Výsledky vyhledávání - "ооциты"

  1. 1

    Zdroj: Izvestia Ural Federal University Journal. Series 1. Issues in Education, Science and Culture; Том 31, № 2 (2025); 68-81
    Известия Уральского федерального университета. Серия 1. Проблемы образования, науки и культуры; Том 31, № 2 (2025); 68-81

    Popis souboru: application/pdf

  2. 2

    Zdroj: Obstetrics, Gynecology and Reproduction; Online First ; Акушерство, Гинекология и Репродукция; Online First ; 2500-3194 ; 2313-7347

    Popis souboru: application/pdf

    Relation: https://www.gynecology.su/jour/article/view/2609/1406; Петров И.А., Дмитриева М.Л., Тихоновская О.А. и др. Тканевые и молекулярные основы фолликулогенеза. Механизмы раннего фолликулярного роста. Проблемы репродукции. 2017;23(5):33–41. https://doi.org/10.17116/repro201723533-41.; Pors S.E., Harðardóttir L., Olesen H.Ø. et al. Effect of sphingosine-1-phosphate on activation of dormant follicles in murine and human ovarian tissue. Mol Hum Reprod. 2020;26(5):301–11. https://doi.org/10.1093/molehr/gaaa022.; Zhang Y., Yan Z., Qin Q. et al. Transcriptome landscape of human folliculogenesis reveals oocyte and granulosa cell interactions. Mol Cell. 2018;72(6):1021–1034.e4. https://doi.org/10.1016/j.molcel.2018.10.029.; Hernández-Coronado C.G., Guzmán A., Castillo-Juárez H. et al. Sphingosine-1-phosphate (S1P) in ovarian physiology and disease. Ann Endocrinol (Paris). 2019;80(5–6):263–72. https://doi.org/10.1016/j.ando.2019.06.003.; Pitman M., Oehler M.K., Pitson S.M. Sphingolipids as multifaceted mediators in ovarian cancer. Cell Signal. 2021;81:109949. https://doi.org/10.1016/j.cellsig.2021.109949.; Quinville B.M., Deschenes N.M., Ryckman A.E., Walia J.S. A comprehensive review: sphingolipid metabolism and implications of disruption in sphingolipid homeostasis. Int J Mol Sci. 2021;22(11):5793. https://doi.org/10.3390/ijms22115793.; Sukocheva O., Wadham C., Holmes A. et al. Estrogen transactivates EGFR via the sphingosine 1-phosphate receptor Edg-3: the role of sphingosine kinase-1. J Cell Biol. 2006;173(2):301–10. https://doi.org/10.1083/jcb.200506033.; Chou C.H., Chen M.J. The effect of steroid hormones on ovarian follicle development. Vitam Horm. 2018;107:155–75. https://doi.org/10.1016/bs.vh.2018.01.013.; Zeleznik O.A., Clish C.B., Kraft P. et al. Circulating lysophosphatidylcholines, phosphatidylcholines, ceramides, and sphingomyelins and ovarian cancer risk: a 23-year prospective study. J Natl Cancer Inst. 2020;112(6):628–36. https://doi.org/10.1093/jnci/djz195.; Janneh A.H., Ogretmen B. Targeting sphingolipid metabolism as a therapeutic strategy in cancer treatment. Cancers (Basel). 2022;14(9):2183. https://doi.org/10.3390/cancers14092183.; Gomez-Larrauri A., Das Adhikari U., Aramburu-Nuñez M. et al. Ceramide metabolism enzymes-therapeutic targets against cancer. Medicina (Kaunas). 2021;57(7):729. https://doi.org/10.3390/medicina57070729.; Companioni O., Mir C., Garcia-Mayea Y., LLeonart M.E. Targeting sphingolipids for cancer therapy. Front Oncol. 2021;11:745092. https://doi.org/10.3389/fonc.2021.745092.; Yuan Y., Jia G., Wu C. et al. Structures of signaling complexes of lipid receptors S1PR1 and S1PR5 reveal mechanisms of activation and drug recognition. Cell Res. 2021;31(12):1263–74. https://doi.org/10.1038/s41422-021-00566-x.; Lucki N.C., Sewer M.B. The interplay between bioactive sphingolipids and steroid hormones. Steroids. 2010;75(6):390–9. https://doi.org/10.1016/j.steroids.2010.01.020.; Roth Z. Symposium review: reduction in oocyte developmental competence by stress is associated with alterations in mitochondrial function. J Dairy Sci. 2018;101(4):3642–54. https://doi.org/10.3168/jds.2017-13389.; Протопопов В.А., Секунов А.В., Панов А.В., Брындина И.Г. Взаимосвязь сфинголипидных механизмов с окислительным стрессом и изменениями митохондрий при функциональной разгрузке постуральных мышц. Acta Biomedica Scientifica. 2024;9(2):228–42. https://doi.org/10.29413/ABS.2024-9.2.23.; Kujjo L.L., Perez G.I. Ceramide and mitochondrial function in aging oocytes: joggling a new hypothesis and old players. Reproduction. 2012;143(1):1–10. https://doi.org/10.1530/REP-11-0350.; Zigdon H., Kogot-Levin A., Park J.W. et al. Ablation of ceramide synthase 2 causes chronic oxidative stress due to disruption of the mitochondrial respiratory chain. J Biol Chem. 2013;288(7):4947–56. https://doi.org/10.1074/jbc.M112.402719.; Arora A.S., Jones B.J., Patel T.C. et al. Ceramide induces hepatocyte cell death through disruption of mitochondrial function in the rat. Hepatology. 1997;25(4):958–63. https://doi.org/10.1002/hep.510250428.; Malott K.F., Luderer U. Toxicant effects on mammalian oocyte mitochondria†. Biol Reprod. 2021;104(4):784–93. https://doi.org/10.1093/biolre/ioab002.; Kasapoğlu I., Seli E. Mitochondrial dysfunction and ovarian aging. Endocrinology. 2020;161(2):bqaa001. https://doi.org/10.1210/endocr/bqaa001.; Smits M.A.J., Schomakers B.V., van Weeghel M. et al. Human ovarian aging is characterized by oxidative damage and mitochondrial dysfunction. Hum Reprod. 2023;38(11):2208–20. https://doi.org/10.1093/humrep/dead177.; Lee S., Kang H.G., Jeong P.S. et al. Heat stress impairs oocyte maturation through ceramide-mediated apoptosis in pigs. Sci Total Environ. 2021;755(Pt 1):144144. https://doi.org/10.1016/j.scitotenv.2020.144144.; Hernández-Coronado C.G., Guzmán A., Espinosa-Cervantes R. et al. Sphingosine-1-phosphate and ceramide are associated with health and atresia of bovine ovarian antral follicles. Animal. 2015;9(2):308–12. https://doi.org/10.1017/S1751731114002341.; Kujjo L.L., Acton B.M., Perkins G.A. et al. Ceramide and its transport protein (CERT) contribute to deterioration of mitochondrial structure and function in aging oocytes. Mech Ageing Dev. 2013;134(1–2):43–52. https://doi.org/10.1016/j.mad.2012.12.001.; Morita Y., Tilly J.L. Oocyte apoptosis: like sand through an hourglass. Dev Biol. 1999;213(1):1–17. https://doi.org/10.1006/dbio.1999.9344.; Hernández-Coronado C.G., Guzmán A., Rodríguez A. et al. Sphingosine-1-phosphate, regulated by FSH and VEGF, stimulates granulosa cell proliferation. Gen Comp Endocrinol. 