Suchergebnisse - "наследственные заболевания"
-
1
-
2
-
3
Autoren: et al.
Quelle: Мать и дитя в Кузбассе, Vol 26, Iss 2, Pp 114-120 (2025)
Schlagwörter: болезнь реклингхаузена, нейрофиброматоз, беременность, наследственные заболевания, клинический случай, Pediatrics, RJ1-570, Gynecology and obstetrics, RG1-991
Dateibeschreibung: electronic resource
-
4
Quelle: Клиническая онкогематология, Vol 17, Iss 3 (2024)
-
5
Quelle: Мать и дитя в Кузбассе, Vol 26, Iss 2, Pp 114-120 (2025)
-
6
Autoren: Ходжаназарович, Махмудов Нарзикул
Quelle: World of Medicine : Journal of Biomedical Sciences; Vol. 2 No. 7 (2025): World of Medicine : Journal of Biomedical Sciences; 63-68 ; 2960-9356
Schlagwörter: Наследственные заболевания сетчатки, генотерапия, CRISPR/Cas9
Dateibeschreibung: application/pdf
-
7
Autoren: et al.
Weitere Verfasser: et al.
Quelle: Pediatric pharmacology; Том 22, № 4 (2025); 395-405 ; Педиатрическая фармакология; Том 22, № 4 (2025); 395-405 ; 2500-3089 ; 1727-5776
Schlagwörter: общественное здравоохранение, hereditary diseases, enhanced neonatal screening, diagnosis, public healthcare, наследственные заболевания, расширенный неонатальный скрининг, диагностика
Dateibeschreibung: application/pdf
Relation: https://www.pedpharma.ru/jour/article/view/2673/1731; Донников М.Ю. Эффективность ранней диагностики муковисцидоза у детей на региональном уровне (на примере ХМАО — Югры): автореф. дис. . канд. мед. наук. — Пермь; 2020. — 22 с.; Малиевский О.А., Мурзабаева С.Ш., Климентьева М.М. Экономические аспекты неонатального скрининга на гипотиреоз // Проблемы эндокринологии. — 2006. — Т. 52. — № 5. — С. 1–5. — doi: https://doi.org/10.14341/probl20065251-5; Матулевич С.А. Массовый скрининг новорожденных на наследственные болезни обмена как часть системы медикогенетической помощи населению: дис. . докт. мед. наук. — М.; 2009. — 211 с.; Печатникова Н.Л. Захарова Е.Ю., Ижевская В.Л. Оценка клинико-экономической эффективности программ неонатального скрининга на наследственные болезни обмена веществ // Медицинская генетика. — 2020. — Т. 19. — № 10. — С. 4–9. — doi: https://doi.org/10.25557/2073-7998.2020.10.4-9; Александр Беглов: В Петербурге впервые в России запустят неонатальный скрининг новорожденных по редкой наследственной болезни обмена веществ // Администрация СанктПетербурга: официальный сайт. Доступно по: https://www.gov.spb.ru/press/governor/297739. Ссылка активна на 25 мая 2025.; Free newborn screening program. In: The State Support Programs Information Platform: Official website (In Arm). Available online: https://irazekum.am/event/view/213. Accessed on May 3, 2025.; Красовский И. Маленькие радости: в Минске запустили новый скрининг новорожденных // Точка: вебсайт. Доступно по: https://tochka.by/articles/life/malenkie_radosti_v_minske_zapustili_novyy_skrining_novorozhdennykh. Ссылка активна на 3 мая 2025.; О важности неонатального скрининга // 1-я городская клиническая больница: официальный сайт. [Доступно по: https://1gkb.by/home/information/vrachi-informiruyut/informiruet-vrach-ginekolog/o-vazhnostineonatalnogo-skrininga. Ссылка активна на 3 мая 2025.; Неонатальный скрининг: зачем он нужен и как проводится, рассказали в Алматы // Управление общественного здравоохранения города Алматы: официальный сайт. Доступно по: https://www.gov.kz/memleket/entities/almaty-densaulyk/press/news/details/951304. Ссылка активна на 3 мая 2025.; В Кыргызстане начали массовый скрининг детей на наследственные заболевания // SPUTNIK Кыргызстан: вебсайт. Доступно по: https://ru.sputnik.kg/20231027/kyrgyzstan-deti-zabolevaniyaskrining-1079933975.html. Ссылка активна на 3 мая 2025.; Newborn screening. In: Medical University of Vienna: Official website. Available online: https://kinder-jugendheilkunde.meduniwien.ac.at/en/about-us/newborn-screening. Accessed on May 25, 2025.; Österreichisches Neugeborenen-Screening. In: Medical University of Vienna: Official website. Available online: https://kinder-jugendheilkunde.meduniwien.ac.at/fileadmin/content/OE/Kinder_und_Jugendheilkunde/neugeborenenscreening/NGS_Folder_2022-v17.pdf. Accessed on May 25, 2025.; What is screened in the program. In: Australian Government Department of Health and Aged Care: Official website. Available online: https://www.health.gov.au/our-work/newborn-bloodspotscreening/what-is-screened. Accessed on May 25, 2025.; Newborn screening. In: NHS: Official website. Available online: https://www.nhs.uk/baby/newborn-screening. Accessed on May 25, 2025.; Neugeborenen-Screening auf angeborene Stoffwechselstörungen. In: AWMF: Official website. Available online: https://register.awmf.org/assets/guidelines/024-012l_S2k_Neugeborenenscreening_2022-02-abgelaufen.pdf. Accessed on May 25, 2025.; Neugeborenen-Screening zur Erkennung von Stoffwechselerkrankungen. In: Deutscher Bundestag: Official website. Available online: https://www.bundestag.de/resource/blob/1031516/52fe55e8a6663c9a3a628faa96080661/WD-8-075-24-pdf. Accessed on May 25, 2025.; ADA-SCID: in Abruzzo quasi 5.000 neonati già sottoposti a screening. In: Osservatorio Screening: Official website. Available online: https://www.osservatorioscreening.it/ada-scid-deficit-diaadc-e-sindrome-adrenogenitale-in-abruzzo-quasi-5-000-neonatigia-sottoposti-a-screening. Accessed on May 25, 2025.; Screening neonatale malattie metaboliche lisosomiali. In: Osservatorio Screening: Official website. Available online: https://www.osservatorioscreening.it/screening-neonatale-malattielisosomiali. Accessed on May 25, 2025.; Verso l’introduzione dello screening neonatale. In: Osservatorio Screening: Official website. Available online: https://www.osservatorioscreening.it/verso-lintroduzione-dello-screeningneonatale-per-la-leucodistrofia-metacromatica-in-emilia-romagna. Accessed on May 25, 2025.; Pannello patologie screening metabolico allargato. In: Osservatorio Screening: Official website. Available online: https://www.osservatorioscreening.it/pannello-malattie. Accessed on May 25, 2025.; Screening neonatale SMA. In: Osservatorio Screening: Official website. Available online: https://www.osservatorioscreening.it/screening-neonatale-sma-gia-attivo-in-sette-regioni-italianee-in-via-di-introduzione-in-altre-quattro. Accessed on May 25, 2025.; Newborn blood spot screening in the Netherlands. Monitor 2023. In: RIVM: Official website. Available online: https://www.pns.nl/sites/default/files/2025-02/HielprikMon2023-EN.pdf. Accessed on May 25, 2025.; Clinical picture %7C Pre- and neonatal screenings. In: RIVM: Official website. Available online: https://www.pns.nl/en/heel-prick/clinical-picture. Accessed on May 25, 2025.; Expansion of the heel prick. In: RIVM: Official website. Available online: https://www.pns.nl/hielprik/professionals/uitbreiding. Accessed on May 25, 2025.; Toward a Future Pan-Canadian Coordinated Approach for Newborn Screening. In: Canadian Medical Association: Official website. Available online: https://www.cda-amc.ca/sites/default/files/DRD/HC0079-NBS_Recommendations_Report.pdf. Accessed on May 25, 2025.; Newborn screening for spinal muscular atrophy. In: Haute Autorité de Santé: Official website. Available online: https://www.has-sante.fr/jcms/p_3451353/en/newbornscreening-for-spinal-muscular-atrophy-advance-assessmentof-extension-of-screening-to-the-general-population-in-france. Accessed on May 25, 2025.; Health Technology Assessment of the addition of SCID screening. In: Haute Autorité de Santé: Official website. Available online: https://www.hassante.fr/upload/docs/application/pdf/2022-04/summary_preliminary_assessment_of_universal_newborn_screening_for_severe_combined_immunodeficiency_by_trecs_quantification_i.pdf. Accessed on February 3, 2025.; Diseases and defects detected in screening tests. In: Polish Institute of Mother and Child: Official website. Available online: https://przesiew.imid.med.pl/choroby.html. Accessed on May 25, 2025.; Recommended Uniform Screening Panel. In: HRSA: Official website. Available online: https://newbornscreening.hrsa.gov/about-newborn-screening/recommended-uniform-screening-panel. Accessed on May 25, 2025.; Newborn Screening and Its Target Diseases. In: Japanese Society for Neonatal Screening: Official website. Available online: https://www.jsms.gr.jp/contents04-02.html. Accessed on May 25, 2025.; Explanation of Newborn Screening. In: Ministry of Health, Labour and Welfare (Japan): Official website. Available online: https://www.mhlw.go.jp/seisakunitsuite/bunya/kenkou_iryou/iryou/kokusai/setsumeisiryo/dl/en49.pdf. Accessed on May 25, 2025.; Status of Expanded Screening by Prefecture. In: Japanese Society for Neonatal Screening: Official website. Available online: https://www.jsms.gr.jp/download/3.Exp_Screening_list_241003(revised250226).pdf. Accessed on May 25, 2025.; https://www.pedpharma.ru/jour/article/view/2673
-
8
Autoren: et al.
