Search Results - "оптические свойства"

Refine Results
  1. 1
  2. 2
  3. 3
  4. 4
  5. 5
  6. 6
  7. 7
  8. 8

    Source: Biomedical Photonics; Том 14, № 2 (2025); 40-54 ; 2413-9432

    File Description: application/pdf

    Relation: https://www.pdt-journal.com/jour/article/view/721/489; Sun B., Li W., Liu N. Curative effect of the recent Porfimer sodium photodynamic adjuvant treatment on young patients with ad- vanced colorectal cancer // Oncol Lett. – 2016. – Т. 11. – С. 2071– 2074. https://doi.org/10.3892/ol.2016.4179.; McGarrity T., Peiffer L., Granville D., Carthy C., Levy J., Khandelwal M., Hunt D. Apoptosis associated with esophageal adenocarcinoma: influence of photodynamic therapy // Cancer Lett. – 2001. – Т. 163. – С. 33–41. https://doi.org/10.1016/S0304-3835(00)00663-7.; Wolfsen H.C., Woodward T.A., Raimondo M. Photodynamic thera- py for dysplastic Barrett esophagus and early esophageal adeno- carcinoma // Mayo Clin Proc. – 2002. – Т. 77, № 11. – С. 1176–1181. https://doi.org/10.4065/77.11.1176.; Liu H. Editorial: dosimetry study in photodynamic therapy for di- agnosis, precision treatment and treatment evaluation // Front Phys. – 2020. – Т. 8. https://doi.org/10.3389/fphy.2020.588484.; Overholt B.F., Wang K.K., Burdick J.S. и соавт. Five-year efficacy and safety of photodynamic therapy with Porfimer sodium in Barrett's high-grade dysplasia // Gastrointest Endosc. – 2007. – Т. 66, № 3. – С. 460–468. https://doi.org/10.1016/j.gie.2006.12.037.; Overholt B.F., Panjehpour M., Halberg D.L. Photodynamic therapy for Barrett's esophagus with dysplasia and/or early stage carci- noma: long-term results // Gastrointest Endosc. – 2003. – Т. 58, № 2. – С. 183–188. https://doi.org/10.1067/mge.2003.327.; Wolfsen H.C., Hemminger L.L., Wallace M.B., DeVault K.R. Clinical experience of patients undergoing photodynamic therapy for Bar- rett's dysplasia or cancer // Aliment Pharmacol Ther. – 2004. – Т. 20. – С. 1125–1131. https://doi.org/10.1111/j.1365-2036.2004.02209.x.; Buttar N.S., Wang K.K., Lutzke L.S., Krishnadath K.K., Anderson M.A. Combined endoscopic mucosal resection and photodynamic therapy for esophageal neoplasia within Barrett's esophagus // Gastrointest Endosc. – 2001. – Т. 54, № 6. – С. 682–688. https://doi. org/10.1067/gien.2001.0003.; Yachimski P., Puricelli W.P., Nishioka N.S. Patient predictors of his- topathologic response after photodynamic therapy of Barrett's esophagus with high-grade dysplasia or intramucosal carcinoma // Gastrointest Endosc. – 2009. – Т. 69, № 2. – С. 205–212. https:// doi.org/10.1016/j.gie.2008.05.032.; Dunn J.M., Mackenzie G.D., Banks M.R. и соавт. A randomised controlled trial of ALA vs. Porfimer sodium photodynamic therapy for high-grade dysplasia arising in Barrett’s oesophagus // Lasers Med Sci. – 2013. – Т. 28. – С. 707–715. https://doi.org/10.1007/s10103-012-1132-1.; Mackenzie G.D., Jamieson N.F., Novelli M.R. и соавт. How light dosimetry influences the efficacy of photodynamic therapy with 5-aminolaevulinic acid for ablation of high-grade dysplasia in Barrett's esophagus // Lasers Med Sci. – 2008. – Т. 23, № 2. – С. 203–210. https://doi.org/10.1007/s10103-007-0473-7.; Pech O., Gossner L., May A. и соавт. Long-term results of photody- namic therapy with 5-aminolevulinic acid for superficial Barrett's cancer and high-grade intraepithelial neoplasia // Gastrointest Endosc. – 2005. – Т. 62, № 1. – С. 24–30. https://doi.org/10.1016/ s0016-5107(05)00333-0.; Tan W.C., Fulljames C., Stone N., Dix A.J., Shepherd N., Roberts D.J., Brown S.B., Krasner N., Barr H. Photodynamic therapy using 5-aminolaevulinic acid for oesophageal adenocarcinoma associ- ated with Barrett's metaplasia // Journal of Photochemistry and Photobiology. B, Biology. – 1999. – Т. 53, № 1-3. – С. 75–80. https:// doi.org/10.1016/s1011-1344(99)00129-3.; Kashtan H., Konikoff F., Haddad R., Skornick Y. Photodynamic therapy of cancer of the esophagus using systemic aminolevulinic acid and a non laser light source: a phase I/II study // Gastroin- testinal Endoscopy. – 1999. – Т. 49, № 6. – С. 760–764. https://doi. org/10.1016/s0016-5107(99)70297-x.; Etienne J., Dorme N., Bourg-Heckly G., Raimbert P., Fléjou J.F. Photo- dynamic therapy with green light and m-tetrahydroxyphenyl chlo- rin for intramucosal adenocarcinoma and high-grade dysplasia in Barrett's esophagus // Gastrointestinal Endoscopy. – 2004. – Т. 59, № 7. – С. 880–889. https://doi.org/10.1016/s0016-5107(04)01271-4.; Lovat L.B., Jamieson N.F., Novelli M.R., Mosse C.A., Selvasekar C., Mackenzie G.D., Thorpe S.M., Bown S.G. Photodynamic therapy with m-tetrahydroxyphenyl chlorin for high-grade dysplasia and early cancer in Barrett's columnar lined esophagus // Gastrointes- tinal Endoscopy. – 2005. – Т. 62, № 4. – С. 617–623. https://doi. org/10.1016/j.gie.2005.04.043.; Gossner L., May A., Sroka R., Ell C. A new long-range through-the- scope balloon applicator for photodynamic therapy in the esoph- agus and cardia // Endoscopy. – 1999. – Т. 31, № 5. – С. 370–376. https://doi.org/10.1055/s-1999-31.; Javaid B., Watt P., Krasner N. Photodynamic therapy (PDT) for oesopha- geal dysplasia and early carcinoma with mTHPC (m-tetrahydroxyphe- nyl chlorin): a preliminary study // Lasers in Medical Science. – 2002. – Т. 17, № 1. – С. 51–56. https://doi.org/10.1007/s10103-002-8266-5.; Yano T., Muto M., Minashi K., Ohtsu A., Yoshida S. Photodynamic therapy as salvage treatment for local failures after definitive chemoradiotherapy for esophageal cancer // Gastrointestinal En- doscopy. – 2005. – Т. 