2016;236:1–8. https://doi.org/10.1016/j.ygcen.2016.06.029.; Hao X., Zhang M. Roles of sphingosine-1-phosphate in follicle development and oocyte maturation. Anim Res One Health. 2024;2(3):314–22. https://doi.org/10.1002/aro2.53.; Park J.Y., Su Y.Q., Ariga M. et al. EGF-like growth factors as mediators of LH action in the ovulatory follicle. Science. 2004;303(5658):682–4. https://doi.org/10.1126/science.1092463.; Yamanaka M., Shegogue D., Pei H. et al. Sphingosine kinase 1 (SPHK1) is induced by transforming growth factor-beta and mediates TIMP-1 up-regulation. J Biol Chem. 2004;279(52):53994–4001. https://doi.org/10.1074/jbc.M410144200.; Squecco R., Sassoli C., Nuti F. et al. Sphingosine 1-phosphate induces myoblast differentiation through Cx43 protein expression: a role for a gap junction-dependent and -independent function. Mol Biol Cell. 2006;17(11):4896–910. https://doi.org/10.1091/mbc.e06-03-0243.; Giepmans B.N., Verlaan I., Hengeveld T. et al. Gap junction protein connexin-43 interacts directly with microtubules. Curr Biol. 2001;11(17):1364–8. https://doi.org/10.1016/s0960-9822(01)00424-9.; Hao X., Wang Y., Kong N. et al. Growth factor-mobilized intracellular calcium of cumulus cells decreases natriuretic peptide receptor 2 affinity for natriuretic peptide type C and induces oocyte meiotic resumption in the mouse. Biol Reprod. 2016;95(2):45. https://doi.org/10.1095/biolreprod.116.140137.; Yuan F., Hao X., Cui Y. et al. SphK-produced S1P in somatic cells is indispensable for LH-EGFR signaling-induced mouse oocyte maturation. Cell Death Dis. 2022;13(11):963. https://doi.org/10.1038/s41419-022-05415-2.; Mostafa S., Nader N., Machaca K. Lipid signaling during gamete maturation. Front Cell Dev Biol. 2022;10:814876. https://doi.org/10.3389/fcell.2022.814876.; Birbes H., El Bawab S., Hannun Y.A., Obeid L.M. Selective hydrolysis of a mitochondrial pool of sphingomyelin induces apoptosis. FASEB J. 2001;15(14):2669–79. https://doi.org/10.1096/fj.01-0539com.; Hernández-Corbacho M.J., Salama M.F., Canals D. et al. Sphingolipids in mitochondria. Biochim Biophys Acta Mol Cell Biol Lipids. 2017;1862(1):56–68. https://doi.org/10.1016/j.bbalip.2016.09.019.; Ueda N. Ceramide-induced apoptosis in renal tubular cells: a role of mitochondria and sphingosine-1-phoshate. Int J Mol Sci. 2015;16(3):5076–124. https://doi.org/10.3390/ijms16035076.; Fisher-Wellman K.H., Hagen J.T., Neufer P.D. et al. On the nature of ceramide-mitochondria interactions – dissection using comprehensive mitochondrial phenotyping. Cell Signal. 2021;78:109838. https://doi.org/10.1016/j.cellsig.2020.109838.; Eliyahu E., Shtraizent N., Martinuzzi K. et al. Acid ceramidase improves the quality of oocytes and embryos and the outcome of in vitro fertilization. FASEB J. 2010;24(4):1229–38. https://doi.org/10.1096/fj.09-145508.; Santiquet N.W., Greene A.F, Becker J. et al. A pre-in vitro maturation medium containing cumulus oocyte complex ligand-receptor signaling molecules maintains meiotic arrest, supports the cumulus oocyte complex and improves oocyte developmental competence. Mol Hum Reprod. 2017;23(9):594–606. https://doi.org/10.1093/molehr/gax032.; Eliyahu E., Shtraizent N., Shalgi R., Schuchman E.H. Construction of conditional acid ceramidase knockout mice and in vivo effects on oocyte development and fertility. Cell Physiol Biochem. 2012;30(3):735–48. https://doi.org/10.1159/000341453.; Morita Y., Perez G.I., Paris F. et al. Oocyte apoptosis is suppressed by disruption of the acid sphingomyelinase gene or by sphingosine-1-phosphate therapy. Nat Med. 2000;6(10):1109–14. https://doi.org/10.1038/80442.; Coll O., Morales A., Fernández-Checa J.C., Garcia-Ruiz C. Neutral sphingomyelinase-induced ceramide triggers germinal vesicle breakdown and oxidant-dependent apoptosis in Xenopus laevis oocytes. J Lipid Res. 2007;48(9):1924–35. https://doi.org/10.1194/jlr.M700069-JLR200.; Yuan F., Wang Z., Sun Y. et al. Sgpl1 deletion elevates S1P levels, contributing to NPR2 inactivity and p21 expression that block germ cell development. Cell Death Dis. 2021;12(6):574. https://doi.org/10.1038/s41419-021-03848-9.; Morita Y., Tilly J.L. Sphingolipid regulation of female gonadal cell apoptosis. Ann N Y Acad Sci. 2000;905:209–20. https://doi.org/10.1111/j.1749-6632.2000.tb06551.x.; Knapp P., Chomicz K., Świderska M. et al. Unique roles of sphingolipids in selected malignant and nonmalignant lesions of female reproductive system. Biomed Res Int. 2019;2019:4376583. https://doi.org/10.1155/2019/4376583.; Kreitzburg K.M., van Waardenburg R.C.A.M., Yoon K.J. Sphingolipid metabolism and drug resistance in ovarian cancer. Cancer Drug Resist. 2018;1:181–97. https://doi.org/10.20517/cdr.2018.06.; Rutherford T., Brown W.D., Sapi E. et al. Absence of estrogen receptor-beta expression in metastatic ovarian cancer. Obstet Gynecol. 2000;96(3):417–21. https://doi.org/10.1016/s0029-7844(00)00917-0.; Jeon S.-Y., Hwang K.-A., Choi K.-C. Effect of steroid hormones, estrogen and progesterone, on epithelial mesenchymal transition in ovarian cancer development. J Steroid Biochem Mol Biol. 2016;158:1–8. https://doi.org/10.1016/j.jsbmb.2016.02.005.; Mungenast F., Thalhammer T. Estrogen biosynthesis and action in ovarian cancer. Front Endocrinol (Lausanne). 2014;5:192. https://doi.org/10.3389/fendo.2014.00192.; Giaccari C., Antonouli S., Anifandis G. et al. An update on physiopathological roles of Akt in the reprodAKTive mammalian ovary. Life (Basel). 2024;14(6):722. https://doi.org/10.3390/life14060722.; Yang Y., Lang P., Zhang X. et al. Molecular characterization of extracellular vesicles derived from follicular fluid of women with and without PCOS: integrating analysis of differential miRNAs and proteins reveals vital molecules involving in PCOS. J Assist Reprod Genet. 