2013.–Vol. 339. – P. 819–823.; Cuenca A. G., Gentile L. F., Lopez M. C. et al. Development of a genomic metric that can be rapidly used to predict clinical outcome in severely injured trauma patients // Crit. Care Med. – 2013. – Vol. 41, № 5. – P. 1175–1185.; Davenport E. E., Burnham K. L., Radhakrishnan J. et al. Genomic landscape of the individual host response and outcomes in sepsis: a prospective cohort study // Lancet Respir. Med. – 2016. – Vol. 4, № 4. – P. 259–271.; Delano M. J., Ward P. A. Sepsis-induced immune dysfunction: can immune therapies reduce mortality? // J. Clin. Invest. – 2016. – Vol. 126, № 1. – P. 23–31.; Ferrer R., Martin-Loeches I., Phillips G. et al. Empiric antibiotic treatment reduces mortality in severe sepsis and septic shock from the first hour: Results from a guideline-based performance improvement program // Crit. Care Med. – 2014. – Vol. 42. – P. 1749–1755.; Gaj T., Gersbach Ch. A., Barbas C. F. ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering // Trends in Biotechnology. – 2013. – Vol. 31, № 7. – P. 397–404.; Gattinoi L., Tonetti T., Quintel M. Improved survival in critically ill patients: are large RCTs more useful then personalized medicine? We are not shure // Intens. Care Med. – 2016. – Vol. 42, № 11. – P. 1781–1783.; Goodman D. M., Livingston E. H. Genomic Medicine // JAMA. – 2013. – Vol. 309, № 14. – P. 1544.; Knaus W. A., Zimmerman J. E., Wagner D. P. et al. APACHE-acute physiology and chronic health evaluation: a physiologically based classification system // Crit. Care Med. – 1981.– Vol. 9, № 8. – P. 591–597.; Knox D. B., Lanspa M. J., Kuttler K. G. et al. Phenotypic clusters within sepsisassociated multiple organ dysfunction syndrome // Intens. Care Med. – 2015. – Vol. 41. – P. 814–822.; Lander E. S., Linton L. M., Birren B. et al. Initial sequencing and analysis of the human genome // Nature – 2001. – Vol. 409. – P. 860–921.; Laxminarayan R., Duse A., Wattal C. et al: Antibiotic resistance-the need for global solutions // Lancet Infect. Dis. – 2013. – Vol. 13. – P. 1057–1058.; Leentjens J., Kox M., van der Hoeven J. G. et al. Immunotherapy for the adjunctive treatment of sepsis: from immunosuppression to immunostimulation. Time for a paradigm change? // Am. J. Respir. Crit. Care Med. – 2013. – Vol. 187, № 12. – P. 1287–1293.; Li R., Fang L., Tan Sh. Type I CRISPR-Cas targets endogenous genes and regulates virulence to evade mammalian host immunity // Cell. Research. – 2016. – Vol. 26. – P. 1273–1287.; Liang P., Xu Y., Zhang X. et al. CRISPR/Cas9-mediated gene editing in human tripronuclear zygotes // Protein Cell. – 2015. – Vol. 6, № 5.– P. 363–372.; Maslove D. M., Wong H. R. Gene expression profiling in sepsis: timing, tissue, and translational considerations // Trends Mol. Med. – 2014. – Vol. 20. – P. 204–213.; Maslove D. M., Lamontagne F., Marshall J. C. et al. A path to precision in the ICU // Crit. Care. – 2017. – Vol. 21:79. DOI 10.1186/s13054–017–1653–x.; Mathias B., Lipori G., Lyle L. et al. Integrating «big data» into surgical practice // Surgery. – 2016. – Vol. 159. – P. 371–374.; Opal S. M., Dellinger R. P., Vincent J. L. et al. The next generation of sepsis clinical trial designs: what is next after the demise of recombinant human activated protein C? // Crit. Care Med. – 2014. – Vol. 42. – P. 1714–1721.; Parnell G., McLean A., Booth D. et al. Aberrant cell cycle and apoptotic changes characterise severe influenza A infection – a meta-analysis of genomic signatures in circulating leukocytes // PLoS One – 2011. – Vol. 6. – Р. e17186.; Parnell G. P.,Tang B. M., Nalos M. et al. Identifying key regulatory genes in the whole blood