Quelle: Mother and Baby in Kuzbass; № 2 (2025): март; 114-120 ; Мать и Дитя в Кузбассе; № 2 (2025): март; 114-120 ; 2542-0968 ; 1991-010X
Schlagwörter: Recklinghausen's disease, neurofibromatosis, pregnancy, hereditary diseases, clinical case, болезнь Реклингхаузена, нейрофиброматоз, беременность, наследственные заболевания, клинический случай
Dateibeschreibung: application/pdf; text/html
Relation: http://mednauki.ru/index.php/MD/article/view/1244/2132; http://mednauki.ru/index.php/MD/article/view/1244/2168; http://mednauki.ru/index.php/MD/article/downloadSuppFile/1244/1999; http://mednauki.ru/index.php/MD/article/downloadSuppFile/1244/2000; http://mednauki.ru/index.php/MD/article/downloadSuppFile/1244/2001; http://mednauki.ru/index.php/MD/article/downloadSuppFile/1244/2002; http://mednauki.ru/index.php/MD/article/downloadSuppFile/1244/2003; http://mednauki.ru/index.php/MD/article/view/1244
Verfügbarkeit: http://mednauki.ru/index.php/MD/article/view/1244
-
9
Autoren:
Quelle: Байкальский медицинский журнал, Vol 3, Iss 1, Pp 78-95 (2024)
Schlagwörter: наследственные заболевания печени, синдромы поражения печени, орфанные болезни, наследственные гепатопатии, Medicine (General), R5-920
Dateibeschreibung: electronic resource
-
10
Weitere Verfasser: Филинкова, Т. Н.
Schlagwörter: ШКОЛЬНЫЙ КУРС БИОЛОГИИ, ГЕННЫЕ МУТАЦИИ, НАСЛЕДСТВЕННЫЕ ЗАБОЛЕВАНИЯ, СТАРШИЕ ШКОЛЬНИКИ
Zugangs-URL: https://elar.uspu.ru/handle/ru-uspu/64009
-
11
Autoren: et al.
Weitere Verfasser: et al.
Quelle: Rossiyskiy Vestnik Perinatologii i Pediatrii (Russian Bulletin of Perinatology and Pediatrics); Том 69, № 4 (2024); 116-121 ; Российский вестник перинатологии и педиатрии; Том 69, № 4 (2024); 116-121 ; 2500-2228 ; 1027-4065
Schlagwörter: дистанционное обучение, rare diseases, hereditary diseases, virtual diagnosis, case based learning, e-learning, редкие болезни, наследственные заболевания, виртуальная диагностика, кейс-метод
Dateibeschreibung: application/pdf
Relation: https://www.ped-perinatology.ru/jour/article/view/2038/1522; Crowe S., Cresswell K., Robertson A., Huby G., Avery A., Sheikh A. The case study approach. BMC Med Res Methodol 2011; 11: 100. DOI:10.1186/1471–2288–11–100; Международный медицинский портал Univadis. Онлайн обучение [Электронный ресурс]. http://www.univadis.ru/e-learning#?f1=-1 / Ссылка активна на 15. 02. 2024; Interactive cases. University of Minnesota Medical School [Электронный ресурс]. https://med.umn.edu/dom/education/global-medicine/courses-certificates/online/interactive-cases / Ссылка активна на 15. 02. 2024.; Interactive Medical Case: The New England Journal of Medicine [Электронный ресурс]. http://www.nejm.org/multimedia/interactive-medical-case / Ссылка активна на 15. 02. 2024.; Путинцев А.Н., Воинова В.Ю., Горчханова З.К., Никольский Д.А., Гусев К.Я. Виртуальная диагностика в педиатрии: интерактивный клинический случай сочетания двух наследственных заболеваний. Российский вестник перинатологии и педиатрии 2022; 67(5): 103–108. DOI:10.21508/1027–4065–2022–67–5–103–108; Петеркова В.А., Безлепкина О.Б., Ширяева Т.Ю. и др. Клинические рекомендации «Врожденный гипотиреоз». Проблемы эндокринологии 2022; 68(2): 90–103. DOI:10.14341/probl12880; Интерактивный клинический случай. [Электронный ресурс]. http://edu.pedklin.ru/free_case/c010 / Ссылка активна на 20. 06. 2024.
-
12
Autoren: et al.
Weitere Verfasser: et al.
Quelle: Pediatric pharmacology; Том 21, № 1 (2024); 6-14 ; Педиатрическая фармакология; Том 21, № 1 (2024); 6-14 ; 2500-3089 ; 1727-5776
Schlagwörter: наследственные заболевания, children, pediatrics, aggregation, aggregometry, hemorrhage, hereditary diseases, дети, педиатрия, агрегация, агрегатометрия, кровотечения
Dateibeschreibung: application/pdf
Relation: https://www.pedpharma.ru/jour/article/view/2411/1563; Тавпуева Е.В., Ярковская А.П., Алексеенко А.В. и др. Уровень провоспалительных маркеров у больных инфарктом миокарда при разных видах двойной антитромбоцитарной терапии // Комплексные проблемы сердечно-сосудистых заболеваний. — 2017. — Т. 6. — № 4. — С. 27–35. — https://doi.org/10.17802/2306-1278-2017-6-4-27-3S; Aliotta A, Bertaggia Calderara D, Zermatten MG, et al. Thrombocytopathies: Not Just Aggregation Defects — The Clinical Relevance of Procoagulant Platelets. J Clin Med. 2021;10(5):894. https://doi.org/10.3390/jcm10050894; Кумскова М.А., Яструбинецкая О.И., Лихачева Е.А. и др. Особенности диагностики Бернара-Сулье // Гематология и трансфузиология. — 2016. — Т. 61. — № 4. — С. 217–221. — doi: https://doi.org/10.18821/0234-5730/2016-61-4217-221; Фёдорова Д.В., Жарков П.А., Плясунова С.А. и др. Диагностика врожденных нарушений функций тромбоцитов: современное состояние вопроса // Вопросы гематологии/ онкологии и иммунопатологии в педиатрии. — 2017. — Т. 16. — № 1. — С. 83–95. — doi: https://doi.org/10.24287/1726-17082017-16-1-83-95; Исаева Б.Э., Макимбетов Э.К. Тромбоцитопатии у детейс нарушением адгезии и агрегации тромбоцитов // Научное образование. Медицинские науки. — 2020. — № 2.—С. 26–29. — doi:https://doi.org/10.17513/srms.1100; Ярец Ю.И., Ромашевская И.П.,ХодулеваС.А.идр.Агрегатометриявдиагностикетромбоцитопатий у детей // Гематология. Трансфузиология. Восточная Европа. — 2021. — Т. 7. — № 4. — С. 507–511. — doi: https://doi.org/10.34883/PI.2021.7.4.013; Soliman M, Hartmann M. Multiplate Platelet Aggregation Findings Are Dependent on Platelet Count but Can Be Corrected by Use of a Ratio. Appl Sci. 2020;10(22):7971. https://doi.org/10.3390/app10227971; Baglin T, Gray E, Greaves M, et al. Clinical guidelines for testing for heritable thrombophilia. Br J Haematol. 2010;149(2):209–220. https://doi.org/10.1111/j.1365-2141.2009.08022.x; Baglin T, Gray E, Greaves M, et al. Clinical guidelines for testing for heritable thrombophilia. Thrombophilia, clinical factors, and recurrent venous thrombotic events. JAMA. 2005;293(19):2352– 2361. https://doi.org/10.1001/jama.293.19.2352; Гордеева О.Б., Карасева М.С., Бабайкина М.А.и др. Исследование агрегационной функции тромбоцитов у детей для определения нормативных значений в различных возрастных группах // Лечащий Врач. — 2022. — Т. 25. — № 4. — С. 27–32. — https://doi.org/10.51793/OS.2022.25.4.005; https://www.pedpharma.ru/jour/article/view/2411
-
13
Autoren: et al.