62, № 1. – С. 31–36. https://doi.org/10.1016/ s0016-5107(05)00545-6.; Minamide T., Yoda Y., Hori K., Shinmura K., Oono Y., Ikematsu H., Yano T. Advantages of salvage photodynamic therapy using talaporfin sodium for local failure after chemoradiotherapy or radiotherapy for esophageal cancer // Surgical Endoscopy. – 2020. – Т. 34, № 2. – С. 899–906. https://doi.org/10.1007/s00464-019-06846-3.; Ishida N., Osawa S., Miyazu T., Kaneko M., Tamura S., Tani S., Ya- made M., Iwaizumi M., Hamaya Y., Furuta T., Sugimoto K. Photo- dynamic Therapy Using Talaporfin Sodium for Local Failure after Chemoradiotherapy or Radiotherapy for Esophageal Cancer: A Single Center Experience // Journal of Clinical Medicine. – 2020. – Т. 9, № 5. – С. 1509. https://doi.org/10.3390/jcm9051509.; Nava H.R., Allamaneni S.S., Dougherty T.J., Cooper M.T., Tan W., Wilding G., Henderson B.W. Photodynamic therapy (PDT) using HPPH for the treatment of precancerous lesions associated with Barrett's esophagus // Lasers in Surgery and Medicine. – 2011. – Т. 43. – С. 705–712. https://doi.org/10.1002/lsm.21112.; Tanaka T., Matono S., Nagano T., Murata K., Sueyoshi S., Yamana H., Shirouzu K., Fujita H. Photodynamic therapy for large superfi- cial squamous cell carcinoma of the esophagus // Gastrointestinal Endoscopy. – 2011. – Т. 73, № 1. – С. 1–6. https://doi.org/10.1016/j. gie.2010.08.049.; Yano T., Muto M., Minashi K., Iwasaki J., Kojima T., Fuse N., Doi T., Kaneko K., Ohtsu A. Photodynamic therapy as salvage treatment for local failure after chemoradiotherapy in patients with esopha- geal squamous cell carcinoma: A phase II study // International Journal of Cancer. – 2012. – Т. 131. – С. 1228–1234. https://doi. org/10.1002/ijc.27320.; Yano T., Muto M., Yoshimura K. и соавт. Phase I study of photodynam- ic therapy using talaporfin sodium and diode laser for local failure after chemoradiotherapy for esophageal cancer // Radiation Oncol- ogy. – 2012. – Т. 7. – С. 113. https://doi.org/10.1186/1748-717X-7-113.; Lindenmann J., Matzi V., Neuboeck N., Anegg U., Baumgartner E., Maier A., Smolle J., Smolle-Juettner F.M. Individualized, multimod- al palliative treatment of inoperable esophageal cancer: Clinical impact of photodynamic therapy resulting in prolonged survival // Lasers in Surgery and Medicine. – 2012. – Т. 44. – С. 189–198. https://doi.org/10.1002/lsm.22006.; Yano T., Kasai H., Horimatsu T., Yoshimura K., Teramukai S., Morita S., Tada H.,YamamotoY., Kataoka H., Kakushima N., Ishihara R., Isomoto H., Muto M. и др. A multicenter phase II study of salvage photodynamic therapy using talaporfin sodium (ME2906) and a diode laser (PNL6405EPG) for local failure after chemoradiotherapy or radiotherapy for esophageal cancer // Oncotarget. – 2017. – Т. 8. – С. 22135–22144.; Foroulis Ch.N., Thorpe J.A.C. Photodynamic therapy (PDT) in Bar- rett's esophagus with dysplasia or early cancer // European Jour- nal of Cardio-Thoracic Surgery. – 2006. – Т. 29, № 1. – С. 30–34. https://doi.org/10.1016/j.ejcts.2005.10.033.; Gray J., Fullarton G.M. Long term efficacy of photodynamic therapy (PDT) as an ablative therapy of high grade dysplasia in Barrett's oe- sophagus // Photodiagnosis and Photodynamic Therapy. – 2013. – Т. 10, № 4. – С. 561–565. https://doi.org/10.1016/j.pdpdt.2013.06.002.; Pacifico R.J., Wang K.K., Wongkeesong L.M., Buttar N.S., Lutzke L.S. Combined endoscopic mucosal resection and photodynamic therapy versus esophagectomy for management of early adeno- carcinoma in Barrett's esophagus // Clinical Gastroenterology and Hepatology. – 2003. – Т. 1, № 4. – С. 252–257.; Hatogai K., Yano T., Kojima T., Onozawa M., Daiko H., Nomura S., Yoda Y., Doi T., Kaneko K., Ohtsu A. Salvage photodynamic therapy for local failure after chemoradiotherapy for esopha- geal squamous cell carcinoma // Gastrointestinal Endoscopy. – 2016. – Т. 83, № 6. – С. 1130–1139.e3. https://doi.org/10.1016/j. gie.2015.11.016.; Lightdale C.J., Heier S.K., Marcon N.E., McCaughan J.S. Jr, Gerdes H., Overholt B.F., Sivak M.V. Jr, Stiegmann G.V., Nava H.R. Photodynamic therapy with porfimer sodium versus thermal ablation therapy with Nd:YAG laser for palliation of esophageal cancer: a multicenter ran- domized trial // Gastrointestinal Endoscopy. – 1995. – Т. 42, № 6. – С. 507–512. https://doi.org/10.1016/s0016-5107(95)70002-1.; Litle V.R., Luketich J.D., Christie N.A., Buenaventura P.O., Alvelo- Rivera M., McCaughan J.S., Nguyen N.T., Fernando H.C. Photody-namic therapy as palliation for esophageal cancer: experience in 215 patients // Annals of Thoracic Surgery. – 2003. – Т. 76, № 5. – С. 1687–1693. https://doi.org/10.1016/s0003-4975(03)01299-2.; Prasad G.A., Wang K.K., Buttar N.S., Wongkeesong L.M., Lutzke L.S., Borkenhagen L.S. Predictors of stricture formation after photo- dynamic therapy for high-grade dysplasia in Barrett's esophagus // Gastrointestinal Endoscopy. – 2007. – Т. 65, № 1. – С. 60–66. https://doi.org/10.1016/j.gie.2006.04.028.; Nakamura T., Oinuma T. Usefulness of photodynamic diagnosis and therapy using talaporfin sodium for an advanced-aged pa- tient with inoperable gastric cancer // Laser Therapy. – 2014. – Т. 23, № 3. – С. 201–210. https://doi.org/10.5978/islsm.14-OR-16.; Pogue B.W., Sheng C., Benevides J., Forcione D., Puricelli B., Nish- ioka N., Hasan T. Protoporphyrin IX fluorescence photobleaching increases with the use of fractionated irradiation in the esophagus // Journal of Biomedical Optics. – 2008. – Т. 13, № 3. – С. 034009. https://doi.org/10.1117/1.2937476.; Loshchenov M., Levkin V., Kalyagina N., Linkov K., Kharnas S., Efendiev K., Kharnas P., Loschenov V. Laser-induced fluorescence diagnosis of stomach tumor // Lasers in Medical Science. – 2020. – Т. 35. https://doi.org/10.1007/s10103-020-02963-x.; Wang H.