of septic patients to monitor underlying immune dysfunctions // Shock. – 2013. – Vol. 40, № 3. – P. 166–174.; Peltonen L., McKusick V. A. Dissecting human disease in the postgenomic era // Science. – 2001. – Vol. 291. – P. 1224–1229.; Prescott H. C., Calfee C. S., Thompson B. T. et al. Toward smarter lumping and smarter splitting: rethinking strategies for sepsis and acute respiratory distress syndrome clinical trial design // Am. J. Respir. Crit. Care Med. – 2016. – Vol. 194. – P. 147–155.; Puthucheary Z. A., Wischmeyer P. Predicting critical illness mortality and personalizing therapy: moving to multidimensional data // Crit. Care. – 2017. – Vol. 21. – 20 DOI 10.1186/s13054–016–1597–6; Rello J., Valenzuela-Sánchez F. Septic shock in the era of precision medicine // J. Thorac Dis. – 2016. – Vol. 8. – P. 1022–1023.; Russell J. A. Genomics and pharmacogenomics of sepsis: so close and yet so far // Crit. Care. – 2016. – Vol. 42. – P. 1–4.; Shankar-Hari M. et al. Developing a new definition and assessing new clinical criteria for septic shock: for the third international consensus definitions for sepsis and septic shock (Sepsis-3) // JAMA. – 2016. – Vol. 315. – P. 775–787.; Simpson S. O. New sepsis criteria: a change we should not make // Chest. – 2016. – Vol. 149, № 5. – Р. 1117–1118.; Sims C. R., Nguyen T. C., Mayeux P. R. Could biomarker direct therapy for the septic patients? // J. Pharmacol. Exp. Ther. – 2016. – Vol. 357, № 2. – P. 228–239.; Singer M., Deutschman C. S., Seymour C. W. et al. The third international consensus definitions for sepsis and septic shock (Sepsis-3) // JAMA. – 2016. – Vol. 315. – P. 801–810.; Surviving sepsis campaign: international guidelines for management of sepsis and septic shock: 2016 // Crit. Care Med. – 2017. – Vol. 45, № 3. – P. 486–552.; Sweeney T. E., Wong H. R. Risk stratification and prognosis in sepsis: what have we learned from microarrays? // Clin. Chest Med. – 2016. – Vol. 37. – P. 209–218.; Sweeney T. E., Khatri P. Benchmarking sepsis gene expression diagnostics using public data // Crit. Care Med. – 2017. – Vol. 45. – P. 1–10.; Sweeney T. E., Perumal T. M., Henao R. et al. Mortality prediction in sepsis via gene expression analysis: a community approach. bioRxiv. preprint first posted online Dec. 19, 2016; doi: http://dx.doi.org/10.1101/095489; Tang В. М. Р., McLean A. S., Dawes I. W. et al. Gene-expression profiling in sepsis diagnosis // Am. J. Respir. Crit. Care Med. – 2007. – Vol. 176. – P. 676–684.; Tsalik E. L., Langley R. J., Dinwiddie D. L. et al. An integrated transcriptome and expressed variant analysis of sepsis survival and death // Genome Med. – 2014. – Vol. 6, № 11. – P. 111.; Wong H. R., Shanley T. P., Sakthivel B. et al. Genome-level expression profiles in pediatric septic shock indicate a role for altered zinc homeostasis in poor outcome // Physiol. Genomics. – 2007. – Vol. 30, № 2. – P. 146–155.; Wong H. R., Cvijanovich N. Z., Anas N. et al. Developing a clinically feasible personalized medicine approach to pediatric septic shock // Am. J. Respir. Crit. Care Med. – 2015. – Vol. 191, № 3. – P. 309–315.; Wong H. R., Weiss S. L., Giuliano Jr. J. S. et al. Testing the Prognostic Accuracy of the Updated Pediatric Sepsis Biomarker Risk Model // PLoS ONE. – 2016. – Vol. 9, № 1. – Р. e86242.; Wong H. R., Cvijanovich N. Z., Anas N. et al. Improved Risk Stratification in Pediatric Septic Shock Using Both Protein and mRNA Biomarkers: PERSEVERE–XP // Am. J. Resp. Crit. Care Med. – 2017 Accepted: March 20, 2017 DOI: http://dx.doi.org/10.1164/rccm.201701–0066OC; Vogel and Motulski’s Human Genetics: Problems and Approaches. Springer, 2009.