2023;40(3):537–52. https://doi.org/10.1007/s10815-023-02724-z.; Liu L., Yin T.L., Chen Y. et al. Follicular dynamics of glycerophospholipid and sphingolipid metabolisms in polycystic ovary syndrome patients. J Steroid Biochem Mol Biol. 2019;185:142–9. https://doi.org/10.1016/j.jsbmb.2018.08.008.; Shi Y., Zhao H., Shi Y. et al. Genome-wide association study identifies eight new risk loci for polycystic ovary syndrome. Nat Genet. 2012;44(9):1020–5. https://doi.org/10.1038/ng.2384.; Parasar P., Ozcan P., Terry K.L. Endometriosis: epidemiology, diagnosis and clinical management. Curr Obstet Gynecol Rep. 2017;6(1):34–41. https://doi.org/10.1007/s13669-017-0187-1.; Lee Y.H., Tan C.W., Venkatratnam A. et al. Dysregulated sphingolipid metabolism in endometriosis. J Clin Endocrinol Metab. 2014;99(10):E1913–21. https://doi.org/10.1210/jc.2014-1340.; Zhang Q., Duan J., Liu X., Guo S.W. Platelets drive smooth muscle metaplasia and fibrogenesis in endometriosis through epithelial-mesenchymal transition and fibroblast-to-myofibroblast transdifferentiation. Mol Cell Endocrinol. 2016;428:1–16. https://doi.org/10.1016/j.mce.2016.03.015.; Bernacchioni C., Capezzuoli T., Vannuzzi V. et al. Sphingosine 1-phosphate receptors are dysregulated in endometriosis: possible implication in transforming growth factor β-induced fibrosis. Fertil Steril. 2021;115(2):501–11. https://doi.org/10.1016/j.fertnstert.2020.08.012.; Turathum B., Gao E.M., Grataitong K. et al. Dysregulated sphingolipid metabolism and autophagy in granulosa cells of women with endometriosis. Front Endocrinol (Lausanne). 2022;13:906570. https://doi.org/10.3389/fendo.2022.906570.; Itami N., Shirasuna K., Kuwayama T., Iwata H. Palmitic acid induces ceramide accumulation, mitochondrial protein hyperacetylation, and mitochondrial dysfunction in porcine oocytes. Biol Reprod. 2018;98(5):644–53. https://doi.org/10.1093/biolre/ioy023.; Fucho R., Casals N., Serra D., Herrero L. Ceramides and mitochondrial fatty acid oxidation in obesity. FASEB J. 2017;31(4):1263–72. https://doi.org/10.1096/fj.201601156R.; Torretta E., Barbacini P., Al-Daghri N.M., Gelfi C. Sphingolipids in obesity and correlated co-morbidities: the contribution of gender, age and environment. Int J Mol Sci. 2019;20(23):5901. https://doi.org/10.3390/ijms20235901.; Samad F., Hester K.D., Yang G. et al. Altered adipose and plasma sphingolipid metabolism in obesity: a potential mechanism for cardiovascular and metabolic risk. Diabetes. 2006;55(9):2579–87. https://doi.org/10.2337/db06-0330.; Shibahara H., Ishiguro A., Inoue Y. et al. Mechanism of palmitic acid-induced deterioration of in vitro development of porcine oocytes and granulosa cells. Theriogenology. 2020;141:54–61. https://doi.org/10.1016/j.theriogenology.2019.09.006.; Levi A.J., Raynault M.F., Bergh P.A. et al. Reproductive outcome in patients with diminished ovarian reserve. Fertil Steril. 2001;76(4):666–9. https://doi.org/10.1016/s0015-0282(01)02017-9.; Timur B., Aldemir O., İnan N. et al. Clinical significance of serum and follicular fluid ceramide levels in women with low ovarian reserve. Turk J Obstet Gynecol. 2022;19(3):207–14. https://doi.org/10.4274/tjod.galenos.2022.05760.; Alizadeh J., da Silva Rosa S.C., Weng X. et al. Ceramides and ceramide synthases in cancer: Focus on apoptosis and autophagy. Eur J Cell Biol. 2023;102(3):151337. https://doi.org/10.1016/j.ejcb.2023.151337.; Nakahara T., Iwase A., Nakamura T. et al. Sphingosine-1-phosphate inhibits H2O2-induced granulosa cell apoptosis via the PI3K/Akt signaling pathway. Fertil Steril. 2012;98(4):1001–8.e1. https://doi.org/10.1016/j.fertnstert.2012.06.008.; Valtetsiotis K., Valsamakis G., Charmandari E., Vlahos N.F. Metabolic mechanisms and potential therapeutic targets for prevention of ovarian aging: data from up-to-date experimental studies. Int J Mol Sci. 2023;24(12):9828. https://doi.org/10.3390/ijms24129828.; Li F., Turan V., Lierman S. et al. Sphingosine-1-phosphate prevents chemotherapy-induced human primordial follicle death. Hum Reprod. 2014;29(1):107–13. https://doi.org/10.1093/humrep/det391.; Pascuali N., Scotti L., Di Pietro M. et al. Ceramide-1-phosphate has protective properties against cyclophosphamide-induced ovarian damage in a mice model of premature ovarian failure. Hum Reprod. 2018;33(5):844–59. https://doi.org/10.1093/humrep/dey045.; Абусуева З.А., Мухтарова М.М., Хашаева Т.Х. и др. Компаративная оценка провоспалительных цитокинов у женщин с диагностированными наследственными тромбофилиями различного генеза и их ассоциация с ранними и поздними эмбриональными потерями. Проблемы репродукции. 2022;28(3):10–7. https://doi.org/10.17116/repro20222803110.; Cianci A., Calogero A.E., Palumbo M.A. et al. Relationship between tumour necrosis factor alpha and sex steroid concentrations in the follicular fluid of women with immunological infertility. Hum Reprod. 1996;11(2):265–8. https://doi.org/10.1093/humrep/11.2.265.; Banaras S., Paracha R.Z., Nisar M. et al. System level modeling and analysis of TNF-α mediated sphingolipid signaling pathway in neurological disorders for the prediction of therapeutic targets. Front Physiol. 2022;13:872421. https://doi.org/10.3389/fphys.2022.872421.; Sukocheva O.A., Neganova M.E., Aleksandrova Y/ et al. Signaling controversy and future therapeutical perspectives of targeting sphingolipid network in cancer immune editing and resistance to tumor necrosis factor-α immunotherapy. Cell Commun Signal. 2024;22(1):251. https://doi.org/10.1186/s12964-024-01626-6.; Kolesnick R. The therapeutic potential of modulating the ceramide/sphingomyelin pathway. J Clin Invest. 2002;110(1):3–8. https://doi.org/10.1172/JCI16127.; Di Paolo A., Vignini A., Alia S. et al. Pathogenic role of the sphingosine 1-phosphate (S1P) pathway in common gynecologic disorders (GDs): a possible novel therapeutic target. Int J Mol Sci. 2022;23(21):13538. https://doi.org/10.3390/ijms232113538.; Коваль О.М., Хачанова Н.В., Журавлева М.В. и др. Безопасность воспроизведенного финголимода. Безопасность и риск фармакотерапии. 2018;6(1):23–31. https://doi.org/10.30895/2312-7821-2018-6-1-23-31.; https://www.gynecology.su/jour/article/view/2609

