Search Results - "олигосахариды грудного молока"

  • Showing 1 - 8 results of 8
Refine Results
  1. 1

    Source: Meditsinskiy sovet = Medical Council; № 1 (2025); 32-39 ; Медицинский Совет; № 1 (2025); 32-39 ; 2658-5790 ; 2079-701X

    File Description: application/pdf

    Relation: https://www.med-sovet.pro/jour/article/view/8963/7792; Hansen K. Breastfeeding: a smart investment in people and in economies. Lancet. 2016;387(10017):416. https://doi.org/10.1016/S0140-6736(16)00012-X.; Парандовский Я. Мифология. Верования и легенды греков и римлян. М.: Детская литература; 1971. С. 140–272.; Wickes IG. A history of infant feeding. I. Primitive peoples; ancient works; Renaissance writers. Arch Dis Child. 1953;28(138):151–158. https://doi.org/10.1136/adc.28.138.151.; Osborn ML. The rent breasts: a brief history of wet-nursing. Midwife Health Visit Community Nurse. 1979;15(8):302–306. Available at: https://pubmed.ncbi.nlm.nih.gov/?term=The+rent+breasts%3A+A+brief+history+of+wet-.; Stevens EE, Patrick TE, Pickler R. A history of infant feeding. J Perinat Educ. 2009;18(2):32–39. https://doi.org/10.1624/105812409X426314.; Castilho SD, Rocha MA. Pacifier habit: history and multidisciplinary view. J Pediatr (Rio J). 2009;85(6):480–489. https://doi.org/10.2223/JPED.1951.; Белова ОВ (ред.). Контакты и конфликты в славянской и еврейской культурной традиции. М.; 2017. 384 c.; Weinberg F. Infant feeding through the ages. Can Fam Physician. 1993;39:2016–2020. Available at: https://pubmed.ncbi.nlm.nih.gov/8219849.; Мартин Р. Как мы делаем это: Эволюция и будущее репродуктивного поведения человека. М.: Альпина нонфикшн; 2016. 380 с. Режим доступа: https://nonfiction.ru/media/fragments/kak-my-delaem.pdf.; Bakshi S, Paswan VK, Yadav SP, Bhinchhar BK, Kharkwal S, Rose H et al. A comprehensive review on infant formula: nutritional and functional constituents, recent trends in processing and its impact on infants’ gut microbiota. Front Nutr. 2023;10:1194679. https://doi.org/10.3389/fnut.2023.1194679.; Скидан ИН, Гуляев АЕ, Зеленкин ИВ, Скидан ТН. Исторический экскурс в проблематику вскармливания детей. Вопросы питания. 2014;83(2):68–78. Режим доступа: https://www.voprosy-pitaniya.ru/en/jarticles_diet/266.html.; Макарова ИВ. Козье молоко для здоровья, долголетия и красоты. Советы опытного доктора для взрослых и малышей. М.: Центрполиграф; 2015. 197 с.; Гребнев ЯВ (ред.). Книга о козе. СПб.; 2005. 235 c.; Currier RW, Widness JA. A Brief History of Milk Hygiene and Its Impact on Infant Mortality from 1875 to 1925 and Implications for Today: A Review. J Food Prot. 2018;81(10):1713–1722. https://doi.org/10.4315/0362-028X.JFP-18-186.; Gashaw A, Kebede D, Regasa T, Bekele H. Colostrum avoidance and associated factors among mothers of less than 6-month-old children in Dilla town, Southern Ethiopia. Front Pediatr. 2024;12:1399004. https://doi.org/10.3389/fped.2024.1399004.; Radbill SX. Infant feeding through the ages. Clin Pediatr. 1981;20(10):613–621. https://doi.org/10.1177/000992288102001001.; Thoreau HD. Walden. United States: Ticknor and Fields; 1854. Available at: https://courses.lumenlearning.com/suny-introliterature/chapter/waldenby-henry-david-thoreau.; Obladen M. Pap, gruel, and panada: early approaches to artificial infant feeding. Neonatology. 2014;105(4):267–274. https://doi.org/10.1159/000357935.; Griffiths M (ed.). Improving the safety and quality of milk: Milk production and processing. Elsevier; 2010.; Брейтман МЯ. Питание и вскармливание детей с современной точки зрения. СПб.: Современная медицина и гигиена; 1907. 404 с.; Фатеева ЕМ. К истории организации вскармливания детей первого года жизни. Вопросы детской диетологии. 