Quelle: Obstetrics, Gynecology and Reproduction; Vol 17, No 6 (2023); 707-717 ; Акушерство, Гинекология и Репродукция; Vol 17, No 6 (2023); 707-717 ; 2500-3194 ; 2313-7347
Schlagwörter: наследственные заболевания, ART, spinal muscular atrophy, SMA, in vitro fertilization, IVF, SMN1 gene, SMN2 gene, preconception preparation, neonatal screening, hereditary diseases, ВРТ, спинальная мышечная атрофия, СМА, экстракорпоральное оплодотворение, ЭКО, ген SMN1, ген SMN2, преконцепционная подготовка, неонатальный скрининг
Dateibeschreibung: application/pdf
Relation: https://www.gynecology.su/jour/article/view/1869/1164; Inhorn M.C., Patrizio P. Infertility around the globe: new thinking on gender, reproductive technologies and global movements in the 21st century. Hum Reprod Update. 2015;21(4):411–26. https://doi.org/10.1093/humupd/dmv016.; Клинические рекомендации – Женское бесплодие – 2021-2022-2023 (24.06.2021). М.: Министерство здравоохранения Российской Федерации, 2021. 50 с. Режим доступа: https://moniiag.ru/wp-content/uploads/2019/07/Klinicheskie-rekomendatsii.-ZHenskoe-besplodie.pdf. [Дата обращения: 11.06.2023].; Регистр ВРТ. Отчет за 2020 год. Российская ассоциация репродукции человека, 2020. 56 c. Режим доступа: https://rahr.ru/d_registr_otchet/RegistrVRT_2020.pdf. [Дата обращения: 11.06.2023].; Забненкова В.В., Дадали Е.Л., Поляков А.В. Проксимальная спинальная мышечная атрофия типов I–IV: особенности молекулярно генетической диагностики. Нервно-мышечные болезни. 2013;(3):27–31. https://doi.org/10.17650/2222-8721-2013-0-3-27-31.; Lunn M.R., Wang C.H. Spinal muscular atrophy. Lancet. 2008;371(9630):2120–33. https://doi.org/10.1016/S01406736(08)60921-6.; Prior T.W., Leach M.E., Finanger E. Spinal muscular atrophy. GeneReviews®. National Library of Medicine, 2020. Режим доступа: http://www.ncbi.nlm.nih.gov/books/NBK1352/. [Дата обращения: 11.06.2023].; Маретина М.А., Киселев А.В., Ильина А.В. и др. Современные тенденции в диагностике, скрининге и лечении спинальной мышечной атрофии. Вестник Российской академии медицинских наук. 2022;77(2):87–96. https://doi.org/10.15690/vramn1768.; Scriven P.N. Combining PGT-A with PGT-M risks trying to do too much. J Assist Reprod Genet. 2022;39(9):2015–8. https://doi.org/10.1007/s10815-022-02519-8.; Vill K., Blaschek A., Schara U. et al. Spinal muscular atrophy: Time for newborn screening? Nervenarzt. 2017;88(120:1358–66. (In German). https://doi.org/10.1007/s00115-017-0447-3.; Гузева В.И., Иванов Д.О., Петренко Ю.В. и др. Проксимальная спинальная мышечная атрофия 5q. Методическое пособие для врачей. СПб.: СПбГПМУ, 2021. 20 с.; Zabnenkova V.V., Dadali E.L., Spiridonova M.G. et al. Spinal muscular atrophy carrier frequency in Russian Federation. In: Proceedings of American Society of Human Genetics (ASHG). Annual Meeting, 2016. 2476W. https://doi.org/10.13140/RG.2.2.16245.60642.; Sugarman E.A., Nagan N., Zhu H. et al. Pan-ethnic carrier screening and prenatal diagnosis for spinal muscular atrophy: clinical laboratory analysis of >72,400 specimens. Eur J Hum Genet. 2012;20(1):27–32. https://doi.org/10.1038/ejhg.2011.134.; Ceylan A.C., Erdem H.B., Şahin İ., Agarwal M. SMN1 gene copy number analysis for spinal muscular atrophy (SMA) in a Turkish cohort by CODESEQ technology, an integrated solution for detection of SMN1 and SMN2 copy numbers and the “2+0” genotype. Neurol Sci. 2020;41:2575–84. https://doi.org/10.1007/s10072-020-04365-x.; Carré A., Empey C. Review of spinal muscular atrophy (SMA) for prenatal and pediatric genetic counselors. J Genet Couns. 2016;25(1):32–43. https://doi.org/10.1007/s10897-015-9859-z.; Плаксина А.Н., Ковтун О.П., Николаева Е.Б. Вспомогательные репродуктивные технологии: анализ достигнутых результатов и поиск новых решений (обзор литературы). Уральский медицинский журнал. 2017;(5):20–6.; Gates A., Terry S.F., Bonhomme N. Expanded carrier screening and its implications on genetic testing protocols. Genet Test Mol Biomarkers. 2016;20(11):643–4. https://doi.org/10.1089/gtmb.2016.29023.sjt.; Committee Opinion No. 690: Carrier Screening in the Age of Genomic Medicine. Obstet Gynecol. 2017;129(3):e35–40. https://doi.org/10.1097/AOG.0000000000001951.; Волобуев А.Н., Давыдкин И.Л., Колсанов А.В., Кудлай Д.А. Математические аспекты генетики. M.: ГЭОТАР-Медиа, 2020. 176 c. https://doi.org/10.33029/9704-5890-7-MAG-2020-1-176.; Hendrickson B.C., Donohoe C., Akmaev V.R. et al. Differences in SMN1 allele frequencies among ethnic groups within North America. J Med Genet. 2009;46(9):641–4. https://doi.org/10.1136/jmg.2009.066969.; Gillingwater T.H. Counting the cost of spinal muscular atrophy. J Med Econ. 2016;19(8):827–8. https://doi.org/10.1080/13696998.2016.1202833.; Невмержицкая К.С., Сапего Е.Ю., Морозова Д.А. Краткосрочная безопасность и эффективность онасемноген абепарвовека у 10 пациентов со спинальной мышечной атрофией: когортное исследование. Вопросы современной педиатрии. 2021;20(6s):589–94. https://doi.org/10.15690/vsp.v20i6S.2367.; Droege M., Sproule D., Arjunji R. et al. Economic burden of spinal muscular atrophy in the United States: a contemporary assessment. J Med Econ. 2020;23(1):70–9. https://doi.org/10.1080/13696998.2019.1646263.; Armstrong E.P., Malone D.C., Yeh W.-S. et al. The economic burden of spinal muscular atrophy. J Med Econ. 2016;19(8):822–6. https://doi.org/10.1080/13696998.2016.1198355.; Колбин А.С., Влодавец Д.В., Курылев А.А. и др. Анализ социально-экономического бремени спинальной мышечной атрофии в Российской Федерации. ФАРМАКОЭКОНОМИКА. Современная фармакоэкономика и фармакоэпидемиология. 2020;13(4):337–54. https://doi.org/10.17749/2070-4909/farmakoekonomika.2020.068.; Национальный проект «Демография». Режим доступа: https://mintrud.gov.ru/ministry/programms/demography. [Дата обращения: 11.06.2023].; Butchbach M.E.R. Genomic variability in the survival motor neuron genes (SMN1 and SMN2): Implications for spinal muscular atrophy phenotype and therapeutics development. Int J Mol Sci. 2021;22(15):7896. https://doi.org/10.3390/ijms22157896.; Клинические рекомендации. Проксимальная спинальная мышечная атрофия 5q. М.: Министерство здравоохранения Российской Федерации, 2023. 117 c. Режим доступа: https://amg-genetics.ru/pdf/2023/kr_sma_2023.pdf. [Дата обращения: 11.06.2023].; Rouzier C., Chaussenot A., Paquis-Flucklinger V. Molecular diagnosis and genetic counseling for spinal muscular atrophy (SMA). Arch Pediatr. 2020;27(7S):9–14. https://doi.org/10.1016/S0929-693X(20)30270-0.; Blauw H.M., Barnes C.P., van Vught P.W.J. et al. SMN1 gene duplications are associated with sporadic ALS. Neurology. 2012;78(11):776–80. https://doi.org/10.1212/WNL.0b013e318249f697.; Kuźma-Kozakiewicz M., Jędrzejowska M., Kaźmierczak B. SMN1 gene duplications are more frequent in patients with progressive muscular atrophy. Amyotroph Lateral Scler Frontotemporal Degener. 2013;14(5–6):457–62. https://doi.org/10.3109/21678421.2013.771367.; Wang X.-.B, Cui N.-H., Gao J.-J. et al. SMN1 duplications contribute to sporadic amyotrophic lateral sclerosis susceptibility: evidence from a meta-analysis. J Neurol Sci. 2014;340(1–2):63–8. https://doi.org/10.1016/j.jns.2014.02.026.; Рыжкова О.П., Кардымон О.Л., Прохорчук Е.Б. и др. Руководство по интерпретации данных последовательности ДНК человека, полученных методами массового параллельного секвенирования (MPS) (редакция 2018, версия 2). Медицинская генетика. 