-W., Zhu T.C., Putt M.P., Solonenko M.G., Metz J.M., Di- mofte A., Miles J.D., Fraker D.L., Glatstein E., Hahn S.M., Yodh A.G. Broadband reflectance measurements of light penetration, blood oxygenation, hemoglobin concentration, and drug concentration in human intraperitoneal tissues before and after photodynamic therapy // J. Biomed. Opt. – 2005. – Т. 10, № 1. – С. 014004. https:// doi.org/10.1117/1.1854679.; Pfefer T.J., Schomacker K.T., Nishioka N.S. Long-term effects of photodynamic therapy on fluorescence spectroscopy in the human esophagus // Photochemistry and photobiology. – 2001. – Т. 73, № 6. – С. 664–668. https://doi.org/10.1562/0031-8655(2001)0732.0.co;2.; Masayuki PhD, Yoda Y., Yamamoto Y., Sunakawa H., Minamide T., Hori K., Ikematsu H., Yano T. Oxygen saturation imaging as a use- ful tool for visualizing the mode of action of photodynamic ther- apy for esophageal cancer // VideoGIE. – 2020. – Т. 5. https://doi. org/10.1016/j.vgie.2020.07.003.; Ortner M.A., Ebert B., Hein E., Zumbusch K., Nolte D., Sukowski U., Weber-Eibel J., Fleige B., Dietel M., Stolte M., Oberhuber G., Porschen R., Klump B., Hörtnagl H., Lochs H., Rinneberg H. Time gated fluorescence spectroscopy in Barrett's oesophagus // Gut. – 2003. – Т. 52, № 1. – С. 28–33. https://doi.org/10.1136/gut.52.1.28.; Standish B.A., Yang V.X., Munce N.R., Wong Kee Song L.M., Gar- diner G., Lin A., Mao Y.I., Vitkin A., Marcon N.E., Wilson B.C. Dop- pler optical coherence tomography monitoring of microvascular tissue response during photodynamic therapy in an animal model of Barrett's esophagus // Gastrointestinal endoscopy. – 2007. – Т. 66, № 2. – С. 326–333. https://doi.org/10.1016/j.gie.2007.02.040.; van Veen R.L., Aalders M.C., Pasma K.L., Siersema P.D., Haringsma J., van de Vrie W., Gabeler E.E., Robinson D.J., Sterenborg H.J. In situ light dosimetry during photodynamic therapy of Barrett's esopha- gus with 5-aminolevulinic acid // Lasers in surgery and medicine. – 2002. – Т. 31, № 5. – С. 299–304. https://doi.org/10.1002/lsm.10129.; Stone N. Standardizing dosimetry in esophageal PDT: an argu- ment for use of centering devices and removal of misleading units // Technology in Cancer Research & Treatment. – 2003. – Т. 2, № 4. – С. 333–338. https://doi.org/10.1177/153303460300200408.; Veen R., Robinson D., Siersema P., Sterenborg H. The importance of in situ dosimetry during photodynamic therapy of Barrett's esophagus // Gastrointestinal endoscopy. – 2006. – Т. 64. – С. 786– 788. https://doi.org/10.1016/j.gie.2006.06.056.; Wang S., Dai X.Y., Ji S., Saeidi T., Schwiegelshohn F., Yassine A.A., Lilge L., Betz V. Scalable and accessible personalized photody- namic therapy optimization with FullMonte and PDT-SPACE // J Biomed Opt. – 2022. – Т. 27, № 8. – С. 083006.; Tran A.P., Jacques S. Modeling voxel-based Monte Carlo light trans- port with curved and oblique boundary surfaces // J Biomed Opt. – 2020. – Т. 25, № 2. – С. 1–13.; Guo S., Kang J.U. Convolutional neural network-based common- path optical coherence tomography A-scan boundary-tracking training and validation using a parallel Monte Carlo synthetic da- taset // Opt Express. – 2022. – Т. 30, № 14. – С. 25876–25890.; Cassidy J., Nouri A., Betz V., Lilge L. High-performance, robustly verified Monte Carlo simulation with FullMonte // J Biomed Opt. – 2018. – Т. 23, № 8. – С. 1–11.; Woodhams J.H., Macrobert A.J., Bown S.G. The role of oxygen monitoring during photodynamic therapy and its potential for treatment dosimetry // Photochem Photobiol Sci. – 2007. – Т. 6, № 12. – С. 1246–1256.; Efendiev K., Alekseeva P., Linkov K., Shiryaev A., Pisareva T., Gily- adova A., Reshetov I., Voitova A., Loschenov V. Tumor fluorescence and oxygenation monitoring during photodynamic therapy with chlorin e6 photosensitizer // Photodiagnosis and Photodynamic Therapy. – 2024. – Т. 45. – С. 103969.; Gkigkitzis I., Feng Y., Yang C., Lu J.Q., Hu X. Modeling of Oxygen Transport and Cell Killing in Type-II Photodynamic Therapy // Pho- tochemistry and Photobiology. – 2012. – Т. 88.; Porter J.R., Andrews B.W., Iglesias P.A. A framework for designing and analyzing binary decision-making strategies in cellular sys- tems // Integr Biol (Camb). – 2012. – Т. 4, № 3. – С. 310–317.; Странадко E.Ф., Баранов A.B., Дуванский B.A., Ло6аков A.И., Морохотов B.A., Ря6ов М.B. Фотодинамическая терапия рака 6ольшого дуоденального сосочка и внепеченочных желчных протоков // Biomedical Photonics. – 2020. – Т. 9, № 2. – С. 18–28. https://doi.org/10.24931/2413-9432-2020-9-2-18-28.; Wang H., Ewetse M.P., Ma C., Pu W., Xu B., He P., Wang Y., Zhu J., Chen H. The “Light Knife” for Gastric Cancer: Photodynamic Therapy // Pharmaceutics. – 2023. – Т. 15, № 1. – С. 101. https:// doi.org/10.3390/pharmaceutics15010101.; Цеймах A.E., Митшенко A.Н., Куртуков B.A., Шойхет И.