2012;10(1):21–26. Режим доступа: https://www.phdynasty.ru/katalog/zhurnaly/voprosy-detskoy-dietologii/2012/tom-10-nomer-1/9333.; Fomon S. Infant feeding in the 20th century: formula and beikost. J Nutr. 2001;131(2):409S–420S. https://doi.org/10.1093/jn/131.2.409S.; Phosanam A, Chandrapala J, Huppertz T, Adhikari B, Zisu B. In vitro digestion of infant formula model systems: Influence of casein to whey protein ratio. J Dairy Sci. 2021;117:105008. https://doi.org/10.1016/j.idairyj.2021.105008.; Lindner C, Looijesteijn E, Dijck HV, Bovee-Oudenhoven I, Heerikhuisen M, Broek TJVD et al. Infant Fecal Fermentations with Galacto-Oligosaccharides and 2’-Fucosyllactose Show Differential Bifidobacterium longum Stimulation at Subspecies Level. Children. 2023;10(3):430. https://doi.org/10.3390/children10030430.; Huang X, Wang Z. Strategies in Oligosaccharide Synthesis. In: Kamerling H (ed.). Comprehensive Glycoscience. 2007, pp. 379–413. https://doi.org/10.1016/B978-044451967-2/00011-8.; Zivkovic AM, Lewis ZT, German JB, Mills DA. Establishment of a milkoriented microbiota (MOM) in early life: how babies meet their MOMs. Food Rev. 2013;5(1):3–12. https://doi.org/10.2310/6180.2009.00035.; Ambrogi V, Bottacini F, Cao L, Kuipers B, Schoterman M, van Sinderen D. Galacto-oligosaccharides as infant prebiotics: production, application, bioactive activities and future perspectives. Crit Rev Food Sci Nutr. 2023;63(6):753–766. https://doi.org/10.1080/10408398.2021.1953437.; Reverri EJ, Devitt AA, Kajzer JA, Baggs GE, Borschel MW. Review of the Clinical Experiences of Feeding Infants Formula Containing the Human Milk Oligosaccharide 2’-Fucosyllactose. Nutrients. 2018;10(10):1346. https://doi.org/10.3390/nu10101346.

  2. 2
  3. 3

    Source: Meditsinskiy sovet = Medical Council; № 18 (2020); 103-109 ; Медицинский Совет; № 18 (2020); 103-109 ; 2658-5790 ; 2079-701X

    File Description: application/pdf

    Relation: https://www.med-sovet.pro/jour/article/view/5901/5386; Benninga M.A., Faure C., Hyman P.E., St. James Roberts I., Schechter N.L., Nurko S. Childhood functional gastrointestinal disorders: neonate/toddler. Gastroenterology. 2016;150(6):1443– 1455.e2. doi:10.1053/j.gastro.2016.02.016.; Mahon J., Lifschitz C., Ludwig T., Thapar N., Glanville J., Miqdady M. et al. The costs of functional gastrointestinal disorders and related signs and symptoms in infants: a systematic literature review and cost calculation for England. BMJ Open. 2017;7:e015594. doi:10.1136/bmjopen-2016-015594.; Iacono G., Merolla R., D’Amico D., Bonci E., Cavataio F., Di Prima L. et al. Gastrointestinal symptoms in infancy: a population-based prospective study. Dig Liver Dis. 2005;37(6):432–438. doi:10.1016/j.dld.2005.01.009.; Vandenplas Y., Abkari A., Bellaiche M., Benninga M., Chouraqui J.P., Çokura F. et al. Prevalence and health outcomes of functional gastrointestinal symptoms in infants from birth to 12 months of age. J Pediatr Gastroenterol Nutr. 2015;61(5):531–537. doi:10.1097/MPG.0000000000000949.; Canivet C., Hagander B., Jakobsson I., Lanke J. Infantile colic – less common than previously estimated? Acta Paediatr. 1996;85(4):454–458. doi:10.1111/j.1651-2227.1996.tb14060.x.; Savino F. Focus on infantile colic. Acta Paediatr. 2007;96(9):1259–1264. doi:10.1111/j.1651-2227.2007.00428.x.; Shamir R., St James-Roberts I., Di Lorenzo C., Burns A.J., Thapar N., Indrio F. et al. Infant crying, colic, and gastrointestinal discomfort in early childhood: a review of the evidence and most plausible mechanisms. J Pediatr Gastroenterol Nutr. 2013;57(Suppl. 1):1–45. doi:10.1097/MPG.0b013e3182a154ff.; Räihä H., Lehtonen L., Huhtala V., Saleva K., Korvenranta H. Excessively crying infant in the family: mother-infant, father-infant and motherfather interaction. Child Care Health Dev. 2002;28(5):419–429. doi:10.1046/j.1365-2214.2002.00292.x.; Akman I., Kusçu K., Ozdemir N., Yurdakul Z., Solakoglu M., Orhan L. et al. Mothers’ postpartum psychological adjustment and infantile colic. Arch Dis Child. 