  8. 8

    Source: Messenger of ANESTHESIOLOGY AND RESUSCITATION; Том 15, № 4 (2018); 61-69 ; Вестник анестезиологии и реаниматологии; Том 15, № 4 (2018); 61-69 ; 2541-8653 ; 2078-5658

    File Description: application/pdf

    Relation: https://www.vair-journal.com/jour/article/view/269/295; Лекманов А. У., Азовский Д. К., Пилютик С. Ф. и др. Коррекция гемодинамики у детей с тяжелыми травматическими повреждениями на основе транспульмональной термодилюции // Анестезиол. и реаниматол. ‒ 2011. ‒ № 1. ‒ С. 32‒36.; Семенова Ж. Б., Мельников А. В., Лекманов А. У. и др. Рекомендации по лечению детей с черепно-мозговой травмой // Рос. вестник детской хирургии, анестезиологии и реаниматологии. ‒ 2016. ‒ № 2. ‒ С. 112−181.; Agyeman P. K. A., Schlapbach L. J., Giannoni E. et al Epidemiology of blood culture-proven bacterial sepsis in children in Switzerland: a population-based cohort study // Lancet Child Adolesc Health. – 2017. – Vol. 1. – P. 124–133.; Balamuth F., Weiss S. L., Fitzgerald J. C. et al. Protocolized treatment is associated with decreased organ dysfunction in pediatric severe sepsis // Pediatr. Crit. Care Med. – 2016. – Vol. 17. – P. 817–822.; Berlot G., Vassallo M. C., Busetto N. et al. Relationship between the timing of administration of IgM and IgA enriched immunoglobulins in patients with severe sepsis and septic shock and the outcome: A retrospective analysis // J. Crit. Care. – 2012. – Vol. 27. – P. 167–171.; Brown S. G. A. Fluid resuscitation for people with sepsis: it’s time to challenge our basic assumptions // BMJ. – 2014. – Vol. 349. – P. 4611.; Carcillo J. A., Davis A. L., Zaritsky A. Role of early fluid resuscitation in pediatric septic shock // JAMA. – 1991. – Vol. 266. – P. 1242–1245.; Capasso L., Borrelli C. A., Parrella C. et al. Are IgM-enriched immunoglobulins an effective adjuvant in septic VLBW infants? // Ital. J. Pediatrics. – 2013.–Vol. 39. – P. 63.; Davis A. L. American College of Critical Care Medicine Clinical practice parameters for hemodynamic support of pediatric and neonatal septic shock // Crit. Care Med. – 2017. – Vol. 45. – P. 1061–1093.; Emrath E. T., Fortenberry J. D., Travers C. et al. Resuscitation with balanced fluids is associated with improved survival in pediatric severe sepsis // Crit. Care Med. – 2017. – Vol. 45. – P. 1177–1183.; Fisher E. C. Clinical spectrum of shock in the pediatric emergencydepartment. // Pediatric Emergency Care. – 2010. – Vol. 26. – P. 622–625.; Ford N., Hargreaves S., Shanks L. Mortality after fluid bolus in children withshock due to sepsis or severe infection: a SR and MA // PLoS One. – 2012. – Vol. 7. – Р. e43953.; Glassford N. J., Bellomo R. Albumin administration in sepsis: the case for and against // ICU Management. – 2017. – Vol. 17. – P. 36–43.; Goldstein B., Giroir B., Randolph A. et al. International pediatric sepsis consensus conference: Definitions for sepsis and organ dysfunction in pediatrics // Pediatr. Crit. Care Med. – 2005. – Vol. 6. – P. 2–8.; Gorgis N., Asselin J. M., Fontana C. et al. Evaluation of the association of early elevated lactate with outcomes in children with severe sepsis or septic shock // PediatrEmerg Care. – 2017. – (epab). doi:10.1097/PEC.000000000000102, https://www.ncbi.nlm.nih.gov/pubmed/28072671; Han Y. Y., Carcillo J. A., Dragotta M. A. et al. Early reversal of pediatric–neonatal septic shock by community physicians is associated with improved outcome // Pediatrics. – 2003. – Vol. 112. – P. 793–799.; Haque K. N., Zaidi M. H., Bahakim H. IgM-enriched intravenous immunoglobulin therapy in neonatal sepsis // Am. J. Dis. Child. – 1988. – Vol. 142. – P. 1293–1296.; Inwald D. P., Butt W., Tasker R. C. Fluid resuscitation of shock in children: what, whence and whither? // Int. Care Med. – 2015. – Vol. 41. – P. 1457–1459.; Kawasaki T., Shime N. Straney L. et al. Paediatric sequential organ failure assessment score (pSOFA): a plea for the world-wide collaboration for consensus // Int. Care Med. – 2018. – (epab) https://doi.org/10.1007/s00134–018–5188–7; Kissoon N., Carcillo J. A., Espinosa V. et al. World Federation of Pediatric Intensive Care and Critical Care Societies: Global Sepsis Initiative // Pediatr. Crit. Care Med. – 2011. – Vol. 12. – P. 494–503.; Kola E., Çelaj E., Bakalli I. et al. Efficacy of an IgM preparation in the treatment of patients with sepsis: a double-blind randomized clinical trial in a pediatric intensive care unit (Original research) // SEEJPH. – 2014. URL: researchgate.net/profile/Kola_Elmira; Larsen G. Y., Mecham N., Greenberg R. An emergency department septic shock protocol and care guideline for children initiated at triage // Pediatrics. – 2011. – Vol. 127. – P. 1585–1592.; Leclerc F., Duhamel A., Deken V. et al. Can the pediatric logisticorgan dysfunction-2 score on day 1 be used in clinical criteria for sepsis inchildren? // Pediatr. Crit. Care Med. – 2017. – Vol. 18. – P. 758–763.; Masutani S., Senzaki H., Ishido H. et al. Vasopressin in the tretment of vasodilatory shock in children // Pediatr. Inf. – 2005. – Vol. 47. – P. 132–136.; Matics T. J., Sanchez-Pinto L. N. Adaptation and validation of a pediatric sequential organ failure assessment score and evaluation of the Sepsis-3 definitions in critically ill children // JAMA Pediatr. – 2017. – Vol. 171. – P. e172352; Medeiros D. N., Ferranti J. F., Delgado A. F. et al. Colloids for the initial management of severe sepsis and septic shock in pediatric patients: A systematic review colloids for the initial management of severe sepsis and septic shock in pediatric patients: A systematic review // Pediatr. Emerg Care. – 2015. – Vol. 31. – P. 11–16. http://www.ncbi.nlm.nih.gov/pubmed/?term=de%20Carvalho%20WB%5BAuthor%5D&cauthor=true&cauthor_uid=26535507.; Myburgh J., Finfer S. Causes of death after fluid bolus resuscitation: new insights from FEAST // BMC Med. – 2013. – Vol. 11. – P. 67.; Norrby-Teglund A., Haque K. N., Hammarstrom L. A. Intravenous polyclonal IgM-enriched immunoglobulin therapy in sepsis: a review of clinical efficacy in relation to microbiological aetiology and severity of sepsis // J. Intern. Med. – 2006. – Vol. 260. – P. 509–516.; Opiyo N., Molyneux E., Sinclair D. et al. Immediate fluid management of children with severe febrile illness and signs of impaired circulation in