Н., Кулешова И.B. Эффективность паллиативной фотодинамической терапии при нерезекта6ельном раке желчных путей. Систематический о6зор и метаанализ // Biomedical Photonics. – 2024. – Т. 13, № 2. – С. 34–42. https://doi.org/10.24931/2413-9432-2024-13-2-34-42.; Celli J., Spring B., Rizvi I., Evans C., Samkoe K., Verma S., Pogue B., Hasan T. Imaging and photodynamic therapy: mechanisms, moni- toring, and optimization // Chemical Reviews. – 2010. – Т. 110. – С. 2795–2838. https://doi.org/10.1021/cr900300p.; Jarvi M.T., Niedre M.J., Patterson M.S., Wilson B.C. Singlet Oxygen Luminescence Dosimetry (SOLD) for Photodynamic Therapy: Cur- rent Status, Challenges and Future Prospects // Photochemistry and Photobiology. – 2006. – Т. 82. – С. 1198–1210. https://doi. org/10.1562/2006-05-03-IR-891.; Ong Y.H., Sheng T., Busch T.M., Zhu T.C. Reactive oxygen species explicit dosimetry for the evaluations of treatment efficiency of single and fractionated ALA-mediated photodynamic therapy // Proc. SPIE 11220, Optical Methods for Tumor Treatment and De- tection: Mechanisms and Techniques in Photodynamic Therapy XXIX. – 2020. – 112200R. https://doi.org/10.1117/12.2546425.; Penjweini R., Liu B., Kim M.M., Zhu T.C. Explicit dosimetry for 2-(1-hexyloxyethyl)-2-devinyl pyropheophorbide-a-mediated photodynamic therapy: macroscopic singlet oxygen modeling // Journal of Biomedical Optics. – 2015. – Т. 20, № 12. – С. 128003. https://doi.org/10.1117/1.JBO.20.12.128003.; Jarvi M.T., Patterson M.S., Wilson B.C. Insights into photodynamic therapy dosimetry: simultaneous singlet oxygen luminescence and photosensitizer photobleaching measurements // Bio- physical Journal. – 2012. – Т. 102, № 3. – С. 661–671. https://doi. org/10.1016/j.bpj.2011.12.043.; Georgakoudi I., Foster T.H. Singlet oxygen- versus nonsinglet oxygen-mediated mechanisms of sensitizer photobleaching and their effects on photodynamic dosimetry // Photochemistry and Photobiology. – 1998. – Т. 67, № 6. – С. 612–625.; James N.S., Cheruku R.R., Missert J.R., Sunar U., Pandey R.K. Measurement of cyanine dye photobleaching in photosensi- tizer cyanine dye conjugates could help in optimizing light do- simetry for improved photodynamic therapy of cancer // Mol- ecules. – 2018. – Т. 23, № 8. – С. 1842. https://doi.org/10.3390/ molecules23081842.; Alekseeva P., Makarov V., Efendiev K., Shiryaev A., Reshetov I., Losche- nov V. Devices and methods for dosimetry of personalized photody- namic therapy of tumors: a review on recent trends // Cancers. – 2024. – Т. 16, № 13. – С. 2484. https://doi.org/10.3390/cancers16132484; Сироткина М.A., Матвеев Л.A., Ширманова М.B. и др. Монито- ринг фотодинамической терапии с помощью оптической коге- рентной ангиографии // Sci Rep. – 2017. – Т. 7. – С. 41506. https:// doi.org/10.1038/srep41506.; Yang W., Rastogi V., Sun H., Sharma D., Wilson B.C., Hadfield R.H., Zhu T.C. Multispectral singlet oxygen luminescent dosimetry (MSOLD) for Porfimer sodium-mediated photodynamic therapy // Proceedings of SPIE. – 2023. – Т. 12359. – С. 1235908. https://doi. org/10.1117/12.2652590.; Романишкин И.Д., Oспанов A., Савельева Т.A., Шугай С.B., Го- ряйнов С.A., Павлова Г.B., Пронин И.Н., Лощенов B.Б. Мульти- модальный метод дифференциации тканей в нейроонкологии с использованием спектроскопии ком6инационного рассе- яния, флуоресценции и диффузного отражения // Bопросы нейрохирургии имени Н.Н. Бурденко. – 2022. – Т. 86. – С. 5–12. https://doi.org/10.17116/neiro202286055.; Fang S., Wu S., Chen Z., He C., Lin L.L., Ye J. Recent progress and applications of Raman spectrum denoising algorithms in chemical and biological analyses: A review // TrAC Trends in Analytical Chemistry. – 2024. – Т. 172. https://doi.org/10.1016/j. trac.2024.117578.; Hamdoon Z., Jerjes W., Rashed D., Kawas S., Sattar A.A., Samsu- din R., Hopper C. In vivo optical coherence tomography-guided photodynamic therapy for skin pre-cancer and cancer // Photo- diagnosis and photodynamic therapy. – 2021. – Т. 36. – С. 102520. https://doi.org/10.1016/j.pdpdt.2021.102520.; Zhao Y., Moritz T., Hinds M.F., Gunn J.R., Shell J.R., Pogue B.W., Da- vis S.J. // J. Biophotonics. – 2021. – Т. 14, № 11. – С. e202100088. https://doi.org/10.1002/jbio.202100088.; Karakullukcu B., Kanick S.C., Aans J.B., Sterenborg H.J., Tan I.B., Ame- link A., Robinson D.J. Clinical feasibility of monitoring m-THPC medi- ated photodynamic therapy by means of fluorescence differential path-length spectroscopy // Journal of biophotonics. – 2011. – Т. 4, № 10. – С. 740–751. https://doi.org/10.1002/jbio.201100051.; Sun H., Ong Y., Yang W., Sourvanos D., Dimofte A., Busch T.M., Singhal S., Cengel K.A., Zhu T.C. Clinical PDT dose dosimetry for pleural Porfimer sodium-mediated photodynamic therapy // J. Biomed. Opt. – 2024. – Т. 29, № 1. – С. 018001. https://doi.org/10.1117/1.JBO.29.1.018001.; Schaberle F.A. Assessment of the actual light dose in photodynam- ic therapy // Photodiagnosis and photodynamic therapy. – 2018. – Т. 23. – С. 75–77. https://doi.org/10.1016/j.pdpdt.2018.06.009.; Kamel B., El-Daher M., Bachir W., Aljalali S. Effect of tissue optical properties on the fluorescence of BODIPY derivative as a pho- tosensitizer for photodynamic therapy // Spectroscopy. – 2024. https://doi.org/10.56530/spectroscopy.ye4569u1.; Clancy N.T., Arya S., Stoyanov D., Singh M., Hanna G.B., Elson D.S. Intraoperative measurement of bowel oxygen saturation using a multispectral imaging laparoscope // Biomed. Opt. Express. – 2015. – Т. 6. – С. 4179–4190.; Jacques S.L. Optical properties of biological tissues: a review // Physics in medicine and biology. – 2013. – Т. 58, № 11. – С. R37– R61. https://doi.org/10.1088/0031-9155/58/11/R37.; Pilon L., Bhowmik A., Heng R.