2006;91(5):417–419. doi:10.1136/adc.2005.083790.; Delplanque B., Gibson R., Koletzko B., Lapillonne A., Strandvik B. Lipid quality in infant nutrition: current knowledge and future opportunities. J Pediatr Gastroenterol Nutr. 2015;61(1):8–17. doi:10.1097/MPG.0000000000000818.; Koletzko B. Human milk lipids. Ann Nutr Metab. 2016;69(Suppl. 2):28–40. doi:10.1159/000452819.; Zou L., Pande G., Akoh C.C. Infant formula fat analogs and human milk fat: new focus on infant developmental needs. Annu Rev Food Sci Technol. 2016;7:139–165. doi:10.1146/annurev-food-041715-033120.; Breckenridge W.C., Marai L., Kuksis A. Triglyceride structure of human milk fat. Can J Biochem. 1969;47(8):761–769. doi:10.1139/o69-118.; Mattson F.H., Volpenhein R.A. The specific distribution of fatty acids in the glycerides of vegetable fats. J Biol Chem. 1961;236(7):1891–1894. Available at: https://www.jbc.org/content/236/7/1891.full.pdf.; Iwasaki Y., Yamane T. Enzymatic synthesis of structured lipids. Adv Biochem Eng Biotechnol. 2004;90:151–171. doi:10.1007/b94196.; Yaron S., Shachar D., Abramas L., Riskin A., Bader D., Litmanovitz I. et al. Effect of high β-palmitate content in infant formula on the intestinal microbiota of term infants. J Pediatr Gastroenterol Nutr. 2013;56(4):376–381. doi:10.1097/MPG.0b013e31827e1ee2.; Smilowitz J.T., Lebrilla C.B., Mills D.A., German J.B., Freeman S.L. Breast milk oligosaccharides: structure-function relationships in the neonate. Annu Rev Nutr. 2014;34:143–169. doi:10.1146/annurevnutr-071813-105721.; Bode L., Jantscher-Krenn E. Structure-function relationships of human milk oligosaccharides. Adv Nutr. 2012;3(3):383–391. doi:10.3945/an.111.001404.; Thurl S., Munzert M., Boehm G., Matthews C., Stahl B. Systematic review of the concentrations of oligosaccharides in human milk. Nutr Rev. 2017;75(11):920–933. doi:10.1093/nutrit/nux044.; Newburg D.S., Ruiz-Palacios G.M., Morrow A.L. Human milk glycans protect infants against enteric pathogens. Annu Rev Nutr. 2005;25:37–58. doi:10.1146/annurev.nutr.25.050304.092553.; Abrahams S.W., Labbok M.H. Breastfeeding and otitis media: A review of recent evidence. Curr Allergy Asthma Rep. 2011;11:508–512. doi:10.1007/s11882-011-0218-3.; Downham M.A., Scott R., Sims D.G., Webb J.K., Gardner P.S. Breastfeeding protects against respiratory syncytial virus infections. Br Med J. 1976;2:274–276. doi:10.1136/bmj.2.6030.274.; Martin-Sosa S., Martin M.J., Hueso P. The sialylated fraction of milk oligosaccharides is partially responsible for binding to enterotoxigenic and uropathogenic Escherichia coli human strains. J Nutr. 2002;132(10):3067–3072. doi:10.1093/jn/131.10.3067.; Trompette A., Gollwitzer E. S., Yadava K., Sichelstiel A. K., Sprenger N., Ngom-Bru C. et al. Gut microbiota metabolism of dietary fiber influences allergic airway disease and hematopoiesis. Nat Med. 2014;20(2):159–166. doi:10.1038/nm.3444.; Donovan S.M., Comstock S.S. Human Milk Oligosaccharides Influence Neonatal Mucosal and Systemic Immunity. Ann Nutr Metab. ;69(Suppl. 2):42–51. doi:10.1159/000452818.; Xiao L., van’t Land B., van de Worp W.R.P.H., Stahl B., Folkerts G., Garssen J. Early-Life Nutritional Factors and Mucosal Immunity in the Development of Autoimmune Diabetes. Front Immunol. 2017;8:1219. doi:10.3389/fimmu.2017.01219.; Zuurveld M., van Witzenburg N.P., Garssen J., Folkerts G., Stahl B., van’t Land B., Willemsen L.E.M. Immunomodulation by Human Milk Oligosaccharides: The Potential Role in Prevention of Allergic Diseases. Frontiers in Immunology. 2020;11:801. doi:10.3389/fimmu.2020.00801.; Meyrand M., Dallas D.C., Caillat H., Bouvier F., Martin P., Barile D. Comparison of milk oligosaccharides between goats with and without the genetic ability to synthesize as1-casein. Small Rumin Res. 2013;113(2–3):411–420. doi:10.1016/j.smallrumres.2013.03.014.; Lara-Villoslada, F., Debras E., Nieto A., Concha A., Gálvez J., López-Huertas E. et al. Oligosaccharides isolated from goat milk reduce intestinal inflammation in a rat model of dextran sodium sulfate-induced colitis. Clin Nutr. 2006;25(3):477–488. doi:10.1016/j.clnu.2005.11.004.; Daddaoua A., Puerta V., Requena P., Martínez-Férez A., Guadix E., de Medina F.S. et al. Goat milk oligosaccharides are anti-inflammatory in rats with hapten-induced colitis. J Nutr. 2006;136(3):672–676. doi:10.1093/jn/136.3.672.; Hess J.R., Greenberg N.A. The Role of nucleotides in the immune and gastrointestinal systems potential clinical applications. Nutr Clin Pract. 