  3. 3
  4. 4

    Zdroj: Репродуктивная эндокринология, Iss 58, Pp 118-124 (2021)
    Reproductive Endocrinology; No. 58 (2021); 118-124
    Репродуктивная эндокринология; № 58 (2021); 118-124
    Репродуктивна ендокринологія; № 58 (2021); 118-124

    Popis souboru: application/pdf

  5. 5
  6. 6

    Zdroj: Meditsinskiy sovet = Medical Council; № 15 (2023); 27-37 ; Медицинский Совет; № 15 (2023); 27-37 ; 2658-5790 ; 2079-701X

    Popis souboru: application/pdf

    Relation: https://www.med-sovet.pro/jour/article/view/7788/6910; Aristidou A, Jena R, Topol EJ. Bridging the chasm between AI and clinical implementation. Lancet. 2022;399(10325):620. https://doi.org/10.1016/S0140-6736(22)00235-5.; Barnett-Itzhaki Z, Elbaz M, Butterman R, Amar D, Amitay M, Racowsky C et al. Machine learning vs. classic statistics for the prediction of IVF out-comes. J Assist Reprod Genet. 2020;37(10):2405–2412. https://doi.org/10.1007/s10815-020-01908-1.; Yu SH, Wang HL. An Updated Decision Tree for Horizontal Ridge Augmentation: A Narrative Review. Int J Periodontics Restorative Dent. 2022;42(3):341–349. https://doi.org/10.11607/prd.5031.; Carugo O. Hydrophobicity diversity in globular and nonglobular proteins measured with the Gini index. Protein Eng Des Sel. 2017;30(12):781–784. https://doi.org/10.1093/protein/gzx060.; Amisha, Malik P, Pathania M, Rathaur VK. Overview of artificial intelligence in medicine. J Family Med Prim Care. 2019;8(7):2328–2331. https://doi.org/10.4103/jfmpc.jfmpc_440_19.; Zaninovic N, Rosenwaks Z. Artificial intelligence in human in vitro fertilization and embryology. Fertil Steril. 2020;114(5):914–920. https://doi.org/10.1016/j.fertnstert.2020.09.157.; Xu T, de Figueiredo Veiga A, Hammer KC, Paschalidis IC, Mahalingaiah S. Informative predictors of pregnancy after first IVF cycle using eIVF practice highway electronic health records. Sci Rep. 2022;12(1):839. https://doi.org/10.1038/s41598-022-04814-x.; Orvieto R. Stop GnRH-agonist/GnRH-antagonist protocol: a different insight on ovarian stimulation for IVF. Reprod Biol Endocrinol. 2023;21(1):13. https://doi.org/10.1186/s12958-023-01069-7.; Vaegter KK, Lakic TG, Olovsson M, Berglund L, Brodin T, Holte J. Which factors are most predictive for live birth after in vitro fertilization and intracytoplasmic sperm injection (IVF/ICSI) treatments? Analysis of 100 prospectively recorded variables in 8,400 IVF/ICSI single-embryo transfers. Fertil Steril. 2017;107(3):641–648.e2. https://doi.org/10.1016/j.fertnstert.2016.12.005.; Orvieto R, Kirshenbaum M, Galiano V, Zilberberg E, Haas J, Nahum R. Stop GnRH-Agonist Combined with Multiple-Dose GnRH-Antagonist for Patients with Elevated Peak Serum Progesterone Levels Undergoing Ovarian Stimulation for IVF: A Proof of Concept. Gynecol Obstet Invest. 2020;85(4):357–361. https://doi.org/10.1159/000508875.; Lensen SF, Wilkinson J, Leijdekkers JA, La Marca A, Mol BWJ, Marjoribanks J et al. Individualised gonadotropin dose selection using markers of ovarian reserve for women undergoing in vitro fertilisation plus intracytoplasmic sperm injection (IVF/ICSI). Cochrane Database Syst Rev. 2018;2(2):CD012693. https://doi.org/10.1002/14651858.CD012693.pub2.; Bedenk J, Vrtačnik-Bokal E, Virant-Klun I. The role of anti-Müllerian hormone (AMH) in ovarian disease and infertility. J Assist Reprod Genet. 2020;37(1):89–100. https://doi.org/10.1007/s10815-019-01622-7.; Nelson SM, Fleming R, Gaudoin M, Choi B, Santo-Domingo K, Yao M. Antimüllerian hormone levels and antral follicle count as prognostic indicators in a personalized prediction model of live birth. Fertil Steril. 2015;104(2):325–332. https://doi.org/10.1016/j.fertnstert.2015.04.032.; Pilsgaard F, Grynnerup AG, Løssl K, Bungum L, Pinborg A. The use of anti-Müllerian hormone for controlled ovarian stimulation in assisted reproductive technology, fertility assessment and -counseling. Acta Obstet Gynecol Scand. 2018;97(9):1105–1113. https://doi.org/10.1111/aogs.13334.; Wang R, Pan W, Jin L, Li Y, Geng Y, Gao C et al. Artificial intelligence in reproductive medicine. Reproduction. 2019;158(4):R139–R154. https://doi.org/10.1530/REP-18-0523.; Сыркашева АГ, Ибрагимова ЭО. Применение комбинированного препарата рекомбинантного фолликулостимулирующего гормона/лютеинизирующего гормона в программах вспомогательных репродуктивных технологий. Медицинский совет. 2016;(12):74–78. https://doi.org/10.21518/2079-701X-2016-12-74-78.; Hugues JN. Impact of ‘LH activity’ supplementation on serum progesterone levels during controlled ovarian stimulation: a systematic review. Hum Reprod. 2012;27(1):232–243. https://doi.org/10.1093/humrep/der380.; Виноградова ЛВ, Мишиева НГ, Абубакиров АН, Левков ЛА, Мартынова МВ. Гормональные особенности циклов ЭКО, стимулированных человеческим менопаузальным гонадотропином и рекомбинатным ФСГ в протоколах с антагонистом гонадотропин-рилизинг гормона. Акушерство и гинекология. 2014;(11):88–95. Режим доступа: https://ru.aig-journal.ru/articles/Gormonalnye-osobennosti-ciklov-EKO-stimulirovannyh-chelovecheskim-menopauzalnym-gonadotropinom-i-rekombinatnym-FSG-v-protokolah-s-antagonistom-gonadot.html?ysclid=lnmyih8y29257675120.; Jiang Y, Wang L, Shen H, Wang B, Wu J, Hu K et al. The effect of progesterone supplementation for luteal phase support in natural cycle frozen embryo transfer: a systematic review and meta-analysis based on randomized controlled trials. Fertil Steril. 2023;119(4):597–605. https://doi.org/10.1016/j.fertnstert.2022.12.035.; Alyasin A, Mehdinejadiani S, Ghasemi M. GnRH agonist trigger versus hCG trigger in GnRH antagonist in IVF/ICSI cycles: A review article. Int J Reprod Biomed. 2016;14(9):557–566. Available at: https://pubmed.ncbi.nlm.nih.gov/27738657.