-L., Yudovsky D. Simple and accurate expressions for diffuse reflectance of semi-infinite and two-layer ab- sorbing and scattering media: erratum // Appl. Opt. – 2015. – Т. 54. – С. 6116–6117.; Bahl A., Segaud S., Xie Y., Shapey J., Bergholt M.S., Vercauteren T. A comparative study of analytical models of diffuse reflectance in homogeneous biological tissues: Gelatin-based phantoms and Monte Carlo experiments // J. Biophotonics. – 2024. – Т. 17, № 6. – С. e202300536. https://doi.org/10.1002/jbio.202300536.; Nishimura T., Takai Y., Shimojo Y. и др. Determination of optical properties in double integrating sphere measurement by artifi- cial neural network based method // Opt Rev. – 2021. – Т. 28. – С. 42–47. https://doi.org/10.1007/s10043-020-00632-6.; Simpson C.R., Kohl M., Essenpreis M., Cope M. Near-infrared optical properties of ex vivo human skin and subcutaneous tissues measured using the Monte Carlo inversion technique // Phys. Med. Biol. – 1998. – Т. 43. – С. 2465–2478. https://doi.org/10.1088/0031-9155/43/9/003.; Palmer G.M., Ramanujam N. Monte Carlo based inverse model for calculating tissue optical properties. Part 1, theory and valida- tion on synthetic phantoms // Appl. Opt. – 2006. – Т. 45, № 5. – С. 1062–1071. https://doi.org/10.1364/AO.45.001062.; Rajaram N., Nguyen T.H., Tunnell J.W. A lookup-table based in- verse model for measuring optical properties of turbid media // J. Biomed. Opt. – 2008. – T. 13, № 5. – C. 050501. https://doi. org/10.1117/1.2981797.; Tseng S.H., Grant A., Durkin A.J. In vivo determination of skin near-infrared optical properties using diffuse optical spectros- copy // J. Biomed. Opt. – 2008. – T. 13. – C. 014016. https://doi. org/10.1117/1.2829772.; Wisotzky E.L., Arens P., Dommerich S., Hilsmann A., Eisert P., Uecker F.C. Determination of the optical properties of cholesteatoma in the spectral range of 250 to 800 nm // Biomed. Opt. Express. – 2020. – T. 11. – C. 1489–1500.; Shapey J., Xie Y., Nabavi E., Ebner M., Saeed S.R., Kitchen N., Dor- ward N., Grieve J., McEvoy A.W., Miserocchi A., Grover P., Bradford R., Lim Y.-M., Ourselin S., Brandner S., Jaunmuktane Z., Vercauteren T. J. Biophotonics. – 2022. – T. 15, № 4. – C. e202100072. https:// doi.org/10.1002/jbio.202100072.; Sweer J.A., Chen M.T., Salimian K.J., Battafarano R.J., Durr N.J. Wide- field optical property mapping and structured light imaging of the esophagus with spatial frequency domain imaging // Journal of biophotonics. – 2019. – T. 12, № 9. – C. e201900005. https://doi. org/10.1002/jbio.201900005.; Bashkatov A., Genina E., Kochubey V., Gavrilova A., Kapralov S., Grishaev V., Tuchin V. Optical properties of human stomach mucosa in the spectral range from 400 to 2000 nm: Prognosis for gastroen- terology // Medical Laser Application. – 2007. – T. 22. – C. 95–104.; Krivetskaya A.A., Savelieva T.A., Kustov D.M. и др. Method for As- sessing the Optical Properties of Multilayer Tissues of the Gas- trointestinal Tract ex Vivo // Phys. Atom. Nuclei. – 2024. – T. 87. – C. 1727–1729. https://doi.org/10.1134/S1063778824100247.; Bashkatov A., Genina E., Kochubey V., Rubtsov V., Kolesnikova E., Tuchin V. Optical properties of human colon tissues in the 350– 2500 nm spectral range // Quantum Electronics. – 2014. – T. 44. – C. 77.; Ben LaRiviere N., Ferguson L., Garman K.S., Fisher D.A., Jokerst N.M. Methods of extraction of optical properties from diffuse reflectance measurements of ex-vivo human colon tissue using thin film sili- con photodetector arrays // Biomed. Opt. Express. – 2019. – T. 10. – C. 5703–5715.; Zhu T.C., Sun H., Ong Y.H. и др. Real-time PDT Dose Dosimetry for Pleural Photodynamic Therapy // Proc SPIE Int Soc Opt Eng. – 2022. – T. 11940. – C. 1194002. https://doi.org/10.1117/12.2612188.; Ong Y.H., Kim M.M., Finlay J.C. и др. PDT dose dosimetry for Por- fimer sodium-mediated pleural photodynamic therapy (pPDT) // Phys Med Biol. – 2017. – T. 63, № 1. – C. 015031. https://doi. org/10.1088/1361-6560/aa9874.; Lilge L., Wu J., Xu Y., Manalac A., Molehuis D., Schwiegelshohn F., Vesselov L., Embree W., Nesbit M., Betz V., Mandel A., Jewett M., Kulkarni G. Minimal required PDT light dosimetry for nonmuscle invasive bladder cancer // Journal of Biomedical Optics. – 2020. – T. 25, № 6. – C. 068001. https://doi.org/10.1117/1.JBO.25.6.068001.; Saager R.B., Cuccia D.J., Durkin A.J. Determination of optical prop- erties of turbid media spanning visible and near-infrared regimes via spatially modulated quantitative spectroscopy // Journal of biomedical optics. – 2010. – T. 15, № 1. – C. 017012. https://doi. org/10.1117/1.3299322.; Jones L.R., Preyer N.W. Jr., Davis M.A., Grimes C., Edling K., Hold- gate N., Wallace M.B., Wolfsen H.C. Light dosimetry calculations for esophageal photodynamic therapy using porfimer sodium // Proc. SPIE 6139, Optical Methods for Tumor Treatment and Detec- tion: Mechanisms and Techniques in Photodynamic Therapy XV. – 2006. – C. 61391D. https://doi.org/10.1117/12.660155.; Sun H., Yang W., Zhu T.C. Real-time photosensitizer dosimetry for photodynamic therapy // Proc. SPIE 13299, Optical Methods for Tumor Treatment and Detection: Mechanisms and Techniques in Photodynamic Therapy XXXIII. – 2025. – C. 1329909. https://doi. org/10.1117/12.3044770.; Mousavi M., Moriyama L.T., Grecco C., Saito Nogueira M., Svanberg K., Kurachi C., Andersson-Engels S. Photodynamic therapy dosim- etry using multiexcitation multiemission wavelength: toward re- al-time prediction of treatment outcome // Journal of biomedical optics. – 2020. – T. 25, № 6. – C. 063812. https://doi.org/10.1117/1. JBO.25.6.063812.; Yassine A.-A., Lilge L., Betz V. Machine learning for real-time optical property recovery in interstitial photodynamic therapy: a stimu- lation-based study // Biomedical Optics Express. – 2021. – T. 12. – C. 5401–5422. https://doi.org/10.1364/BOE.431310.