2012;27(2):281–294. doi:10.1177/0884533611434933.; Buck R.H., Thomas D.L., Winship T.R., Cordle C.T., Kuchan M.J., Baggs G.E. et al. Effect of dietary ribonucleotides on infant immune status. Part 2: Immune cell development. Pediatr Res. 2004;56(6):891–900. doi:10.1203/01.PDR.0000145577.03287.FA.; Yau K.I., Huang C.-B., Chen W., Chen Sh.-J., Chou Y.-H., Huang F.-Y. et al. Effect of nucleotides on diarrhea and immune responses in healthy term infants in Taiwan. J Pediatr Gastroenterol Nutr. 2003;36(1):37–43. doi:10.1097/00005176-200301000-00009.; EFSA NDA Panel (EFSA Panel on Dietetic Products, Nutrition and Allergies), 2012b. Scientific Opinion on the suitability of goat milk protein as a source of protein in infant formulae and in follow‐on formulae. EFSA J. 2012;10(3):2603. doi:10.2903/j.efsa.2012.2603.; Jenness R. Composition and characteristics of goat milk. J Dairy Sci. 1980;63:1605–1630. doi:10.3168/jds.S0022-0302(80)83125-0.; Bevilacqua C., Martin P., Candalh C., Fauquant J., Piot M., Roucayrol A.M. et al. Goat’s milk of defective alpha (sl)-casein genotype decreases intestinal and systemic sensitization to beta-lactoglobulin in guinea pigs. J Dairy Res. 2001;68(2):217–227. doi:10.1017/s0022029901004861.; Haenlein G.F.W. Goat milk in human nutrition. Small Rumin Res. 2004;51(2):155–163. doi:10.1016/j.smallrumres.2003.08.010.; Xu M., Wei L., Dai Z., Zhang Y., Li Y., Wang J. Effects of goat milk-based formula on development in weaned rats. Food Nutr Res. 2015;59:28610. doi:10.3402/fnr.v59.28610.; Захарова И.Н., Сугян Н.Г., Бережная И.В. Функциональные гастроинтестинальные расстройства у детей раннего возраста: критерии диагностики и подходы к диетотерапии. Российский вестник перинатологии и педиатрии. 2018;63(1):113–121. doi:10.21508/1027-4065-2018-63-1-113-121.

  4. 4

    Contributors: I. N. Skidan A. E. Gulyaev S. V. Belmer et al.

    Source: Rossiyskiy Vestnik Perinatologii i Pediatrii (Russian Bulletin of Perinatology and Pediatrics); Том 64, № 3 (2019); 37-49 ; Российский вестник перинатологии и педиатрии; Том 64, № 3 (2019); 37-49 ; 2500-2228 ; 1027-4065 ; 10.21508/1027-4065-2019-64-3

    File Description: application/pdf

    Relation: https://www.ped-perinatology.ru/jour/article/view/891/783; Victora C.G., Bahl R., Barros A.J., França G.V., Horton S., Krasevec J. et al. Breastfeeding in the 21st century: Epidemiology, mechanisms, and lifelong effect. Lancet 2016; 387: 475–490. DOI:10.1016/S0140-6736(15)01024-7; Hauck F.R., Thompson J.M., Tanabe K.O., Moon R.Y., Vennemann M.M. Breastfeeding and reduced risk of sudden infant death syndrome: A meta-analysis. Pediatrics 2011; 128: 103–110. DOI:10.1542/peds.2010-3000; Quigley M.A., Hockley C., Carson C., Kelly Y., Renfrew M.J., Sacker A. Breastfeeding is associated with improved child cognitive development: A population-based cohort study. J Pediatr 2012; 160: 25–32. DOI:10.1016/j.jpeds.2011.06.035; Horta B., Victora C. Long-term effects of breastfeeding: a systematic review. Geneva: World Health Organization, 2013; 74.; Gluckman P.D., Hanson M.A., Buklijas T. A conceptual framework for the developmental origins of health and disease. J Dev Orig Health Dis 2010; 1(1): 6–18. DOI:10.1017/ S2040174409990171; Bianco-Miotto T., Craig JM., Gasser YP., van Dijk S.J., Ozanne S.E. Epigenetics and DOHaD: from basics to birth and beyond. J Dev Orig Health Dis 2017; 8(5): 513–519. DOI:10.1017/S2040174417000733; Woo Baidal J.A., Locks