  7. 7
  8. 8
  9. 9
  10. 10

    Přispěvatelé: K. V. Uryupina I. I. Kutsenko E. I. Kravtsovа a další

    Zdroj: Medical Herald of the South of Russia; Том 13, № 2 (2022); 59-71 ; Медицинский вестник Юга России; Том 13, № 2 (2022); 59-71 ; 2618-7876 ; 2219-8075 ; 10.21886/2219-8075-2022-13-2

    Popis souboru: application/pdf

    Relation: https://www.medicalherald.ru/jour/article/view/1445/885; Соловьева Т.В., Карасева А.С. Факторы детерминации позднего деторождения у женщин фертильного возраста в республике Мордовия. // Казанский социально-гуманитарный вестник. – 2018. – №4.– C.32-35. DOI:10.24153/2079-5912-2018-9-4-32-35.; Broer S.L., van Disseldorp J., Broeze K.A., Dolleman M., Opmeer B.C., Bossuyt P., Eijkemans M.J.C., Mol B.W.J., Broekmans F.J.M. Added value of ovarian reserve testing on patient characteristics in the prediction of ovarian response and ongoing pregnancy: an individual patient data approach. // Hum. Reprod. Update. – 2013. – 19(1). – P.26-36. DOI:10.1093/humupd/dms041.; Santoro N., Isaac B., Neal-Perry G., Adel T., Weingart L., Nussbaum A., Thakur S., Jinnai H., Khosla N., Barad D. Impaired folliculogenesis and ovulation in older reproductive aged women. // J. Clin. Endocrinol. Metab. – 2003. – 88(11). – P.5502-9. DOI:10.1210/jc.2002-021839.; Steiner A.Z., Pritchard D., Stanczyk F.Z., Kesner J.S., Meadows J.W., Herring A.H., Baird D.D. Association Between Biomarkers of Ovarian Reserve and Infertility Among Older Women of Reproductive Age. // JAMA. – 2017. – 318(14). – P.1367-1376. DOI:10.1001/jama.2017.14588.; Liao S., Xiong J., Tu H., Hu C., Pan W., Geng Y., Pan W., Lu T., Jin L. Prediction of in vitro fertilization outcome at different antral follicle count thresholds combined with female age, female cause of infertility, and ovarian response in a prospective cohort of 8269 women. // Medicine (Baltimore). – 2019. – 98(41). – P.e17470. DOI:10.1097/MD.0000000000017470.; Bashiri A., Halper K.I., Orvieto R. Recurrent Implantation Failure-update overview on etiology, diagnosis, treatment and future directions. // Reprod. Biol. Endocrinol. – 2018. – 16(1). – P.121. DOI:10.1186/s12958-018-0414-2.; Tanbo T., Fedorcsak P. Endometriosis-associated infertility: aspects of pathophysiological mechanisms and treatment options. // Acta Obstet. Gynecol. Scand. –2017. – 96(6).– P.659-667. DOI:10.1111/aogs.13082.; Broi M.G.D., Ferriani R.A., Navarro P.A. Ethiopathogenic mechanisms of endometriosis-related infertility. // JBRA Assist. Reprod. – 2019. – 23(3). – P.273-280. DOI:10.5935/1518-0557.20190029.; Vlahos N.F., Theodoridis T.D., Partsinevelos G.A.Myomas and Adenomyosis: Impact on Reproductive Outcome. // Biomed Res Int. – 2017. – 2017. – P.5926470. Published online 2017 Nov 6. DOI:10.1155/2017/5926470.; Vuković P., Kasum M., Raguž J., Lonjak N., BilićKnežević S., Orešković I., BeketićOrešković L., Čehić E. Fertility preservation in young women with early-stage breast cancer. // ActaClin Croat. – 2019. – 58(1). – P.147-156. DOI:10.20471/acc.2019.58.01.19.; Fritz R., Jindal S.J. Reproductive aging and elective fertility preservation. // Ovarian Res. – 2018. – 11(1). – P.66. DOI:10.1186/s13048-018-0438-4.; Azargoon A., Mirrasouli Y., ShokrollahiBarough M., Barati M., Kokhaei P.The State of Peripheral Blood Natural Killer Cells and Cytotoxicity in Women with Recurrent Pregnancy Loss and Unexplained Infertility.// Int.J.Fertil.Steril. – 2019. – 13(1). – P.12-17. DOI:10.22074/ijfs.2019.5503.; Крутова В.А., Коваленко Я.А. Современные представления о маточной форме бесплодия. // Электронный журнал. Современные проблемы науки и образования. – 2018. – №3. URL: http://www.science-education.ru/ru/article/view?id=27568 (дата обращения: 19.04.2020).; Steiner A.Z., Jukic A.M. Impact of female age and nulligravidity on fecundity in an older reproductive age cohort. // Fertil. Steril. – 2016. – 105(6). – P.1584-1588.e1. DOI:10.1016/j.fertnstert.2016.02.028.; https://www.medicalherald.ru/jour/article/view/1445

  11. 11
  12. 12

    Zdroj: Obstetrics, Gynecology and Reproduction; Vol 13, No 4 (2019); 313-325 ; Акушерство, Гинекология и Репродукция; Vol 13, No 4 (2019); 313-325 ; 2500-3194 ; 2313-7347