2019;18(2):3–23. https://doi.org/10.25557/2073-7998.2019.02.3-23.; Ar Rochmah M., Awano H., Awaya T. et al. Spinal muscular atrophy carriers with two SMN1 copies. Brain Dev. 2017;39(10):851–60. https://doi.org/10.1016/j.braindev.2017.06.002.; Забненкова В.В., Дадали Е.Л., Артемьева С.Б. и др. Точковые мутации в гене SMN1 у больных проксимальной спинальной мышечной атрофией I–IV типа, имеющих одну копию гена SMN1. Генетика. 2015;51(9):1075–82. https://doi.org/10.7868/S0016675815080123.; Theodorou L., Nicolaou P., Koutsou P. et al. Genetic findings of Cypriot spinal muscular atrophy patients. Neurol Sci. 2015;36(10):1829–34. https://doi.org/10.1007/s10072-015-2263-5.; Souček .P, Réblová K., Kramárek M. et al. High-throughput analysis revealed mutations’ diverging effects on SMN1 exon 7 splicing. RNA Biol. 2019;16(10):1364–76. https://doi.org/10.1080/15476286.2019.1630796.; Sneha P., Zenith T.U., Abu Habib U.S. et al. Impact of missense mutations in survival motor neuron protein (SMN1) leading to Spinal Muscular Atrophy (SMA): A computational approach. Metab Brain Dis. 2018;33(6):1823–34. https://doi.org/10.1007/s11011-018-0285-4.; Ganji H., Nouri N., Salehi M. et al. Detection of intragenic SMN1 mutations in spinal muscular atrophy patients with a single copy of SMN1. J Child Neurol. 2015;30(5):558–62. https://doi.org/10.1177/0883073814521297.; Zhao X., Wang Y., Mei S. et al. Identification of two novel SMN1 point mutations associated with a very severe SMA-I phenotype. Eur J Med Genet. 2020;63(9):104006. https://doi.org/10.1016/j.ejmg.2020.104006.; Wijaya Y.O.S., Ar Rohmah M., Niba E.T.E. et al. Phenotypes of SMA patients retaining SMN1 with intragenic mutation. Brain Dev. 2021;43(7):745–58. https://doi.org/10.1016/j.braindev.2021.03.006.; Кудрявцева Е.В. Философские, медицинские и юридические аспекты репродуктивной генетики. Уральский медицинский журнал. 2018;(13):54–7. https://doi.org/10.25694/URMJ.2018.13.46.; Ижевская В.Л., Баранова Е.Е. Информированное согласие при генетическом тестировании и скрининге. Медицинская генетика. 2022;21(4):16–24. https://doi.org/10.25557/2073-7998.2022.04.16-24.; Михальчук К.А., Забненкова В.В., Щагина О.А., Поляков А.В. Спектр минорных вариантов локуса SMN. Медицинская генетика. 2022;21(10):19–22. https://doi.org/10.25557/2073-7998.2022.10.19-22.; https://www.gynecology.su/jour/article/view/1869
-
14
Autoren: et al.
Weitere Verfasser: et al.
Quelle: Biological Products. Prevention, Diagnosis, Treatment; Том 24, № 2 (2024); 123-139 ; БИОпрепараты. Профилактика, диагностика, лечение; Том 24, № 2 (2024); 123-139 ; 2619-1156 ; 2221-996X ; 10.30895/2221-996X-2024-24-2
Schlagwörter: очистка вирусных частиц AAV, gene therapy product, adeno-associated virus, AAV, adeno-associated virus vectors, hereditary diseases, haemophilia, Duchenne muscular dystrophy, gene therapy efficacy, gene therapy safety, AAV production technology, AAV modification, triple-plasmid transfection, AAV-particle purification, генотерапевтический лекарственный препарат, аденоассоциированный вирус, ААV, аденоассоциированные вирусные векторы, наследственные заболевания, гемофилия, миодистрофия Дюшенна, эффективность генной терапии, безопасность генной терапии, технология производства AAV, модификация AAV, трехплазмидная технология
Dateibeschreibung: application/pdf
Relation: https://www.biopreparations.ru/jour/article/view/572/857; https://www.biopreparations.ru/jour/article/view/572/845; https://www.biopreparations.ru/jour/article/downloadSuppFile/572/876; https://www.biopreparations.ru/jour/article/downloadSuppFile/572/877; https://www.biopreparations.ru/jour/article/downloadSuppFile/572/878; https://www.biopreparations.ru/jour/article/downloadSuppFile/572/879; https://www.biopreparations.ru/jour/article/downloadSuppFile/572/976; https://www.biopreparations.ru/jour/article/downloadSuppFile/572/991; Мельникова ЕВ, Меркулов ВА, Меркулова ОВ. Генная терапия нейродегенеративных заболеваний: достижения, разработки, проблемы внедрения в клиническую практику. БИОпрепараты. Профилактика, диагностика, лечение. 2023;23(2):127–47. https://doi.org/10.30895/2221-996X-2023-433; Baas L, van der Graaf R, van Hoorn ES, Bredenoord AL, Meijer K. The ethics of gene therapy for hemophilia: a narrative review. J Thromb Haemost. 2023;21(3):413–20. https://doi.org/10.1016/j.jtha.2022.12.027; Fischer MD, Simonelli F, Sahni J, Holz FG, Maier R, Fasser C, et al. Real-world safety and effectiveness of voretigene neparvovec: results up to 2 years from the prospective, registry-based PERCEIVE study. Biomolecules. 2024;14(1):122. https://doi.org/10.3390/biom14010122; Stingl K, Kempf M, Jung R, Kortuem F, Righetti G, Reith M, et al. Therapy with voretigene neparvovec. How to measure success? Prog Retin Eye Res. 2023;92:101115. https://doi.org/10.1016/j.preteyeres.2022.101115; Thomas S, Conway KM, Fapo O, Street N, Mathews KD, Mann JR, et al. Time to diagnosis of Duchenne muscular dystrophy remains unchanged: findings from the Muscular Dystrophy Surveillance, Tracking, and Research Network, 2000–2015. Muscle Nerve. 2022;66(2):193–7. https://doi.org/10.1002/mus.27532; Strauss KA, Farrar MA, Muntoni F, Saito K, Mendell JR, Servais L, et al. Onasemnogene abeparvovec for presymptomatic infants with two copies of SMN2 at risk for spinal muscular atrophy type 1: the Phase III SPR1NT trial. Nat Med. 2022;28(7):1381–9. https://doi.org/10.1038/s41591-022-01866-4; Motyl AAL, Gillingwater TH. Timing is everything: Clinical evidence supports pre-symptomatic treatment for spinal muscular atrophy. Cell Rep Med. 2022;3(8):100725. https://doi.org/10.1016/j.xcrm.2022.100725; Crooke ST. A call to arms against ultra-rare diseases. Nat Biotechnol. 2021;39(6):671–7. https://doi.org/10.1038/s41587-021-00945-0; Duan D. Lethal immunotoxicity in high-dose systemic AAV therapy. Mol Ther. 2023;31(11):3123–6. https://doi.org/10.1016/j.ymthe.2023.10.015; Mendell JR, Connolly AM, Lehman KJ, Griffin DA, Khan SZ, Dharia SD, et al. Testing preexisting antibodies prior to AAV gene transfer therapy: rationale, lessons and future considerations. Mol Ther Methods Clin Dev. 2022;25:74–83. https://doi.org/10.1016/j.omtm.2022.02.011; Li X, Wei X, Lin J, Ou L. A versatile toolkit for overcoming AAV immunity. Front Immunol. 2022;13:991832. https://doi.org/10.3389/fimmu.2022.991832; Arjomandnejad M, Dasgupta I, Flotte TR, Keeler AM. Immunogenicity of recombinant adeno-associated virus (AAV) vectors for gene transfer. BioDrugs. 2023;37(3):311–29. https://doi.org/10.1007/s40259-023-00585-7; DiMattia MA, Nam HJ, Van Vliet K, Mitchell M, Bennett A, Gurda BL, et al. Structural insight into the unique properties of adeno-associated virus serotype 9. J Virol. 2012;86(12):6947–58. https://doi.org/10.1128/jvi.07232-11; Govindasamy L, Padron E, McKenna R, Muzyczka N, Kaludov N, Chiorini JA, Agbandje-McKenna M. Structurally mapping the diverse phenotype of adeno-associated virus serotype 4. J Virol. 2006;80(23):11556–70. https://doi.org/10.1128/jvi.01536-06; Börner K, Kienle E, Huang LY, Weinmann J, Sacher A, Bayer P, et al. Pre-arrayed Pan-AAV peptide display libraries for rapid single-round screening. Mol Ther. 2020;28(4):1016–32. https://doi.org/10.1016/j.ymthe.2020.02.009; Tabebordbar M, Lagerborg KA, Stanton A, King EM, Ye S, Tellez L, et al. Directed evolution of a family of AAV capsid variants enabling potent muscle-directed gene delivery across species. Cell. 2021;184(19):4919–38.e22. https://doi.org/10.1016/j.cell.2021.08.028; Weinmann J, Weis S, Sippel J, Tulalamba W, Remes A, El Andari J, et al. Identification of a myotropic AAV by massively parallel in vivo evaluation of barcoded capsid variants. Nat Commun. 