L.M., Cheng, E.R., Blake-Lamb T.L., Perkins M.E., Taveras E.M. Risk factors for childhood obesity in the first 1,000 days: a systematic review. Am J Prev Med 2016; 50(6): 761–779. DOI:10.1016/j.amepre.2015.11.012; Goldman A.S. Future research in the immune system of human milk. J Pediatr 2019; 206: 274–279. DOI:10.1016/j. jpeds.2018.11.024; Martin R., Nauta A.J., Ben Amor K., Knippels L.M., Knol J., Garssen J. Early life: gut microbiota and immune development in infancy. Benef Microbes 2010; 1(4): 367–382. DOI:10.3920/BM2010.0027; Collins S.M., Surette M., Bercik P. The interplay between the intestinal microbiota and the brain. Nat Rev Microbiol 2012; 10(11): 735–742. DOI:10.1038/nrmicro2876.; Bremel R.D. University of Wisconsin and from Handbook of Milk Composition. Academic Press, 1995; 344.; Park Y.W., Juarez M., Ramos M., Haenlein G.F.W. Physicochemical characteristics of goat and sheep milk. Small Ruminant Res 2007; 68: 88–113. DOI: org/10.1016/j.smallrumres.2006.09.013; Messer M., Mossop G.S. Milk carbohydrates of marsupiais. I. Partial separation and characterisation of neutral milk oligosaccharides of the Eastern grey kangaroo. Aust J Biol Sci 1977; 30: 379–388. DOI:10.1071/BI9770379; Urashima T., Arita M., Yoshida M., Nakamura S., Arai I., Saito T. et al. Chemical characterisation of the oligosaccharides in hooded seal (Cystophora cristata) and Australian fur seal (Arctocephalus pusillus doriferus) milk. Comp Biochem Physiol B Biochem Mol Biol 2001; 128(2): 307–323. DOI: org/10.1016/S1096-4959(00)00327-4; Vandenplas Y. Lactose intolerance. Asia Pac J Clin Nutr 2015; 24 (Suppl 1): 9–13. DOI:10.6133/apjcn.2015.24.s1.02; Venema K. Intestinal fermentation of lactose and prebiotic lactose derivatives, including human milk oligosaccharides. Int Dairy J 2012; 22(2): 123–140. DOI: org/10.1016/j.idairyj.2011.10.011; Ito M., Rimura M. Influence of lactose on faecal microflora in lactose maldigesters. Microb Ecol Health Dis 1993; 6: 73– 76. DOI: org/10.3109/08910609309141564; Gibson G.R., Hutkins R., Sanders M.E., Prescott S.L., Reimer R.A., Salminen S.J., et al. Expert consensus document: The International Scientific Association for Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of prebiotics. Nat Rev Gastroenterol Hepatol 2017; 14: 491–502. DOI:10.1038/nrgastro.2017.75; Макарова Е.Г., Нетребенко О.К., Украинцев С.Е. Олигосахариды грудного молока: история открытия, структура и защитные функции. Педиатрия. Журнал им. Г.Н. Сперанского 2018; 97(4): 152–160. [Makarova E.G., Netrebenko O.K., Ukrainzev S.E. Oligosaccharides of breast milk: history of opening, structure and protective functions. Pediatria 2018; 97(4): 152–160. (in Russ)]; Blank D., Dotz V., Geyer R., Kunz C. Human milk oligosaccharides and Lewis blood group: Individual high-throughput sample profiling to enhance conclusions from functional studies. Adv Nutr 2012; 3: 440–449. DOI:10.3945/an.111.001446; Prieto P. Profiles of human milk oligosaccharides and production of some human milk oligosaccharides in transgenic animals. Adv Nutr 2012; 3: 456–464. DOI:10.3945/ an.111.001529; Хавкин А.И. Влияние пребиотиков на иммунную систему. Эффективная фармакотерапия. 2014; 42: 34–39. [Khavkin A.I. Impact of prebiotics on immune system. Effektivnaya farmakoterapia 2014; 42: 34–39. (in Russ)]; McGuire M.K., Meehan C.L., McGuire M.A., Williams J.E., Foster J., Sellen D.W. et al. What’s normal? Oligosaccharide concentrations and profiles in milk produced by healthy women vary geographically. Am J Clin Nutr 2017; 105: 1086– 1100. DOI:10.3945/ajcn.116.139980; Oliveira D.L., Wilbey R.A., Grandison A.S., Roseiro L.B. Milk oligosaccharides: A review. Inter J Dairy Technol 2015; 68(3): 305–321. DOI:10.1111/1471-0307.12209; Meyrand M., Dallas D.C., Caillat H., Bouvier F., Martin P., Barile D. Comparison of milk oligosaccharides between goats with and without the genetic ability to synthesize αs1-casein. Small