    Popis souboru: application/pdf

    Relation: https://www.gynecology.su/jour/article/view/600/767; Milunsky A., Jick H., Jick S.S. et al. Multivitamin/folic acid supplementation in early pregnancy reduces the prevalence of neural tube defects. JAMA. 1989;262(20):2847–52. DOI:10.1001/jama.262.20.2847.; Ray J.G., Meier C., Vermeulen M.J. et al. Association of neural tube defects and folic acid food fortification in Canada. Lancet. 2002;360(9350):2047–8. DOI:10.1016/S0140-6736(02)11994-5.; Rosenquist T.H., Ratashak S.A., Selhub J. Homocysteine induces congenital defects of the heart and neural tube: effect of folic acid. Proc Natl Acad Sci U S A. 1996;93(26):15227–32. DOI:10.1073/pnas.93.26.15227.; Блинов Д.В., Зимовина У.В., Джобава Э.М. Ведение беременных с дефицитом магния: фармакоэпидемиологическое исследование. ФАРМАКОЭКОНОМИКА. Современная фармакоэкономика и фармакоэпидемиология. 2014;7(2):23–32.; Malek L., Umberger W., Makrides M., Zhou S.J. Poor adherence to folic acid and iodine supplement recommendations in preconception and pregnancy: a cross‐sectional analysis. Aust N Z J Public Health. 2016;40(5):424–9. DOI:10.1111/1753-6405.12552.; Navarrete-Muñoz E.M., Valera-Gran D., García de la Hera M. et al. Use of high doses of folic acid supplements in pregnant women in Spain: an INMA cohort study. BMJ Open. 2015;5(11):e009202. DOI:10.1136/bmjopen-2015-009202.; Study to compare efficacy and safety of Primapur and Gonal-f in women for assisted reproductive treatment. Available at: https://clinicaltrials.gov/ct2/show/NCT03088137.; Подкорытов А.Б., Жиляев О.В., Ползиков М.А. Шприц-ручка для самостоятельного введения раствора фоллитропина альфа с минимальным шагом устанавливаемой дозы 5 МЕ. Акушерство, гинекология и репродукция. 2017;11(4):35–42. DOI:10.17749/2313-7347.2017.11.4.035-042.; Воробьев И.И., Семихин А.С., Головина Е.О. Производство нового биоаналогового фоллитропина альфа в России – это уже реальность в 2017 году. Акушерство, гинекология и репродукция. 2017;11(3):116–26. DOI:10.17749/2313-7347.2017.11.3.116-126.; Барахоева З.Б., Вовк Л.А., Зорина И.В. и др. Основные результаты сравнительного многоцентрового исследования III фазы биоаналогового фоллитропина альфа (Примапур®) и оригинального фоллитропина альфа (Гонал-ф®). Акушерство, гинекология и репродукция. 2018;12(3):5–16. DOI:10.17749/2313-7347.2018.12.3.005-016.; Polzikov M., Barakhoeva Z., Yakovenko S. et al. A multicenter, randomized study comparing the efficacy of follitropin alpha biosimilar and the original follitropin alpha. Hum Reprod. 2019;34(Suppl 1):439.; Orlova N.A., Kovnir S.V., Khodak Y.A. et al. High-level expression of biologically active human follicle stimulating hormone in the Chinese hamster ovary cell line by a pair of tricistronic and monocistronic vectors. PLoS One. 2019;14(7):e0219434. DOI:10.1371/journal.pone.0219434.; Barakhoeva Z., Vovk L., Fetisova Yu. et al. A multicenter, randomized, phase III study comparing the efficacy and safety of follitropin alpha biosimilar and the original follitropin alpha. Eur J Obstet Gynecol Reprod Biol. 2019;241:6–12. DOI:10.1016/j.ejogrb.2019.07.032.; Committee for Medicinal Products for Human Use. Guideline on non-clinical and clinical development of similar biological medicinal products containing recombinant human follicle stimulating hormone (r-hFSH). EMA/597110/2012. London: European Medicines Agency, 2013. 7 p. Available at: https://www.ema.europa.eu/en/documents/scientific-guideline/guideline-non-clinical-clinical-development-similar-biological-medicinal-products-containing_en.pdf.; Руководство по экспертизе лекарственных средств. Том IV. М.: Полиграф-Плюс, 2014. 172 с.; Nohr E.A., Olsen J., Bech B.H. et al. Periconceptional intake of vitamins and fetal death: a cohort study on multivitamins and folate. Int J Epidemiol. 2014;43(1):174–84. DOI:10.1093/ije/dyt214.; Примапур. Инструкция по медицинскому применению. ЛП-005826. Государственный Реестр Лекарственных Средств. Режим доступа: http://grls.rosminzdrav.ru/Grls_View_v2.aspx?routingGuid=6e4af9adad10-4e7b-b8f0-948e4bb80fbb&t=.; WHO. Serum and red blood cell folate concentrations for assessing folate status in populations. Vitamin and Mineral Nutrition Information System. Geneva: World Health Organization, 2015. 7 р. Available at: https://apps.who.int/iris/bitstream/handle/10665/162114/WHO_NMH_NHD_EPG_15.01.pdf?sequence=1.; Twigt J.M., Hammiche F., Sinclair K.D. et al. Preconception folic acid use modulates estradiol and follicular responses to ovarian stimulation. J Clin Endocrinol Metab. 2011;96(2):E322–9. DOI:10.1210/jc.2010-1282.; Murto T., Skoog Svanberg A., Yngve A. et al. Folic acid supplementation and IVF pregnancy outcome in women with unexplained infertility. Reprod Biomed Online. 2014;28(6):766–72. DOI:10.1016/j.rbmo.2014.01.017.; Centers for Disease Control and Prevention (CDC). Spina bifida and anencephaly before and after folic acid mandate, United States, 1995– 1996 and 1999–2000. MMWR Morb Mortal Wkly Rep. 2004;53(17):362–5.; Human Vitamin and Mineral Requirements. World Health Organization, Food and Agriculture Organization of the United Nations. WHO, 2001. 303 p. Available at: http://www.fao.org/3/a-y2809e.pdf.; Food and Nutrition Board. Dietary reference intakes for thiamin, riboflavin, niacin, vitamin B6, folate, vitamin B12, pantothenic acid, biotin, and choline. Washington, DC: National Academies Press, 1998. Available at: https://www.ncbi.nlm.nih.gov/books/NBK114310.; https://www.gynecology.su/jour/article/view/600

  13. 13
  14. 14
  15. 15
  16. 16
  17. 17
  18. 18
  19. 19

    Přispěvatelé: E. Yu. Brusentsev E. A. Chuyko K. A. Okotrub a další

    Zdroj: Vavilov Journal of Genetics and Breeding; Том 24, № 5 (2020); 533-538 ; Вавиловский журнал генетики и селекции; Том 24, № 5 (2020); 533-538 ; 2500-3259 ; 10.18699/VJ20.637