2020;11(1):5432. https://doi.org/10.1038/s41467-020-19230-w; Zolotukhin S, Trivedi PD, Corti M, Byrne BJ. Scratching the surface of RGD-directed AAV capsid engineering. Mol Ther. 2021;29(11):3099–100. https://doi.org/10.1016/j.ymthe.2021.10.020; El Andari J, Renaud-Gabardos E, Tulalamba W, Weinmann J, Mangin L, Pham QH, et al. Semirational bioengineering of AAV vectors with increased potency and specificity for systemic gene therapy of muscle disorders. Sci Adv. 2022;8(38):eabn4704. https://doi.org/10.1126/sciadv.abn4704; Muñoz S, Bertolin J, Jimenez V, Jaén ML, Garcia M, Pujol A, et al. Treatment of infantile-onset Pompe disease in a rat model with muscle-directed AAV gene therapy. Mol Metab. 2024;81:101899. https://doi.org/10.1016/j.molmet.2024.101899; Rode L, Bär C, Groß S, Rossi A, Meumann N, Viereck J, et al. AAV capsid engineering identified two novel variants with improved in vivo tropism for cardiomyocytes. Mol Ther. 2022;30(12):3601–18. https://doi.org/10.1016/j.ymthe.2022.07.003; Stanton AC, Lagerborg KA, Tellez L, Krunnfusz A, King EM, Ye S, et al. Systemic administration of novel engineered AAV capsids facilitates enhanced transgene expression in the macaque CNS. Med. 2023;4(1):31–50.e8. https://doi.org/10.1016/j.medj.2022.11.002; Adachi K, Enoki T, Kawano Y, Veraz M, Nakai H. Drawing a high-resolution functional map of adeno-associated virus capsid by massively parallel sequencing. Nat Commun. 2014;5:3075. https://doi.org/10.1038/ncomms4075; Han J, Zhu L, Zhang J, Guo L, Sun X, Huang C, et al. Rational engineering of adeno-associated virus capsid enhances human hepatocyte tropism and reduces immunogenicity. Cell Prolif. 2022;55(12):e13339. https://doi.org/10.1111/cpr.13339; Mével M, Bouzelha M, Leray A, Pacouret S, Guilbaud M, Penaud-Budloo M, et al. Chemical modification of the adeno-associated virus capsid to improve gene delivery. Chem Sci. 2019;11(4):1122–31. https://doi.org/10.1039/c9sc04189c; Mulcrone PL, Lam AK, Frabutt D, Zhang J, Chrzanowski M, Herzog RW, Xiao W. Chemical modification of AAV9 capsid with N-ethyl maleimide alters vector tissue tropism. Sci Rep. 2023;13(1):8436. https://doi.org/10.1038/s41598-023-35547-0; Li X, La Salvia S, Liang Y, Adamiak M, Kohlbrenner E, Jeong D, et al. Extracellular vesicle-encapsulated adenoassociated viruses for therapeutic gene delivery to the heart. Circulation. 2023;148(5):405–25. https://doi.org/10.1161/circulationaha.122.063759; Powell SK, Rivera-Soto R, Gray SJ. Viral expression cassette elements to enhance transgene target specificity and expression in gene therapy. Discov Med. 2015;19(102):49–57. PMCID: PMC4505817; Скопенкова ВВ, Егорова ТВ, Бардина МВ. Мышечно-специфические промоторы для генной терапии. Acta Naturae. 2021;13(1):47–58. https://doi.org/10.32607/actanaturae.11063; Markusic DM, Hoffman BE, Perrin GQ, Nayak S, Wang X, LoDuca PA, et al. Effective gene therapy for haemophilic mice with pathogenic factor IX antibodies. EMBO Mol Med. 2013;5(11):1698–709. https://doi.org/10.1002/emmm.201302859; Colella P, Sellier P, Costa Verdera H, Puzzo F, van Wittenberghe L, Guerchet N, et al. AAV gene transfer with tandem promoter design prevents anti-transgene immunity and provides persistent efficacy in neonate Pompe mice. Mol Ther Methods Clin Dev. 2018;12:85–101. https://doi.org/10.1016/j.omtm.2018.11.002; Sellier P, Vidal P, Bertin B, Gicquel E, Bertil-Froidevaux E, Georger C, et al. Muscle-specific, liver-detargeted adenoassociated virus gene therapy rescues Pompe phenotype in adult and neonate Gaa−/− mice. J Inherit Metab Dis. 2024;47(1):119–34. https://doi.org/10.1002/jimd.12625; Qiao C, Yuan Z, Li J, He B, Zheng H, Mayer C, et al. Liverspecific microRNA-122 target sequences incorporated in AAV vectors efficiently inhibits transgene expression in the liver. Gene Ther. 2011;18(4):403–10. https://doi.org/10.1038/gt.2010.157; Geisler A, Fechner H. MicroRNA-regulated viral vectors for gene therapy. World J Exp Med. 2016;6(2):37–54. https://doi.org/10.5493/wjem.v6.i2.37; Muhuri M, Zhan W, Maeda Y, Li J, Lotun A, Chen J, et al. Novel combinatorial microRNA-binding sites in AAV vectors synergistically diminish antigen presentation and transgene immunity for efficient and stable transduction. Front Immunol. 2021;12:674242. https://doi.org/10.3389/fimmu.2021.674242; Subramanian M, McIninch J, Zlatev I, Schlegel MK, Kaittanis C, Nguyen T, et al. RNAi-mediated rheostat for dynamic control of AAV-delivered transgenes. Nat Commun. 2023;14(1):1970. https://doi.org/10.1038/s41467-023-37774-5; Guilbaud M, Devaux M, Couzinié C, Le Duff J, Toromanoff A, Vandamme C, et al. Five years of successful inducible transgene expression following locoregional adeno-associated virus delivery in nonhuman primates with no detectable immunity. Hum Gene Ther. 2019;30(7):802–13. https://doi.org/10.1089/hum.2018.234; Wu X, Yu Y, Wang M, Dai D, Yin J, Liu W, et al. AAV-delivered muscone-induced transgene system for treating chronic diseases in mice via inhalation. Nat Commun. 2024;15(1):1122. https://doi.org/10.1038/s41467-024-45383-z; Wright JF. Codon modification and PAMPs in clinical AAV vectors: the tortoise or the hare? Mol Ther. 2020;28(3):701–3. https://doi.org/10.1016/j.ymthe.2020.01.026; Hamilton BA, Wright JF. Challenges posed by immune responses to AAV vectors: addressing root causes. Front Immunol. 2021;12:675897. https://doi.org/10.3389/fimmu.2021.675897; Wright JF. Quantification of CpG motifs in rAAV genomes: avoiding the toll. Mol Ther. 2020;28(8):1756–8. https://doi.org/10.1016/j.ymthe.2020.07.006; Chan YK, Wang SK, Chu CJ, Copland DA, Letizia AJ, Costa Verdera H, et al. Engineering adeno-associated viral vectors to evade innate immune and inflammatory responses. Sci Transl Med. 2021;13(580):eabd3438. https://doi.org/10.1126/scitranslmed.abd3438; Xiao X, Li J, Samulski RJ. Production of high-titer recombinant adeno-associated virus vectors in the absence of helper adenovirus. J Virol. 1998;72(3):2224–32. https://doi.org/10.1128/jvi.72.3.2224-2232.1998; Grimm D, Kay MA, Kleinschmidt JA. Helper virus-free, optically controllable, and two-plasmid-based production of adeno-associated virus vectors of serotypes 1 to 6. Mol Ther. 2003;7(6):839–50. https://doi.org/10.1016/s1525-0016(03)00095-9; Allay JA, Sleep S, Long S, Tillman DM, Clark R, Carney G, et al. Good manufacturing practice production of self-complementary serotype 8 adeno-associated viral vector for a hemophilia B clinical trial. Hum Gene Ther. 2011;22(5):595–604. https://doi.org/10.1089/hum.2010.202; Wright JF, Wellman J, High KA. Manufacturing and regulatory strategies for clinical AAV2-hRPE65. Curr Gene Ther. 2010;10(5):341–9. https://doi.org/10.2174/156652310793180715; Powers AD, Piras BA, Clark RK, Lockey TD, Meagher MM. Development and optimization of AAV hFIX particles by transient transfection in an iCELLis(®) fixed-bed bioreactor. Hum Gene Ther Methods. 