  9. 9

    Source: Biomedical Photonics; Том 14, № 3 (2025); 30-38 ; 2413-9432

    File Description: application/pdf

    Relation: https://www.pdt-journal.com/jour/article/view/733/505; Кривецкая А.А., Савельева Т.А., Кустов Д.М., Левкин В.В., Харнас С.С., Лощенов В.Б. Aвтоматизация планирования и контроля фотодинамической терапии органов желудочно-кишечного тракта // Biomedical Photonics. – 2025. – Т. 14, № 2. – С. 40-54. doi:10.24931/2413-9432-2025-14-2-40-54; Кирющенкова Н.П., Новиков И.А. Локальная анизотропия рассеяния кожи как возможный фактор искажения флуоресцентных границ опухоли // Biomedical Photonics. – 2025. – Т. 14, № 2. – С. 12-20. doi:10.24931/2413-9432-2025-14-2-12-20; Tuchin, V.V. Tissue Optics: Light Scattering Methods and Instruments for Medical Diagnosis // SPIE Press: Bellingham, WA. – 2015.; Macdonald C.M., Arridge S., Powell S. Efficient inversion strategies for estimating optical properties with Monte Carlo radiative transport models // J. of Biomedical Optics. – 2020. – Vol. 25. – P. 085002. doi:10.1117/1.JBO.25.8.085002; Wei H.-J., Xing D., Wu G.-Y., Jin Y., Gu H.-M. Optical properties of human normal small intestine tissue determined by Kubelka-Munk method in vitro // World J Gastroenterol. – 2003. – Vol. 9. – P. 2068-2072. doi:10.3748/wjg.v9.i9.2068; Wei H.-J., Xing D., Lu J.J., Gu H.M., Wu G.Y., Jin Y. Determination of optical properties of normal and adenomatous human colon tissues in vitro using integrating sphere techniques // World J Gastroenterol. – 2005. – Vol. 11. – P. 2413-2419. doi:10.3748/wjg.v11.i16.2413; Башкатов А.Н., Генина Э.А., Кочубей В.И., Рубцов В.С., Колесникова Е.А., Тучин В.В. Оптические свойства тканей толстой кишки человека в спектральном диапазоне 350–2500 нм // Квантовая электроника. – 2014. – № 44. – С. 779.; Carneiro I., Carvalho S., Henrique R., Oliveira L., Tuchin V.V. Kinetics of Optical Properties of Colorectal Muscle During Optical Clearing // IEEE Journal of Selected Topics in Quantum Electronics. – 2019. – Vol. 25. – P. 1-8.; Wiesner W., Mortelé K.J., Ji H., Ros P.R. Normal colonic wall thickness at CT and its relation to colonic distension // J Comput Assist Tomogr. – 2002. – Vol. 26. – P. 102-6. doi:10.1097/00004728-200201000-00015; Kustov D.M., Savelieva T.A., Mironov T.A., Kharnas S.S., Levkin V.V., Gorbunov A.S., Shiryaev A.A., Loschenov V.B. Intraoperative Control of Hemoglobin Oxygen Saturation in the Intestinal Wall during Anastomosis Surgery // Photonics. – 2021. - Vol. 8. P. 427. doi:10.3390/photonics8100427; Prahl S.A., Keijzer M., Jacques S.L., Welch A.J. A Monte Carlo model of light propagation in tissue // In Proc. SPIE of Dosimetry of Laser Radiation in Medicine and Biology. – 1989. – Vol. 5, P. 102 - 111.; Kubelka P. New contributions to the optics of intensely light-scattering materials // J. Opt. Soc. Am. – 1948. – Vol. 38. – P. 448-457.; Hamdy O., El-Azab J., Al-Saeed T.A., Hassan M.F., Solouma N.H. A Method for Medical Diagnosis Based on Optical Fluence Rate Distribution at Tissue Surface // Materials. – 2017. – Vol. 10. – P. 1104 doi:10.3390/ma10091104; Van Gemert, M.J.C.; Welch, A.J.; Star, W.M.; Motamedi, M.; Cheong, W. F. Tissue optics for a slab geometry in the diffusion approximation // Laser Med Sci. – 1987. Vol. 2. – P. 295–302. doi:10.1007/BF02594174; Molenaar R., ten Bosch,J.J., Zijp J.R. Determination of Kubelka-Munk scattering and absorption coefficients by diffuse illumination // Appl. Opt. – 1999. – Vol. 38. P. 2068-2077. doi:10.1364/ao.38.002068