    Popis souboru: application/pdf

    Relation: https://vavilov.elpub.ru/jour/article/view/2718/1411; Брусенцев Е.Ю., Мокроусова В.И., Игонина Т.Н., Рожкова И.Н., Амстиславский С.Я. Роль липидных гранул в развитии ооцитов и преимплантационных эмбрионов млекопитающих. Онтогенез. 2019;50(5):297-305. DOI 10.1134/S0475145019050100.; Amstislavsky S., Mokrousova V., Brusentsev E., Okotrub K., Comizzoli P. Influence of cellular lipids on cryopreservation of mammalian oocytes and preimplantation embryos: a review. Biopreserv. Biobank. 2019;17(1):76-83. DOI 10.1089/bio.2018.0039.; Bradley J., Pope I., Masia F., Sanusi R., Langbein W., Swann K., Borri P. Quantitative imaging of lipids in live mouse oocytes and early embryos using CARS microscopy. Development. 2016;143(12): 2238-2247. DOI 10.1242/dev.129908.; Bradley J., Swann K. Mitochondria and lipid metabolism in mammalian oocytes and early embryos. Int. J. Dev. Biol. 2019;63:93-103. DOI 10.1387/ijdb.180355ks.; Brinster R.L. Measuring embryonic enzyme activity. In: Daniel J.C. Jr. (Ed.). Method in Mammalian Embryology. San Francisco: Freeman, 1971;215-227.; Collado M., da Silveira J.C., Sangalli J.R., Andrade G.M., Sousa L.R.D.S., Silva L.A., Meirelles F.V., Perecin F. Fatty acid binding protein 3 and transzonal projections are involved in lipid accumulation during in vitro maturation of bovine oocytes. Sci. Rep. 2017;7(1):2645. DOI 10.1038/s41598-017-02467-9.; Dickey R.P., Xiong X., Gee R.E., Pridjian G. Effect of maternal height and weight on risk of preterm birth in singleton and twin births resulting from in vitro fertilization: a retrospective cohort study using the Society for Assisted Reproductive Technology Clinic Outcome Reporting System. Fertil. Steril. 2012;97(2):349-354. DOI 10.1016/j.fertnstert.2011.11.017.; Dunning K.R., Russell D.L., Robker R.L. Lipids and oocyte developmental competence: the role of fatty acids and β-oxidation. Reproduction. 2014;148(1):15-27. DOI 10.1530/REP-13-0251.; Ellenrieder L., Opalinski L., Becker L., Kruger V., Mirus O., Straub S.P., Ebell K., Flinner N., Stiller S.B., Guiard B., Meisinger C., Wiedemann N., Schleiff E., Wagner R., Pfanner N., Becker T. Separating mitochondrial protein assembly and endoplasmic reticulum tethering by selective coupling of Mdm10. Nat. Commun. 2016;7:13021. DOI 10.1038/ncomms13021.; Genicot G., Leroy J.L.M.R., Van Soom A., Donnay I. The use of a fluorescent dye, Nile red, to evaluate the lipid content of single mammalian oocytes. Theriogenology. 2005;63(4):1181-1194. DOI 10.1016/j.theriogenology.2004.06.006.; Hillier S.G., Siddiquey A.K., Winston R.M. Fertilization in vitro of cumulus-enclosed mouse oocytes: effect of timing of the ovulatory hCG injection. Int. J. Fertil. 1985;30(2):34-38.; Hogan B., Beddington R., Costantini F., Lacy E. Manipulating the Mouse Embryo. A Laboratory Manual. 2nd ed. New York: Cold Spring Harbor Laboratory, Cold Spring Harbor, 1994.; Kruip T.A., Cran D.G., Van Beneden T.H., Dieleman S.J. Structural changes in bovine oocytes during final maturation in vivo. Mol. Reprod. Dev. 1983;8(1):29-47. DOI 10.1002/mrd.1120080105.; Li J., Wang S., Wang B., Wei H., Liu X., Hao J., Duan Y., Hua J., Zheng X., Feng X., Yan X. High-fat-diet impaired mitochondrial function of cumulus cells but improved the efficiency of parthenogenetic embryonic quality in mice. Anim. Cells Syst. (Seoul). 2018; 22(4):243-252. DOI 10.1080/19768354.2018.1497707.; Ma W., Yang X., Liang X. Obesity does not aggravate vitrification injury in mouse embryos: a prospective study. Reprod. Biol. Endocrinol. 2012;10:68. DOI 10.1186/1477-7827-10-68.; Minge C.E., Bennett B.D., Norman R.J., Robker R.L. Peroxisome proliferator-activated receptor-gamma agonist rosiglitazone reverses the adverse effects of diet-induced obesity on oocyte quality. Endocrinology. 2008;149(5):2646-2656. DOI 10.1210/en.2007-1570.; Okotrub K.A., Amstislavsky S.Y., Surovtsev N.V. Raman spectroscopy reveals the lipid phase transition in preimplantation mouse embryos during freezing. Arch. Biochem. Biophys. 2017;635:37-43. DOI 10.1016/j.abb.2017.10.001.; Pantasri T., Wu L.L., Hull M.L., Sullivan T.R., Barry M., Norman R.J., Robker R.L. Distinct localisation of lipids in the ovarian follicular environment. Reprod. Fertil. Dev. 2015;27(4):593-601. DOI 10.1071/RD14321.; Robker R.L. Evidence that obesity alters the quality of oocytes and embryos. Pathophysiology. 2008;15(2):115-121. DOI 10.1016/j.pathophys.2008.04.004.; Romek M., Gajda B., Krzysztofowicz E., Kepczynski M., Smorag Z. New technique to quantify the lipid composition of lipid droplets in porcine oocytes and pre-implantation embryos using Nile Red fluorescent probe. Theriogenology. 2011;75(1):42-54. DOI 10.1016/j.theriogenology.2010.06.040.; Souter I., Baltagi L.M., Kuleta D., Meeker J.D., Petrozza J.C. Women, weight, and fertility: the effect of body mass index on the outcome of superovulation/intrauterine insemination cycles. Fertil. Steril. 2011; 95(3):1042-1047. DOI 10.1016/j.fertnstert.2010.11.062.; Thiam A.R., Farese R.V. Jr., Walther T.C. The biophysics and cell biology of lipid droplets. Nat. Rev. Mol. Cell Biol. 2013;14(12):775. DOI 10.1038/nrm3699.; Valckx S.D., Arias-Alvarez M., De Pauw I., Fievez V., Vlaeminck B., Fransen E., Bols P.E., Leroy J.L. Fatty acid composition of the follicular fluid of normal weight, overweight and obese women undergoing assisted reproductive treatment: a descriptive cross-sectional study. Reprod. Biol. Endocrinol. 2014;12:13. DOI 10.1186/1477-7827-12-13.; Walther T.C., Farese R.V. The life of lipid droplets. Biochim. Biophys. Acta. 2009;1791(6):459-466. DOI 10.1016/j.bbalip.2008.10.009.; Welte M.A., Gould A.P. Lipid droplet functions beyond energy storage. Biochim. Biophys. Acta Mol. Cell Biol. Lipids. 2017;1862(10): 1260-1272. DOI 10.1016/j.bbalip.2017.07.006.; Wu L.L., Dunning K.R., Yang X., Russell D.L., Lane M., Norman R.J., Robker R.L. High-fat diet causes lipotoxicity responses in cumulusoocyte complexes and decreased fertilization rates. Endocrinology. 2010;151(11):5438-5445. DOI 10.1210/en.2010-0551.; Zeron Y., Sklan D., Arav A. Effect of polyunsaturated fatty acid supplementation on biophysical parameters and chilling sensitivity of ewe oocytes. Mol. Reprod. Dev. 2002;61:271-278. DOI 10.1002/mrd.1156.; https://vavilov.elpub.ru/jour/article/view/2718

  20. 20

    Přispěvatelé: S. Ya. Amstislavsky S. V. Ranneva D. S. Ragaeva a další

    Zdroj: Vavilov Journal of Genetics and Breeding; Том 23, № 8 (2019); 1006-1010 ; Вавиловский журнал генетики и селекции; Том 23, № 8 (2019); 1006-1010 ; 2500-3259