2016;27(3):112–21. https://doi.org/10.1089/hgtb.2016.021; Taylor N. Pfizer ramps up bioprocessing capacity for DMD gene therapy trial. BioPharma Reporter; 2019. https://www.biopharma-reporter.com/Article/2019/08/08/Pfizer-ramps-up-bioprocessing-capacity-for-DMDgene-therapy-trial; Florea M, Nicolaou F, Pacouret S, Zinn EM, Sanmiguel J, Andres-Mateos E, et al. High-efficiency purification of divergent AAV serotypes using AAVX affinity chromatography. Mol Ther Methods Clin Dev. 2023;28:146–59. https://doi.org/10.1016/j.omtm.2022.12.009; Rebula L, Raspor A, Bavčar M, Štrancar A, Leskovec M. CIM monolithic chromatography as a useful tool for endotoxin reduction and purification of bacteriophage particles supported with PAT analytics. J Chromatogr B Analyt Technol Biomed Life Sci. 2023;1217:123606. https://doi.org/10.1016/j.jchromb.2023.123606; Haley J, Jones JB, Petraki S, Callander M, Shrestha S, Springfield E, Adamson L, Chilkoti A, Dzuricky MJ, Luginbuhl KM. IsoTag™AAV: an innovative, scalable & non-chromatographic method for streamlined AAV manufacturing. Cell Gene Ther Insights. 2022;8(10):1287–1300. https://doi.org/10.18609/cgti.2022.190; Wada M, Uchida N, Posadas-Herrera G, Hayashita-Kinoh H, Tsunekawa Y, Hirai Y, Okada T. Large-scale purification of functional AAV particles packaging the full genome using short-term ultracentrifugation with a zonal rotor. Gene Ther. 2023;30(7–8):641–8. https://doi.org/10.1038/s41434-023-00398-x; Strobel B, Miller FD, Rist W, Lamla T. Comparative analysis of cesium chloride- and iodixanol-based purification of recombinant adeno-associated viral vectors for preclinical applications. Hum Gene Ther Methods. 2015;26(4):147–57. https://doi.org/10.1089/hgtb.2015.051; Khanal O, Kumar V, Jin M. Adeno-associated viral capsid stability on anion exchange chromatography column and its impact on empty and full capsid separation. Mol Ther Methods Clin Dev. 2023;31:101112. https://doi.org/10.1016/j.omtm.2023.101112; Su W, Patrício MI, Duffy MR, Krakowiak JM, Seymour LW, Cawood R. Self-attenuating adenovirus enables production of recombinant adeno-associated virus for high manufacturing yield without contamination. Nat Commun. 2022;13(1):1182. https://doi.org/10.1038/s41467-022-28738-2; Coronel J, Al-Dali A, Patil A, Srinivasan K, Braß T, Hein K, Wissing S. High titer rAAV production in bioreactor using ELEVECTA™ stable producer cell lines. In: Proceedings of the ESGCT 2021 Digital Meeting, Virtual, 19–22 October 2021.; Penaud-Budloo M, François A, Clément N, Ayuso E. Pharmacology of recombinant adeno-associated virus production. Mol Ther Methods Clin Dev. 2018;8:166–80. https://doi.org/10.1016/j.omtm.2018.01.002; Wang JH, Gessler DJ, Zhan W, Gallagher TL, Gao G. Adeno-associated virus as a delivery vector for gene therapy of human diseases. Signal Transduct Target Ther. 2024;9(1):78. https://doi.org/10.1038/s41392-024-01780-w; Liu P, Mayer A. Advances in recombinant adeno-associated virus production for gene therapy. American Pharmaceutical Review. 2022. https://www.americanpharmaceuticalreview.com/Featured-Articles/589113-Advances-in-Recombinant-Adeno-Associated-Virus-Production-for-Gene-Therapy/; https://www.biopreparations.ru/jour/article/view/572
-
15
-
16
Autoren: et al.
Quelle: Медицина в Кузбассе, Vol 20, Iss 2, Pp 65-68 (2021)
Schlagwörter: новорожденный, врожденный ихтиоз, заболевания кожи, наследственные заболевания, Medicine
Dateibeschreibung: electronic resource
-
17
Autoren: et al.
Quelle: Head and neck. Russian Journal. 11
Schlagwörter: neurofibromatosis, болезнь Реклингхаузена, узелки Лиша, nervous system, генерализованный нейрофиброматоз 1 типа, 3. Good health, neurofibroma, нейрофиброма, наследственные заболевания, сutaneous neurofibroma, neurofibromatosis type I, нервная система, NF-1 gene, Recklinghausen's disease, ген НФ-1, Lisch nodules, кожная нейрофиброма, inherited diseases, нейрофиброматоз
-
18
Autoren: et al.
Weitere Verfasser: et al.
Quelle: Pediatric pharmacology; Том 20, № 5 (2023); 427-453 ; Педиатрическая фармакология; Том 20, № 5 (2023); 427-453 ; 2500-3089 ; 1727-5776
Schlagwörter: дети, hereditary diseases, cardiomyopathies, pathogenetic therapy, rehabilitation, children, наследственные заболевания, кардиомиопатии, патогенетическая терапия, реабилитация
Dateibeschreibung: application/pdf
Relation: https://www.pedpharma.ru/jour/article/view/2348/1529; Bushby K, Finkel R, Birnkrant DJ, et al. Diagnosis and management of Duchenne muscular dystrophy, part 1: diagnosis, and pharmacological and psychosocial management. Lancet Neurol. 2010;9(1):77–93. doi: https://doi.org/10.1016/S1474-4422(09)70271-6; Birnkrant DJ, Bushby K, Bann CM, et al. Diagnosis and management of Duchenne muscular dystrophy, part 1: diagnosis, and neuromuscular, rehabilitation, endocrine, and gastrointestinal and nutritional management. Lancet Neurol. 2018;17(3):251–267. doi: https://doi.org/10.1016/S1474-4422(18)30024-3; Emery AEH, Muntoni F, Quinlivan R. Duchenne Muscular Dystrophy. 4th ed. Oxford, UK: Oxford University Press; 2015.; Song TJ, Lee KA, Kang SW, et al. Three cases of manifesting female carriers in patients with Duchenne muscular dystrophy. Yonsei Med J. 2011;52(1):192–195. doi: https://doi.org/10.3349/ymj.2011.52.1.192; Ferlini A, Neri M, Gualandi F. The medical genetics of dystrophinopathies: molecular genetic diagnosis and its impact on clinical practice. Neuromuscul Disord. 2013;23(1):4–14. doi: https://doi.org/10.1016/j.nmd.2012.09.002; Blake DJ, Weir A, Newey SE, Davies KE. Function and genetics of dystrophin and dystrophin-related proteins in muscle. Physiol Rev. 2002;82(2):291–329. doi: https://doi.org/10.1152/physrev.00028.2001; Doorenweerd N, Mahfouz A, van Putten M, et al. Timing and localization of human dystrophin isoform expression provide insights into the cognitive phenotype of Duchenne muscular dystrophy. Sci Rep. 2017;7(1):12575. doi: https://doi.org/10.1038/s41598-017-12981-5; Jones H, De Vivo DC, Darras BT. Neuromuscular disorders of infancy, childhood and adolescence. A clinician’s approach. Oxford: Butterworth-Heinemann; 2003.; Romitti PA, Zhu Y, Puzhankara S, et al. Prevalence of Duchenne and Becker muscular dystrophies in the United States. Pediatrics. 2015;135(3):513–521. doi: https://doi.org/10.1542/peds.2014-2044; Mah JK, Korngut L, Dykeman J, et al. A systematic review and meta-analysis on the epidemiology of Duchenne and Becker muscular dystrophy. Neuromuscul Disord. 2014;24(6):482–491. doi: https://doi.org/10.1016/j.nmd.2014.03.008; Moat SJ, Bradley DM, Salmon R, et al. Newborn bloodspot screening for Duchenne muscular dystrophy: 21 years experience in Wales (UK). Eur J Hum Genet. 2013;21(10):1049–1053. doi: https://doi.org/10.1038/ejhg.2012.301; Gloss D, Moxley RT 3rd, Ashwal S, Oskoui M. Practice guideline update summary: Corticosteroid treatment of Duchenne muscular dystrophy: Report of the Guideline Development Subcommittee of the American Academy of Neurology. Neurology. 2016;86(5):465–472. doi: https://doi.org/10.1212/WNL.0000000000002337; Baydur A, Gilgoff I, Prentice W, et al. Decline in respiratory function and experience with long-term assisted ventilation in advanced Duchenne’s muscular dystrophy. Chest. 1990;97(4):884–889. doi: https://doi.org/10.1378/chest.97.4.884; Fayssoil A, Abasse S, Silverston K. Cardiac Involvement Classification and Therapeutic Management in Patients with Duchenne Muscular Dystrophy. J Neuromuscul Dis. 2017;4(1):17–23. doi: https://doi.org/10.3233/JND-160194; Feingold B, Mahle WT, Auerbach S, et al. Management of Cardiac Involvement Associated With Neuromuscular Diseases: A Scientific Statement From the American Heart Association. Circulation. 2017;136(13):e200–e231. doi: https://doi.org/10.1161/CIR.0000000000000526; Грознова О.С., Влодавец Д.В., Артемьева С.Б. Поражение сердечно-сосудистой системы при прогрессирующей мышечной дистрофии Дюшенна: особенности диагностики, наблюдения и лечения // Педиатрия. Журнал им. Г.