  10. 10
  11. 11
  12. 12
  13. 13
  14. 14
  15. 15
  16. 16
  17. 17
  18. 18

    Source: Proceedings of the National Academy of Sciences of Belarus. Physics and Mathematics Series; Том 60, № 2 (2024); 162-176 ; Известия Национальной академии наук Беларуси. Серия физико-математических наук; Том 60, № 2 (2024); 162-176 ; 2524-2415 ; 1561-2430 ; 10.29235/1561-2430-2024-60-2

    File Description: application/pdf

    Relation: https://vestifm.belnauka.by/jour/article/view/783/604; Структура и микромеханические свойства покрытий TiAlSiN, TiAlSiCN, сформированных методом реактивного магнетронного распыления / Ф. Ф. Комаров [и др.] // Вес. Нац. акад. навук Беларусі. Сер. фіз.-мат. навук. – 2023. – T. 59, № 3. – С. 241–252. https://doi.org/10.29235/1561-2430-2023-59-3-241-252; Optical properties of TiAlC/TiAlCN/TiAlSiCN/TiAlSiCO/TiAlSiO tandem absorber coatings by phase-modulated spectroscopic ellipsometry / J. Jyothi [et al.] // Appl. Phys. A. – 2017. – Vol. 123. – Art. ID 496. https://doi.org/10.1007/s00339-017-1103-2; Spacecraft Thermal Control Handbook. Volume 1: Fundamental Technologies / ed. D. G. Gilmore. – El Segundo, California: 2nd The Aerospace Press, 2002. – 836 p. https://doi.org/10.2514/4.989117; Titanium-aluminum-nitride coatings for satellite temperature control / M. Brogren [et al.] // Thin Solid Films. – 2000. – Vol. 370. – P. 268–277. https://doi.org/10.1016/S0040-6090(00)00914-7; Терморегулирующее покрытие К-208СР. Технология получения, свойства и их изменения в процессе эксплуатации при воздействии факторов космического пространства / В. П. Свечкин [и др.] // Космич. техника и технологии. – 2017. – Т. 17, № 2. – С. 99–107.; Zhang, J. The microstructural, mechanical and thermal properties of TiAlVN, TiAlSiN monolithic and TiAlVN/TiAlSiN multilayered coatings / J. Zhang, L. Chen, Y. Kong // J. Alloys Compd. – 2022. – Vol. 899. – P. 163332. https://doi.org/10.1016/j.jallcom.2021.163332; Thermal stability, mechanical properties, and tribological performance of TiAlXN coatings: understanding the effects of alloying additions / W. Y. H. Liew [et al.] // J. Mat. Res. Technol. – 2022. – Vol. 17. – P. 961–1012. https://doi.org/10.1016/j.jmrt.2022.01.005; A review of high-temperature selective absorbing coatings for solar thermal applications / K. Xu [et al.] // J. Materiomics. – 2020. – Vol. 6, № 1. – P. 167–182. https://doi.org/10.1016/j.jmat.2019.12.012; VO2-based smart coatings with improved emittance-switching properties for an energy-efficient near room-temperature thermal control of spacecrafts / A. Hendaoui [et al.] // Sol. Energy Mater. Sol. Cells. – 2013. – Vol. 117. – P. 494–498. https://doi.org/10.1016/j.solmat.2013.07.023; Analytical and numerical models for thermal related design of a new pico-satellite / M. Bonnici [et al.] // Appl. Therm. Eng. – 2019. – Vol. 159. – P. 113908. https://doi.org/10.1016/j.applthermaleng.2019.113908; Effects of Si addition on structure and mechanical properties of TiAlSiCN coatings / X. Zhang [et al.] // Surf. Coat. Technol. – 2019. – Vol. 362. – P. 21–26. https://doi.org/10.1016/j.surfcoat.2019.01.056; Understanding the wear failure mechanism of TiAlSiCN nanocomposite coating at evaluated temperatures / F. Guo [et al.] // Trib. Int. – 2021. – Vol. 154. – P. 106716. https://doi.org/10.1016/j.triboint.2020.106716; Valleti, K. Functional multi-layer nitride coatings for high temperature solar selective applications / K. Valleti, D. M. Krishna, S. V. Joshi // Sol. Energy Mater. Sol. Cells. – 2014. – Vol. 121. – P. 14–21. https://doi.org/10.1016/j.solmat.2013.10.024; Effects of deposition and post-annealing conditions on electrical properties and thermal stability of TiAlN films by ion beam sputter deposition / S.-Y. Lee [et al.] // Thin Solid Films. – 2006. – Vol. 515, № 3. – P. 1069–1073. https://doi.org/10.1016/j.tsf.2006.07.172; Electrical and Corrosion Properties of Titanium Aluminum Nitride Thin Films Prepared by Plasma-Enhanced Atomic Layer Deposition / E.