    Popis souboru: application/pdf

    Relation: https://vavilov.elpub.ru/jour/article/view/2394/1326; Борисова М.А., Моисеенко Д.Ю., Смирнова О.В. Хорионический гонадотропин человека: неизвестное об известном. Физиол. человека. 2017;43(1):97­110. DOI 10.7868/S0131164616060059.; Brinster R.L. Measuring embryonic enzyme activity. In: Daniel J.C. (Ed.) Methods in Mammalian Embryology. San Francisco: Freeman, 1971;215­227.; Cole L.A. Biological functions of hCG and hCG­related molecules. Reprod. Biol. Endocrinol. 2010;8(1):102. DOI 10.1186/1477­7827­8­102.; Delvigne A., Rozenberg S. Epidemiology and prevention of ovarian hyperstimulation syndrome (OHSS): a review. Hum. Reprod. Update. 2002;8:559­577. DOI 10.1093/humupd/8.6.559.; Dinopoulou V., Drakakis P., Kefala S., Kiapekou E., Bletsa R., Anagnostou E., Kallianidis K., Loutradis D. Effect of recombinantLH and hCG in the absence of FSH on in vitro maturation (IVM) fertilization and early embryonic development of mouse germinal vesicle (GV)­stage oocytes. Reprod. Biol. 2016;16(2):138­146. DOI 10.1016/j.repbio.2016.01.004.; Drakakis P., Loutradis D., Beloukas A., Sypsa V., Anastasiadou V., Kalofolias G., Arabatzi H., Kiapekou E., Stefanidis K., Paraskevis D., Makrigiannakis A., Hatzakis A., Antsaklis A. Early hCG addition to rFSH for ovarian stimulation in IVF provides better results and the cDNA copies of the hCG receptor may be an indicator of successful stimulation. Reprod. Biol. Endocrinol. 2009;7:110. DOI 10.1186/1477­7827­7­110.; Ertzeid G., Storeng R. Adverse effects of gonadotrophin treatment on preand postimplantation development in mice. J. Reprod. Fertil. 1992;96:649­655. DOI 10.1530/jrf.0.0960649.; Fournier T., Guibourdenche J., Evain­Brion D. Review: hCGs: different sources of production, different glycoforms and functions. Placenta. 2015;36(1):60. DOI 10.1016/j.placenta.2015.02.002.; Hasegawa A., Mochida K., Inoue H., Noda Y., Endo T., Watanabe G., Ogura A. High­yield superovulation in adult mice by anti­inhibin serum treatment combined with estrous cycle synchronization. Biol. Reprod. 2016;94(1):21. DOI 10.1095/biolreprod.115.134023.; Henningsen A.A., Gissler M., Skjaerven R., Bergh C., Tiitinen A., Romundstad L.B., Wennerholm U.B., Lidegaard O., Nyboe Andersen A., Forman J.L., Pinborg A. Trends in perinatal health after assisted reproduction: a Nordic study from the CoNARTaS group. Hum. Reprod. 2015;30:710­716. DOI 10.1093/humrep/deu345.; Hogan B., Beddington R., Costantini F., Lacy E. Manipulating the Mouse Embryo. A Laboratory Manual. 2nd ed., New York; Cold Spring Harbor: Cold Spring Harbor Laboratory, 1994.; Homburg R. Management of infertility and prevention of ovarian hyperstimulation in women with polycystic ovary syndrome. Best Pract. Res. Clin. Obstet. Gynaecol. 2004;18:773­788. DOI 10.1016/j.bpobgyn.2004.05.006.; Kane N., Kelly R., Saunders P.T., Critchley H.O. Proliferation of uterine natural killer cells is induced by human chorionic gonadotropin and mediated via the mannose receptor. Endocrinology. 2009;150: 2882­2888. DOI 10.1210/en.2008­1309.; Keay S.D., Vatish M., Karteris E., Hillhouse E.W., Randeva H.S. The role of hCG in reproductive medicine. Br. J. Obstset. Gynecol. 2004; 111(11):1218. DOI 10.1111/j.1471­0528.2004.00412.x.; Lee M., Ahn J.I., Lee A.R., Ko D.W., Yang W.S., Lee G., Ahn J.Y., Lim J.M. Adverse effect of superovulation treatment on maturation, function and ultrastructural integrity of murine oocytes. Mol. Cells. 2017;40(8):558­566. DOI 10.14348/molcells.2017.0058.; Li S., Wang J., Cheng Y., Zhou D., Yin T., Xu W., Yu N., Yang J. Intrauterine administration of hCG­activated autologous human peripheral blood mononuclear cells (PBMC) promotes live birth rates in frozen/thawed embryo transfer cycles of patients with repeated implantation failure. J. Reprod. Immunol. 2017;119:15­22. DOI 10.1016/j.jri.2016.11.006.; Makrigiannakis A., Vrekoussis T., Zoumakis E., Kalantaridou S.N., Jeschke U. The role of hCG in implantation: A mini­review of molecular and clinical evidence. Int. J. Mol. Sci. 2017;18(6):1305. DOI 10.3390/ijms18061305.; Redina O.E., Amstislavsky S.Ya., Maksimovsky L.F. Induction of superovulation in DD mice at different stages of the oestrous cycle. J. Reprod. Fertil. 1994;(102):263­267. DOI 10.1530/jrf.0.1020263.; Sazonova A., Kallen K., Thurin­Kjellberg A., Wennerholm U.B., Bergh C. Obstetric outcome after in vitro fertilization with single or double embryo transfer. Hum. Reprod. 2011;26(2):442­450. DOI 10.1093/humrep/deq325.; Strug M.R., Su R., Young J.E., Dodds W.G., Shavell V.I., Diaz­Gimeno P., Ruiz­Alonso M., Simon C., Lessey B.A., Leach R.E., Fazleabas A.T. Intrauterine human chorionic gonadotropin infusion in oocy te donors promotes endometrial synchrony and induction of early decidual markers for stromal survival: A randomized clinical trial. Hum. Reprod. 2016;31:1552­1561. DOI 10.1093/humrep/dew080.; Takeo T., Nakagata N. Superovulation using the combined administra tion of inhibin antiserum and equine chorionic gonadotropin increa ses the number of ovulated oocytes in C57BL/6 female mice. PLoS One. 2015;10(5):e0128330. DOI 10.1371/journal.pone.0128330.; Tarin J.J., Perez­Albala S., Cano A. Stage of the estrous cycle at the time of pregnant mare’s serum gonadotropin injection affects the quality of ovulated oocytes in the mouse. Mol. Reprod. Dev. 2002; 61(3):398­405. DOI 10.1002/mrd.10042.; Wang Y., Ock S.A., Chian R.C. Effect of gonadotrophin stimulation on mouse oocyte quality and subsequent embryonic development in vitro. Reprod. Biomed. Online. 2006;12(3):304­314. DOI 10.1016/S1472­6483(10)61002­4.; https://vavilov.elpub.ru/jour/article/view/2394