Rumin Res 2013; 113(2–3): 411–420.; Montreuil J. The saga of human milk gynolactose. In: B. Renner, G. Sawatzki (eds). New Perspectives in Infant Nutrition. Stuttgart, New York: Georg Thieme Verlag, 1992; 3–11.; Polonovski M., Lespagnol A. Sur deux nouveaux sucres du lait de femme, le gynolactose et 1’allolactose. Compte Rendu de l’Academie des Sciences 1931; 192: 1319–1320.; Polonowski M., Montreuil J. Etude chromatographique des polyosides du lait de Femme. C R Acad Sci Paris 1954; 238: 2263–2264.; Gyorgy P., Norris R.F., Rose C.S. Bifidus factor. I. A variant of Lactobacillus bifidus requiring a special growth factor. Arch Biochem Biophys 1954; 48(1): 193–201.; Goehring K.C., Kennedy A.D., Prieto P.A., Buck R.H. Direct evidence for the presence of human milk oligosaccharides in the circulation of breastfed infants. PLoS ONE 2014; 9: e101692. DOI:10.1371/journal.pone.0101692; Craft K.M., Thomas H.C., Townsend S.D. Interrogation of human milk oligosaccharide fucosylation patterns for antimicrobial and antibiofilm trends in group B streptococcus. ACS Infect Dis. 2018; DOI:10.1021/acsinfecdis.8b00234; Commission Implementing Regulation (EU) 2017/2470 of 20 December 2017 establishing the Union list of novel foods in accordance with Regulation (EU) 2015/2283 of the European Parliament and of the Council on novel foods. Off J Eur Union 2017; 351: 72–201.; Kajzer J., Oliver J., Marriage B. Gastrointestinal tolerance of formula supplemented with oligosaccharides. FASEB J 2016; 30: 671.; Marriage B.J., Buck R.H., Goehring K.C., Oliver J.S., Williams J.A. Infants fed a lower calorie formula with 2’FL show growth and 2’FL uptake like breast-fed infants. J Pediatr Gastroenterol Nutr 2015; 61: 649–658. DOI:10.1097/ MPG.0000000000000889; Morrow A.L., Ruiz-Palacios G.M., Altaye M., Guerrero M.L., Meinzen-Derr J.K., Farkas T. et al. Human milk oligosaccharides are associated with protection against diarrhea in breastfed infants. J Pediatr 2004; 145: 297–303. DOI:10.1016/j. jpeds.2004.04.054; Stepans M.B., Wilhelm S.L., Hertzog M., Rodehorst T.K., Blaney S., Clemens B., et al. Early consumption of human milk oligosaccharides is inversely related to subsequent risk of respiratory and enteric disease in infants. Breastfeed Med 2006; 1: 207–215. DOI:10.1089/bfm.2006.1.207; Guan N., Chen R. Recent Technology Development for the Biosynthesis of Human Milk Oligosaccharide. Recent Pat Biotechnol 2018; 12(2): 92–100. DOI:10.2174/1872208311 666170531110721; Thum C., Roy N.C., McNabb W.C., Otter D.E., Cookson A.L. In Vitro Fermentation of caprine milk oligosaccharides by bifidobacteria isolated from breast-fed infants. Gut Microbes 2015; 6(6): 352–363. DOI:10.1080/19490976.2015.1105425; Daddaoua A., Puerta V., Requena P., Martínez-Férez A., Guadix E., de Medina F.S. et al. Goat milk oligosaccharides are anti-inflammatory in rats with hapten-induced colitis. J Nutr 2006; 136(3): 672–676. DOI:10.1093/jn/136.3.672; Lara-Villoslada F., Debras E., Nieto A., Concha A., Gálvez J., López-Huertas E. et al. Oligosaccharides isolated from goat milk reduce intestinal inflammation in a rat model of dextran sodium sulfate-induced colitis. Clin Nutr 2006; 25(3): 477– 488. DOI:10.1016/j.clnu.2005.11.004; Kim H.-H., YunS-S., Oh C.-H., Yoon S.S. Galactooligosaccharide and sialyllactose content in commercial lactose powders from goat and cow milk. Korean J Food Sci Anim Resour 2015; 35(4): 572–576. DOI:10.5851/kosfa.2015.35.4.572; Скидан И.Н., Казначеев К.С., Кирилова А.В., Гуляев А.