low-income settings: a contextualized SR // BMJ Open. – 2014. – Vol. 4. – Р. e004934.; Paul R., Melendez E., Stack A. et al. Improving adherence to PALS septic shock guidelines // Pediatrics. ‒ 2014. – Vol. 133. – Р. e1358–e1366.; Paul R., Neuman М., Monuteaux М. et al. Adherence to PALS sepsis guidelines and hospital length of stay // Pediatrics. – 2012. – Vol. 130. – P. 273–280.; Russell M. J., Kanthimathinathan H. K. Is there an optimum duration of fluid bolus in pediatric septic shock? A Critical appraisal of fluid bolus over 15–20 versus 5–10 minutes each in the first hour of resuscitation in children with septic shock // Pediatr. Crit. Care Med. – 2018. – Vol. 19. – P. 369–371.; Santschi М., Leclerc F. Management of children with sepsis and septic shock: a survey among pediatric intensivists of the Réseau Mère-Enfant de la Francophonie // Ann. Int. Care. – 2013. – Vol. 3. – P. 7–14.; Schlapbach L. J., Straney L., Bellomo R. et al. Prognostic accuracy of age-adapted SOFA, SIRS, PELOD-2, and qSOFA for in-hospital mortality among children with suspected infection admitted to the intensive care unit // Int. Care Med. – 2018. – Vol. 44. – P. 179–188.; Schlapbach L. J., Kissoon N. Defining pediatric sepsis // JAMA Pediatr. – 2018. – Vol. 172. – P. 312–314.; Schlapbach L. J., MacLaren G., Festa M. et al. Prediction of pediatric sepsis mortality within 1h of intensive care admission // Int. Care Med. – 2017. – Vol. 43. – P. 1085–1096.; Scott H. F., Deakyne S. J., Woods J. M. et al. The prevalence and diagnostic utility of systemic inflammatory response syndrome vital signs in a pediatric emergency department // Acad. Emerg. Med. – 2015. – Vol. 22. – P. 381–389.; Singer M., Deutschman C. S., Seymour C. W. et al. The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3) // JAMA. – 2016. – Vol. 315. – P. 801–8101.; van Paridon B. M., Cathy S., Guerra G. G. et al. Alberta Sepsis Network Timing of antibiotics, volume, and vasoactive infusions in children with sepsis admitted to intensive care // Crit. Care. – 2015. – Vol. 19. – P. 293.; Weiss S. L., Deutschman C. S. Are septic children really just “septic little adults”? // Int. Care Med. – 2018. – Vol. 44. – P. 392–394.; Weiss S., Fitzgerald J.C., Maffei F.A. et al. SPROUT Pediatric Severe Sepsis Study American // J. Respir. Crit. Care Medicine. – 2015. – Vol. 191. – P. 1147–1157.; Weiss S. L., Fitzgerald J. C., Balamuth F. et al. Delayed antimicrobial therapy increases mortality and organ dysfunction duration in pediatric sepsis // Crit. Care Med. – 2014. – Vol. 42. – P. 2409–2417.; Weiss S. L., Peters M. J. Focus on paediatrics: 2017 // Int. Care Med. – 2018. – https://doi.org/10.1007/s00134-017-5025-4

  9. 9

    Source: Clinical and experimental pathology; Vol. 16 No. 1 (2017) ; Клиническая и экспериментальная патология; Том 16 № 1 (2017) ; Клінічна та експериментальна патологія; Том 16 № 1 (2017) ; 2521-1153 ; 1727-4338

    File Description: application/pdf

  10. 10

    Source: General Reanimatology; Том 12, № 4 (2016); 37-48 ; Общая реаниматология; Том 12, № 4 (2016); 37-48 ; 2411-7110 ; 1813-9779 ; 10.15360/1813-9779-2016-4