-Y. Yun [et al.] // J. Mater. Sci. Technol. – 2017. – Vol. 33, № 3. – P. 295–299. https://doi.org/10.1016/j.jmst.2016.11.027; Crystal growth and microstructure of polycrystalline Ti1−xAlxN alloy films deposited by ultra-high-vacuum dualtarget magnetron sputtering / U. Wahlström [et al.] // Thin Solid Films. – 1993. – Vol. 235, № 1–2. – P. 62–70. https://doi.org/10.1016/0040-6090(93)90244-J; Nanostructured TiAlCuN and TiAlCuCN coatings for spacecraft: effects of reactive magnetron deposition regimes and compositions // F. F. Komarov [et al.] // RSC Advanced. – 2023. – № 13. – P. 18898–18907. https://doi.org/10.1039/D3RA02301J; Структурно-фазовые состояния и микромеханические свойства наноструктурированных покрытий TiAlCuN / С. В. Константинов [и др.] // Докл. Нац. акад. наук Беларуси. – 2023. – Т. 67, № 2. – С. 101–110. https://doi.org/10.29235/1561-8323-2023-67-2-101-110; Ашкрофт, Н. Физика твердого тела / Н. Ашкрофт, Н. Мермин. – М.: Мир, 1979. – Т. 2. – 419 с.; Оptimization of TiAlN/TiAlON/Si3N4 solar absorber coatings / L. An [et al.] // Sol. Energy. – 2015. – Vol. 118. – P. 410–418. https://doi.org/10.1016/j.solener.2015.05.042; Бродский, А. Ж. Влияние микроскопической структуры поверхностей металлов на их оптические свойства / А. Ж. Бродский, М. И. Урбах // УФН. – 1982. – Т. 138, вып. 3. – С. 413–453.; Wainstein, D. L. Control of optical properties of metal-dielectric planar plasmonic nanostructures by adjusting their architecture in the case of TiAlN/Ag system / D. L. Wainstein, V. O. Vakhrushev, A. I. Kovalev // J. Phys.: Conf. Ser. – 2017. – Vol. 857. – Art. ID 012054. https://doi.org/10.1088/1742-6596/857/1/012054; Veszelei, M. Optical properties and equilibrium temperatures of titanium-nitride-and graphite-coated Langmuir probes for space application / M. Veszelei, E. Veszelei // Thin Solid Films. – 1993. – Vol. 236, № 1–2. – P. 46–50. https://doi.org/10.1016/0040-6090(93)90640-b; Kauder, L. Spacecraft Thermal Control Coatings References / L. Kauder. – NASA Goddard Space Flight Center Greenbelt, MD, United States, 2005. – 130 p.; Климович, И. М. Влияние температуры нагрева подложек и потенциала смещения на оптические характеристики Ti–Al–C–N покрытий / И. М. Климович, Ф. Ф. Комаров, В. А. Зайков // Докл. Нац. акад. наук Беларуси. – 2018. – Т. 62, № 4. – С. 415–422. https://doi.org/10.29235/1561-8323-2018-62-4-415-422; CRC Handbook of Chemistry and Physics / ed. W. M. Haynes. – 95th ed. – Boca Raton: CRC Press, 2014. – 2704 p. https://doi.org/10.1201/b17118; Eranna, G. Crystal Growth and Evaluation of Silicon for VLSI and ULSI / G. Eranna. – Boca Raton: CRC Press, 2014. – 430 p. https://doi.org/10.1201/b17812; Solid state properties of group IVb carbonitrides. / W. Lengauer [et al.] // J. Alloys Compd. – 1995. – Vol. 217, № 1. – P. 137–147. https://doi.org/10.1016/0925-8388(94)01315-9; Electrophysical properties of TiAlN coatings prepared using controlled reactive magnetron sputtering / I. M. Klimovich [et al.] // Materials and Structures of Modern Electronics: Collection of Scientific Works: proc. of the 6th Int. sci. and tech. conf., Minsk, Oct. 8–9, 2014, BSU. – Minsk, 2014. – P. 5–8.; Residual stresses and tribomechanical behaviour of TiAlN and TiAlCN monolayer and multilayer coatings by DCMS and HiPIMS / W. Tillmann [et. al.] // Surf. Coat. Technol. – 2021. – Vol. 406. – P. 126664. https://doi.org/10.1016/j.surfcoat.2020.126664; Effects of Proton Irradiation on the Structural-Phase State of Nanostructured TiZrSiN Coatings and Their Mechanical Properties / F. F. Komarov [et al.] // J. Eng. Phys. Thermophys. – 2021. – Vol. 94, № 6. – P. 1609–1618. https://doi.org/10.1007/s10891-021-02442-2; Konstantinov, S. V. Effects of nitrogen selective sputtering and flaking of nanostructured coatings TiN, TiAlN, TiAlYN, TiCrN, (TiHfZrVNb)N under helium ion irradiation / S. V. Konstantinov, F. F. Komarov // Acta Phys. Pol. A. – 2019. – Vol. 136, № 2. – P. 303–309. https://doi.org/10.12693/APhysPolA.136.303; Wear resistance and radiation tolerance of He+ -irradiated magnetron sputtered TiAlN coatings / S. V. Konstantinov [et al.] // High Temp. Mater. Proc. – 2014. – Vol. 18, № 1–2. – P. 135–141. https://doi.org/10.1615/hightempmatproc.2015015569; https://vestifm.belnauka.by/jour/article/view/783

  19. 19
  20. 20

    Source: Pedersen, S K, Pedersen, V B R, Kamounah, F S, Broløs, L M, Baryshnikov, G V, Valiev, R R, Ivaniuk, K, Stakhira, P, Minaev, B, Karaush-karmazin, N, Ågren, H & Pittelkow, M 2021, ' Dianthracenylazatrioxa[8]circulene : Synthesis, Characterization and Application in OLEDs ', Chemistry: A European Journal, vol. 27, no. 45, pp. 11609–11617 . https://doi.org/10.1002/chem.202100090
    Chemistry-a European journal. 2021. Vol. 27, № 45. P. 11609-11617

    File Description: application/pdf