Н. Сперанского. — 2020. — Т. 99. — №3. — С. 95–102.; McNally EM, Kaltman JR, Benson DW, et al. Contemporary cardiac issues in Duchenne muscular dystrophy. Working Group of the National Heart, Lung, and Blood Institute in collaboration with Parent Project Muscular Dystrophy. Circulation. 2015;131(18):1590–1598. doi: https://doi.org/10.1161/CIRCULATIONAHA.114.015151; Грознова О.С., Чечуро В.В. Лечение кардиомиопатий у больных прогрессирующими мышечными дистрофиями // Российский вестник перинатологии и педиатрии. — 2011. — Т. 56. — № 2. — С. 58–62.; Matsumura T. Beta-blockers in Children with Duchenne Cardiomyopathy. Rev Recent Clin Trials. 2014;9(2):76–81. doi: https://doi.org/10.2174/1574887109666140908123856; Mavrogeni SI, Markousis-Mavrogenis G, Papavasiliou A, et al. Cardiac Involvement in Duchenne Muscular Dystrophy and Related Dystrophinopathies. Methods Mol Biol. 2018;1687:31–42. doi: https://doi.org/10.1007/978-1-4939-7374-3_3; Thomas TO, Morgan TM, Burnette WB, Markham LW. Correlation of heart rate and cardiac dysfunction in Duchenne muscular dystrophy. Pediatr Cardiol. 2012;33(7):1175–1179. doi: https://doi.org/10.1007/s00246-012-0281-0; Ponikowski P, Voors AA, Anker SD, et al. 2016 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure: The Task Force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC)Developed with the special contribution of the Heart Failure Association (HFA) of the ESC. Eur Heart J. 2016;37(27):2129–2200. doi: https://doi.org/10.1093/eurheartj/ehw128; Raman SV, Hor KN, Mazur W, et al. Eplerenone for early cardiomyopathy in Duchenne muscular dystrophy: a randomised, double-blind, placebo-controlled trial. Lancet Neurol. 2015;14(2):153–161. doi: https://doi.org/10.1016/S1474-4422(14)70318-7; Hunt SA, Abraham WT, Chin MH, et al. ACC/AHA 2005 guideline update for the diagnosis and management of chronic heart failure in the adult: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Writing Committee to Update the 2001 Guidelines for the Evaluation and Management of Heart Failure): developed in collaboration with the American College of Chest Physicians and the International Society for Heart and Lung Transplantation: endorsed by the Heart Rhythm Society. Circulation. 2005;112(12):e154–235. doi: https://doi.org/10.1161/CIRCULATIONAHA.105.167586; Грознова О.С., Тренева М.С. Применение ингибитора ангиотензинпревращающего фермента и -блокатора у больных миопатией Дюшенна в длительном катамнезе // Российский вестник перинатологии и педиатрии. — 2012. — Т. 57. — № 4-1. — С. 87–89.; Tay SK, Ong HT, Low PS. Transaminitis in Duchenne’s muscular dystrophy. Ann Acad Med Singap. 2000;29(6):719–722.; Perloff JK. Cardiac rhythm and conduction in Duchenne’s muscular dystrophy: a prospective study of 20 patients. J Am Coll Cardiol. 1984;3(5):1263–1268. doi: https://doi.org/10.1016/s0735-1097(84)80186-2; Chenard AA, Becane HM, Tertrain F, et al. Ventricular arrhythmia in Duchenne muscular dystrophy: prevalence, significance and prognosis. Neuromuscul Disord. 1993;3(3):201–206. doi: https://doi.org/10.1016/0960-8966(93)90060-w; Suresh S, Wales P, Dakin C, et al. Sleep-related breathing disorder in Duchenne muscular dystrophy: disease spectrum in the paediatric population. J Paediatr Child Health. 2005;41(9-10):500–503. doi: https://doi.org/10.1111/j.1440-1754.2005.00691.x; Leibowitz D, Dubowitz V. Intellect and behaviour in Duchenne muscular dystrophy. Dev Med Child Neurol. 1981;23(5):577–590. doi: https://doi.org/10.1111/j.1469-8749.1981.tb02039.x; Anderson JL, Head SI, Rae C, Morley JW. Brain function in Duchenne muscular dystrophy. Brain. 2002;125(Pt 1):4–13. doi: https://doi.org/10.1093/brain/awf012; McDonald DG, Kinali M, Gallagher AC, et al. Fracture prevalence in Duchenne muscular dystrophy. Dev Med Child Neurol. 2002;44(10):695–698. doi: https://doi.org/10.1017/s0012162201002778; Larson CM, Henderson RC. Bone mineral density and fractures in boys with Duchenne muscular dystrophy. J Pediatr Orthop. 2000;20(1):71–74.; Rutkove SB, Kapur K, Zaidman CM, et al. Electrical impedance myography for assessment of Duchenne muscular dystrophy. Ann Neurol. 2017;81(5):622–632. doi: https://doi.org/10.1002/ana.24874; Куренков А.Л., Кузенкова Л.М., Пак Л.А. и др. Дифференциальный диагноз мышечной дистрофии Дюшенна // Неврологический журнал имени Л.О. Бадаляна. — 2021. — Т. 2. — № 3. — С. 159–166. — doi: https://doi.org/10.46563/2686-8997-2021-2-3-159-166; Birnkrant DJ, Bushby K, Bann CM, et al. Diagnosis and management of Duchenne muscular dystrophy, part 2: respiratory, cardiac, bone health, and orthopaedic management. Lancet Neurol. 2018;17(4):347–361. doi: https://doi.org/10.1016/S1474-4422(18)30025-5; Sansović I, Barišić I, Dumić K. Improved detection of deletions and duplications in the DMD gene using the multiplex ligationdependent probe amplification (MLPA) method. Biochem Genet. 2013;51(3-4):189–201. doi: https://doi.org/10.1007/s10528-012-9554-9; Deconinck N, Goemans N. Management of Neuromuscular Disorders in Children: A Multidisciplinary Approach to Management. 1st ed. Mac Keith Press; 2019. pp. 166–187.; Ciafaloni E, Fox DJ, Pandya S, et al. Delayed diagnosis in Duchenne muscular dystrophy: data from the Muscular Dystrophy Surveillance, Tracking, and Research Network (MD STARnet). J Pediatr. 2009;155(3):380–385. doi: https://doi.org/10.1016/j.jpeds.2009.02.007; Ankala A, da Silva C, Gualandi F, et al. A comprehensive genomic approach for neuromuscular diseases gives a high diagnostic yield. Ann Neurol. 2015;77(2):206–214. doi: https://doi.org/10.1002/ana.24303; Wonkam-Tingang E, Nguefack S, Esterhuizen AI, et al. DMD-related muscular dystrophy in Cameroon: Clinical and genetic profiles. Mol Genet Genomic Med. 2020;8(8):e1362. doi: https://doi.org/10.1002/mgg3.1362; Karaiev T, Tkachenko O, Kononets O, Lichman L. A family history of Duchenne muscular dystrophy. Georgian Med News. 2020;(303):79–85.; Kononets O, Karaiev T, Tkachenko O, Lichman L. Renal, hepatic and immune function indices in patients with Duchenne muscular dystrophy. Georgian Med News. 2020;(309):64–71.; Rosales XQ, Chu ML, Shilling C, et al. Fidelity of gammaglutamyl transferase (GGT) in differentiating skeletal muscle from liver damage. J Child Neurol. 2008;23(7):748–751. doi: https://doi.org/10.1177/0883073808314365; Matsumura T, Takahashi M, Nakamori M, et al. Erythrocyte from Duchenne muscular dystrophy is fragile. Rinsho Shinkeigaku. 2004;44(10):695–698.; Braat E, Hoste L, De Waele L, et al. Renal function in children and adolescents with Duchenne muscular dystrophy. Neuromuscul Disord. 2015;25(5):381387. doi: https://doi.org/10.1016/j.nmd.2015.01.005; Phillips MF, Quinlivan RC, Edwards RH, Calverley PM. Changes in spirometry over time as a prognostic marker in patients with Duchenne muscular dystrophy. Am J Respir Crit Care Med. 2001;164(12):2191–2194. doi: https://doi.org/10.1164/ajrccm.164.12.2103052; Rideau Y, Jankowski LW, Grellet J. Respiratory function in the muscular dystrophies. Muscle Nerve. 1981;4(2):155–164. doi: https://doi.org/10.1002/mus.880040213; Inkley SR, Oldenburg FC, Vignos PJ Jr. Pulmonary function in Duchenne muscular dystrophy related to stage of disease. Am J Med. 1974;56(3):297–306. doi: https://doi.org/10.1016/0002-9343(74)90611-1; Birnkrant DJ, Bushby K, Bann CM, et al. Diagnosis and management of Duchenne muscular dystrophy, part 3: primary care, emergency management, psychosocial care, and transitions of care across the lifespan. Lancet Neurol. 