    File Description: application/pdf

    Relation: https://www.reanimatology.com/rmt/article/view/1538/1046; https://www.reanimatology.com/rmt/article/view/1538/1047; Хорошилов С.Е., Белобородова Н.В., Никулин А.В., Бедова А.Ю. Влияние экстракорпоральной детоксикации на уровень ароматических микробных метаболитов в сыворотке крови при сепсисе. Общая реаниматология. 2015; 11 (5): 6#14. http://dx.doi.org/10.15360/1813-9779-2015-5-6-14; Авдейкин С.Н., Тюрин И.Н., Карпун Н.А., Саликов А.В. Центральная гемодинамика и индекс внесосудистой воды легких при внебольничной пневмонии различной тяжести течения. Общая реаниматология. 2015; 11 (4): 23-32. http://dx.doi.org/10.15360/1813-9779-2015-4-23-32; Кецко Ю.Л., Лунина А.В., Петровская Е.В., Лямин А.В. Оценка эффективности антибактериальной терапии у пациентов с вируснобактериальной пневмонией в 2009/2011 годах. Общая реаниматология. 2015; 11 (4): 33-40. http://dx.doi.org/10.15360/1813-9779-2015-4-33-40; Marshall J.C., Cook D.J., Christou N.V., Bernard G.R., Sprung C.L., Sibbald W.J. Multiple organ dysfunction score: a reliable descriptor of a complex clinical outcome. Crit. Care Med. 1995; 23 (10): 1638-1652. http://dx.doi.org/10.1097/00003246-199510000-00007. PMID:7587228; Брюсов П.Г., Назаренко Г.И., Жижин В.Н. Прогнозирование в медицине катастроф. Томск: изд#во Томского университета; 1995: 240.; Мороз В.В., Закс И.О., Мещеряков Г.Н. Шкалы оценки тяжести и прогноза в клинике интенсивной терапии. Вестн. интенс. терапии. 2004; 4: 3-6.; Гридчик И.Е., Закиров Д.Б., Пар В.И. К прогнозу течения абдоминального сепсиса. Вестн. интенс. терапии. 2004; 1: 1-5.; Vincent J.L., Beumier M. Diagnostic and prognostic markers in sepsis. Expert. Rev. Anti Infect. Ther. 2013; 11 (3): 265#275. http://dx.doi.org/10.1586/eri.13.9. PMID: 23458767; Moreno R., Morais P. Outcome prediction in intensive care: results of a prospective, multicentre, Portuguese study. Intensive Care Med. 1997; 23 (2): 177-186. http://dx.doi.org/10.1007/s001340050313. PMID: 9069003; Звягин А.А., Светухин А.М., Слепнев С.Ю., Курочкина А.И. Разработка системы объективной оценки тяжести состояния больных с хирургической инфекцией. Вестн. интенс. терапии. 2003; 2: 34-38.; Rogers A.J., McGeachie M., Baron R.M., Gazourian L., Haspel J.A., Nakahira K., Fredenburgh L.E., Hunninghake G.M., Raby B.A., Matthay M.A., Otero R.M., Fowler V.G., Rivers E.P., Woods C.W., Kingsmore S., Langley R.J., Choi A.M. Metabolomic derangements are associated with mortality in critically ill adult patients. PloS One. 2014; 9 (1): e87538. http://dx.doi.org/10.1371/journal.pone.0087538. PMID: 24498130; Мороз В.В., Добрушина О.Р., Стрельникова Е.П., Корниенко А.Н., Зинина Е.П. Предикторы кардиальных осложнений операций на органах брюшной полости и малого таза у больных пожилого и старческого возраста. Общая реаниматология. 2011; 7 (5): 26-31. http://dx.doi.org/10.15360/1813-9779-2011-5-26; Козлов И.А., Харламова И.Е. Повышенный уровень натрийуретического пептида B#типа (NT#proBNP) как фактор риска у кардиохирургических больных. Общая реаниматология. 2010; 6 (1): 49-55. http://dx.doi.org/10.15360/1813-9779-2010-1-49; Кричевский Л.А., Рыбаков В.