Е. Функциональные пищевые нутриенты в составе детских адаптированных смесей на основе цельного козьего молока. Вопросы практической педиатрии 2015; 4: 38–48. [Skidan I.N., Kaznacheev K.S., Kirillova A.V., Gulyaev A.E. The functional dietary components in infant formulas from goat milk. Voprosy Prakticheskoi Pediatrii 2015; 4: 38–48. (in Russ)]; Knol J., Scholtens P., Kafka C., Steenbakkers J., Gro S., Helm K. et al. Colon microflora in infants fed formula with galacto- and fructo-oligosaccharides: more like breast-fed infants. J Pediatr Gastroenterol Nutr 2005; 40(1): 36–42.; Технический Регламент Таможенного союза «О безопасности молока и молочной продукции» (ТР ТС 033/2013). http://24.rospotrebnadzor.ru/links/NormMetodObesp/TehRegTS/.; Azagra-Boronat I., Massot-Cladera M., Knipping K., van’t Land B., Stahl B.,Garssen J. et al. Supplementation with 2’- FL and scGOS/lcFOS ameliorates rotavirus-induced diarrhea in suckling rats. Front Cell Infect Microbiol 2018; 8: 372. DOI:10.3389/fcimb.2018.00372; Roberfroid M. Prebiotics: the concept revisited. J Nutr 2007; 137(3,2): 830–837. DOI:10.1093/jn/137.3.830S; Kelly G. Inulin-type prebiotics – a review: part 1. Altern Med Rev 2008; 13(4): 315–329.; Firmansyah A., Chongviriyaphan N., Dillon D.H., Khan N.C., Morita T., Tontisirin K. et al. Fructans in the first 1000 days of life and beyond, and for pregnancy. Asia Pac J Clin Nutr 2016; 25(4): 652–675. DOI:10.6133/apjcn.092016.02; Vos A., M’Rabet L., Stahl B., Boehm G., Garssen J. Immunemodulatory effects and potential working mechanisms of orally applied nondigestible carbohydrates. Crit Rev Immunol 2007; 27: 97–140.; Mensink M.A., Frijlink H.W., van der Voort Maarschalk K., Hinrichs W.L. Inulin, a flexible oligosaccharide I: Review of its physicochemical characteristics. Carbohydr Polym 2015; 130: 405–419. DOI:10.1016/j.carbpol.2015.05.026; Closa-Monasterolo R., Gispert-Llaurado M., Luque V., Ferre N., Rubio-Torrents C., Zaragoza-Jordana M. et al. Safety and efficacy of inulin and oligofructose supplementation in infant formula: results from a randomized clinical trial. Clin Nutr 2013; 32(6): 918–927. DOI:10.1016/j.clnu.2013.02.009; Rao S., Srinivasjois R., Patole S. Prebiotic supplementation in full-term neonates: a systematic review of randomized controlled trials. Arch Pediatr Adolesc Med 2009; 163(8): 755– 764. DOI:10.1001/archpediatrics.2009.94; Kim S. H., Lee D. H., Meyer D. Supplementation of baby formula with native inuline has a prebiotic effect in formula-fed babies. Asia Pac J Clin Nutr 2007; 16: 172–177.; Lomax A.R., Calder P.C. Prebiotics, immune function, infection and inflammation: a review of the evidence. Br J Nutr 2009; 101(5): 633–658. DOI:10.1017/S0007114508055608; Smith P.M., Howitt M.R., Panikov N., Michaud M., Gallini C.A., Bohlooly-Y. M. et al. The microbial metabolites, short-chain fatty acids, regulate colonic Treg cell homeostasis. Science 2013; 341: 569–573. DOI:10.1126/science.1241165; Vogt L., Ramasamy U., Meyer D., Pullens G., Venema K., Faas M.M. et al. Immune modulation by different types of β2→1-fructans is toll-like receptor dependent. PLoS One 2013; 8: e68367. DOI:10.1371/journal.pone.0068367; Казначеев К.С., Казначеева Л.Ф., Скидан И.Н., Чеганова Ю.В. Влияние молочной смеси с пребиотиками на основе новозеландского козьего молока на формирование здорового пищеварения у детей первого года жизни. Лечащий врач 2015; 9: 37–41. [Kaznacheev K.S., Kaznacheyeva L.F. Skidan I.N., Cheganova Y.V. Influence of milk mixture based on goat’s milk with prebiotics on forming healthy digestion in children in their first year. Lechashii Vrach 2015; 9: 37–41. (in Russ)].; Богданова С.В., Сенцова Т.Б., Денисова С.Н., Ильенко Л.И., Ревякина В. А., Тарасова О.В., Черняки О.О. Метаболическая активность кишечной микрофлоры и характер сенсибилизации при различных видах вскармливания у здоровых детей. Рос вестн перинатол и педиатр 2015; 5: 135–142. [Bogdanova S.V., Sentsova T.B., Denisova S.N., Il’enko L.I., Revyakina V. А., Tarasova O.V., Chernyaki O.O. The metabolic activity of the enteric microflora and the pattern of sensitization in different types of feeding in healthy infants. Rossiyskiy Vestnik Perinatologii i Pediatrii (Russian Bulletin of Perinatology and Pediatrics) 2015; 60(5): 135– 142. (in Russ)].; Белоусова О.