Ю., Гусева О.Г., Лямин А.Ю., Харламова И.Е., Магилевец А.И. Ранняя диагностика критических постперфузионных расстройств кровообращения. Общая реаниматология. 2012; 8 (3): 25-30. http://dx.doi.org/10.15360/18139779-2012-3-25; Белобородова Н.В., Бойко Н.Б., Мелько А.И., Архипова А.С., Белобородов Д.М., Оленин А.Ю. Хромато#масс#спектрометрическое определение низкомолекулярных ароматических соединений микробного происхождения в сыворотке крови больных сепсисом. Клин. лаб. диагностика. 2006; 2: 3-6. PMID: 16610621; Французов В.Н., Истратов В.Г., Зайцев С.В. Оценка эндогенной интоксикации у больных анаэробной неклостридиальной инфекцией методами хроматографии и масс-спектрометрии. Воен._мед. журнал. 2000; 321 (7): 17. PMID: 14631919; Истратов В.Г., Назаренко Н.А., Рузавин В.С., Демидова В.С., Вишневский В.А. Хроматография и хромато#масс#спектрометрия в диагностике острой пострезекционной печеночной недостаточности. Анналы хирургической гепатологии. 2009; 14 (4): 9-12.; Белобородова Н.В. Интеграция метаболизма человека и его микробиома при критических состояниях. Общая реаниматология. 2012; 8 (4): 42-54. http://dx.doi.org/10.15360/1813-9779-2012-4-42; Fedotcheva N.I., Kazakov R.E., Kondrashova M.N., Beloborodova N.V. Toxic effects of microbial phenolic acids on the functions of mitochondria. Toxicol. Lett. 2008; 180 (3): 182-188. http://dx.doi.org/10.1016/j.toxlet.2008.06.861. PMID: 18634861; Beloborodova N., Bairamov I., Olenin A., Shubina V., Teplova V., Fedotcheva N. Effect of phenolic acids of microbial origin on production of reactive oxygen species in mitochondria and neutrophils. J. Biomed. Sci. 2012; 19: 89. http://dx.doi.org/10.1186/1423-0127-19-89. PMID: 23061754; Мороз В.В., Белобородова Н.В., Осипов А.А., Власенко А.В., Бедова А.Ю., Паутова А.К. Фенилкарбоновые кислоты в оценке тяжести состояния и адекватности интенсивного лечения больных в реаниматологии. Анестезиология и реаниматология. 2016; 61 (3): 201-209.; Федотчева Н.И., Литвинова Е.Г., Оcипов А.А., Оленин А.Ю., Моpоз В.В., Белобоpодова Н.В. Влияние микpобныx метаболитов фенольной пpиpоды на активноcть митоxондpиальныx феpментов. Биофизика. 2015; 60 (6): 1118#1124. PMID: 26841505; Рябов Г.А. Критические состояния в хирургии. М.: Медицина; 1979: 320.; Савельев В.С., Гельфанд Б.Р., Филимонов М.И. (ред.). Перитонит. Практическое руководство. М.: Литтерра; 2006: 208.; Мороз В.В., Белобородова Н.В., Бедова А.Ю., Ревельский А.И., Гецина М.Л., Осипов А.А., Саршор Ю.Н., Бучинская А.А., Оленин А.Ю. Разработка и адаптация к условиям клинической лаборатории методик газохроматографического определения фенилкарбоновых кислот в сыворотке крови. Журн. аналит. химии. 2015; 70 (4): 418-; http://dx.doi.org/10.1134/S1061934815040103; Beloborodova N., Moroz V., Osipov A., Bedova A., Sarshor Y., Pautova A., Sergeev A., Chernevskaya E. Disbalance of microbial metabolites of aromatic acids affects the severity in critically ill patients. Crit. Care. 2016; 20 (Suppl 2): 026. http://dx.doi.org/10.1186/s13054-016-1208-6; https://www.reanimatology.com/rmt/article/view/1538

  11. 11
  12. 12
  13. 13
  14. 14
  15. 15
  16. 16
  17. 17
  18. 18
  19. 19
  20. 20