Ю., Ганзий Е.Б. Опыт применения смеси «НЭННИ 1 с пребиотиками» у детей первого полугодия жизни с функциональными запорами. Здоровье ребенка 2018; 13(2.1): 7–15. [Belousova O.Yu., Ganziy E.B. Experience in the use of a mixture of «NANNI 1 with prebiotics in children of the first half of the year of life with functional constipation. Zdorov’e rebenka 2018; 13(2.1): 7–15. (in Russ)].; Feruś K., Drabińska N., Krupa-Kozak U., Jarocka-Cyrta E. Randomized, Placebo-Controlled, Pilot Clinical Trial to Evaluate the Effect of Supplementation with Prebiotic Synergy 1 on Iron Homeostasis in Children and Adolescents with Celiac Disease Treated with a Gluten-Free Diet. Nutrients 2018; 10(11): E1818. DOI:10.3390/nu10111818; Drabińska N., Jarocka-Cyrta E., Markiewicz L.H., Krupa-Kozak U. The Effect of Oligofructose-Enriched Inulin on Faecal Bacterial Counts and Microbiota-Associated Characteristics in Celiac Disease Children Following a Gluten-Free Diet: Results of a Randomized, Placebo-Controlled Trial. Nutrients 2018; 10(2): E201. DOI:10.3390/nu10020201; Drabińska N., Krupa-Kozak U., Ciska E., Jarocka-Cyrta E. Plasma profile and urine excretion of amino acids in children with celiac disease on gluten-free diet after oligofructose-enriched inulin intervention: results of a randomised placebocontrolled pilot study. Amino Acids 2018; 50(10): 1451–1460. DOI:10.1007/s00726-018-2622-7; Drabińska N., Krupa-Kozak U., Abramowicz P., Jarocka-Cyrta E. Effect of oligofructose-enriched inulin on vitamin D and E Status in children with celiac disease on a long-term gluten-free diet: A preliminary randomized, placebo-controlled nutritional intervention study. Nutrients 2018; 10(11): E1768. DOI:10.3390/nu10111768; Ho J., Reimer R.A., Doulla M., Huang C. Effect of prebiotic intake on gut microbiota, intestinal permeability and glycemic control in children with type 1 diabetes: study protocol for a randomized controlled trial. Trials 2016; 17(1): 347. DOI:10.1186/s13063-016-1486-y; Aliasgharzadeh A., Khalili M., Mirtaheri E., Pourghassem Gargari B., Tavakoli F., Abbasalizad Farhangi M. et al. Combination of prebiotic inulin and oligofructose improve some of cardiovascular disease risk factors in women with type 2 diabetes: a randomized controlled clinical trial. Adv Pharm Bull 2015; 5(4): 507–514. DOI:10.15171/apb.2015.069; Dehghan P., Pourghassem Gargari B., Asghari Jafar-abadi M. Oligofructose-enriched inulin improves some inflammatory markers and metabolic endotoxemia in women with type 2 diabetes mellitus: a randomized controlled clinical trial. Nutrition 2014; 30(4): 418–423. DOI:10.1016/j.nut.2013.09.005; Nicolucci A.C., Hume M.P., Martínez I., Mayengbam S., Walter J., Reimer R.A. Prebiotics reduce body fat and alter intestinal microbiota in children who are overweight or with obesity. Gastroenterol 2017; 153(3): 711–722. DOI:10.1053/j. gastro.2017.05.055; Hume M.P., Nicolucci A.C., Reimer R.A. Prebiotic supplementation improves appetite control in children with overweight and obesity: a randomized controlled trial. Am J Clin Nutr 2017; 105(4): 790–799. DOI:10.3945/ajcn.116.140947; Valcheva R., Koleva P., Martínez I., Walter J., Gänzle M.G., Dieleman L.A. Inulin-type fructans improve active ulcerative colitis associated with microbiota changes and increased short-chain fatty acids levels. Gut Microbes 2018; 5: 1–24. DOI:10.1080/19490976.2018.1526583; Holloway L., Moynihan S., Abrams S.A., Kent K., Hsu A.R., Friedlander A.L. Effects of oligofructose-enriched inulin on intestinal absorption of calcium and magnesium and bone turnover markers in postmenopausal women. Br J Nutr 2007; 97: 365–372. DOI:10.1017/S000711450733674X; Smith A.P., Sutherland D., Hewlett P. An investigation of the acute effects of oligofructose-enriched inulin on subjective wellbeing, mood and cognitive performance. Nutrients 2015; 7(11): 8887–8896. DOI:10.3390/nu7115441

  5. 5
  6. 6
  7. 7
  8. 8