2018;17(5):445–455. doi: https://doi.org/10.1016/S1474-4422(18)30026-7; Birnkrant DJ, Bushby KM, Amin RS, et al. The respiratory management of patients with Duchenne muscular dystrophy: a DMD care considerations working group specialty article. Pediatr Pulmonol. 2010;45(8):739–748. doi: https://doi.org/10.1002/ppul.21254; Finder JD, Birnkrant D, Carl J, et al. Respiratory care of the patient with Duchenne muscular dystrophy: ATS consensus statement. Am J Respir Crit Care Med. 2004;170(4):456–465. doi: https://doi.org/10.1164/rccm.200307-885ST; Polavarapu K, Manjunath M, Preethish-Kumar V, et al. Muscle MRI in Duchenne muscular dystrophy: Evidence of a distinctive pattern. Neuromuscul Disord. 2016;26(11):768–774. doi: https://doi.org/10.1016/j.nmd.2016.09.002; Руденко Д.И., Поздняков А.В., Суслов В.М. Методы визуализации мышечной дистрофии Дюшенна (литературный обзор) // Международный неврологический журнал. — 2017. — № 2. — С. 84–92. — doi: https://doi.org/10.22141/2224-0713.2.88.2017.100199; Sbrocchi AM. Dietary Reference Intakes for Calcium and Vitamin D. Institute of Medicine (US) Committee to Review Dietary Reference Intakes for Vitamin D and Calcium; Ross AC, Taylor CL, Yaktine AL, Del Valle HB, eds. Washington (DC): National Academies Press (US); 2011.; Sbrocchi AM, Rauch F, Jacob P, et al. The use of intravenous bisphosphonate therapy to treat vertebral fractures due to osteoporosis among boys with Duchenne muscular dystrophy. Osteoporos Int. 2012;23(11):2703–2711. doi: https://doi.org/10.1007/s00198-012-1911-3; Stücker R, Stücker S, Mladenov K. Spinal deformity in Duchenne muscular dystrophy. Orthopade. 2021;50(8):638–642. doi: https://doi.org/10.1007/s00132-021-04127-3; Waldrop MA, Flanigan KM. Update in Duchenne and Becker muscular dystrophy. Curr Opin Neurol. 2019;32(5):722–727. doi: https://doi.org/10.1097/WCO.0000000000000739; Lee JS, Kim K, Jeon YK, et al. Effects of Traction on Interpretation of Lumbar Bone Mineral Density in Patients with Duchenne Muscular Dystrophy: A New Measurement Method and Diagnostic Criteria Based on Comparison of Dual-Energy X-Ray Absorptiometry and Quantitative Computed Tomography. J Clin Densitom. 2020;23(1):53–62. doi: https://doi.org/10.1016/j.jocd.2018.07.006; Leroy-Willig A, Willig TN, Henry-Feugeas MC, et al. Body composition determined with MR in patients with Duchenne muscular dystrophy, spinal muscular atrophy, and normal subjects. Magn Reson Imaging. 1997;15(7):737–744. doi: https://doi.org/10.1016/s0730-725x(97)00046-5; McDonald CM, Campbell C, Torricelli RE, et al. Ataluren in patients with nonsense mutation Duchenne muscular dystrophy (ACT DMD): a multicentre, randomised, double-blind, placebo-controlled, phase 3 trial. Lancet. 2017;390(10101):1489–1498. doi: https://doi.org/10.1016/S0140-6736(17)31611-2; Gordon KE, Dooley JM, Sheppard KM, et al. Impact of bisphosphonates on survival for patients with Duchenne muscular dystrophy. Pediatrics. 2011;127(2):e353–e358. doi: https://doi.org/10.1542/peds.2010-1666; Janisch M, Buchholtz SN, Haden MV. Pediatric palliative care of Duchenne muscular dystrophy in Germany. Neuropediatrics. 2018;49(S 02):S1–S69. doi: https://doi.org/10.1055/s-0038-1675922; Sadasivan A, Warrier MG, Polavarapu K, et al. Palliative care in Duchenne muscular dystrophy: A study on parents’ understanding. Indian J Palliat Care. 2021;27(1):146–151. doi: https://doi.org/10.4103/IJPC.IJPC_259_20; Engel JM, Kartin D, Carter GT, et al. Pain in youths with neiromuscular disease. Am J Hosp Palliat Care. 2009;26(5):405–412. doi: https://doi.org/10.1177/1049909109346165; McDonald CM, Henricson EK, Han JJ, et al. The 6-minute walk test as a new outcome measure in Duchenne muscular dystrophy. Muscle Nerve. 2010;41(4):500–510. doi: https://doi.org/10.1002/mus.21544; McDonald CM. Timed function tests have withstood the test of time as clinically meaningful and responsive endpoints in Duchenne muscular dystrophy. Muscle Nerve. 2018;58(5):614–617. doi: https://doi.org/10.1002/mus.26334; Henricson E, Abresch R, Han JJ, et al. The 6-Minute Walk Test and Person-Reported Outcomes in Boys with Duchenne Muscular Dystrophy and Typically Developing Controls: Longitudinal Comparisons and Clinically-Meaningful Changes Over One Year. PLoS Curr. 2013;5:ecurrents.md.9e17658b007eb79fcd6f723089f79e06. doi: https://doi.org/10.1371/currents.md.9e17658b007eb79fcd6f723089f79e06; McDonald CM, Henricson EK, Abresch RT, et al. The 6-minute walk test and other endpoints in Duchenne muscular dystrophy: longitudinal natural history observations over 48 weeks from a multicenter study. Muscle Nerve. 2013;48(3):343–356. doi: https://doi.org/10.1002/mus.23902; McDonald CM, Henricson EK, Han JJ, et al. The 6-minute walk test in Duchenne/Becker muscular dystrophy: longitudinal observations. Muscle Nerve. 2010;42(6):966–974. doi: https://doi.org/10.1002/mus.21808; Pandya S, Florence JM, King WM, et al. Reliability of goniometric measurements in patients with Duchenne muscular dystrophy. Phys Ther. 1985;65(9):1339–1342. doi: https://doi.org/10.1093/ptj/65.9.1339; Bushby K, Finkel R, Birnkrant DJ, et al. Diagnosis and management of Duchenne muscular dystrophy, part 2: implementation of multidisciplinary care. Lancet Neurol. 2010;9(2):177–189. doi: https://doi.org/10.1016/S1474-4422(09)70272-8; Mercuri E, Muntoni F, Osorio AN, et al. Safety and effectiveness of ataluren: comparison of results from the STRIDE Registry and CINRG DMD Natural History Study. J Comp Eff Res. 2020;9(5):341–360. doi: https://doi.org/10.2217/cer-2019-0171; Finkel RS, Flanigan KM, Wong B, et al. Phase 2a study of atalurenmediated dystrophin production in patients with nonsense mutation Duchenne muscular dystrophy. PLoS One. 2013;8(12):e81302. doi: https://doi.org/10.1371/journal.pone.0081302; Трансларна®: инструкция по применению. Регистрационное удостоверение № ЛП-006596. Дата регистрации: 24.11.2020 // Государственный реестр лекарственных средств: официальный сайт. Доступно по: https://grls.rosminzdrav.ru/Grls_View_v2.aspx?routingGuid=0a1cb70a-0f00-4d41-b4b2-9ac96aac4cca. Ссылка активна на 17.08.2023.; Kinnett K, Noritz G. The PJ Nicholoff Steroid Protocol for Duchenne and Becker Muscular Dystrophy and Adrenal Suppression. PLoS Curr. 2017;9:ecurrents.md.d18deef7dac96ed135e0dc8739917b6e. doi: https://doi.org/10.1371/currents.md.d18deef7dac96ed135e0dc8739917b6e; Mercuri E, Muntoni F, Buccella F, et al. Age at loss of ambulation in patients with DMD from the STRIDE Registry and the CINRG Duchenne Natural History Study: a matched cohort analysis. Neuromuscular Disorders. 2022;32(Suppl 1):S52. doi: https://doi.org/10.1016/j.nmd.2022.07.045; Manzur AY, Kuntzer T, Pike M, Swan A. Glucocorticoid corticosteroids for Duchenne muscular dystrophy. Cochrane Database Syst Rev. 2008;(1):CD003725. doi: https://doi.org/10.1002/14651858.CD003725.pub3; Moxley RT 3rd, Ashwal S, Pandya S, et al. Practice parameter: corticosteroid treatment of Duchenne dystrophy: report of the Quality Standards Subcommittee of the American Academy of Neurology and the Practice Committee of the Child Neurology Society. Neurology. 2005;64(1):13–20. doi: https://doi.org/10.1212/01.WNL.0000148485.00049.B7; Marden JR, Freimark J, Yao Z, et al. Real-world outcomes of long-term prednisone and deflazacort use in patients with Duchenne muscular dystrophy: experience at a single, large care center. J Comp Eff Res. 2020;9(3):177–189. doi: https://doi.org/10.2217/cer-2019-0170; Angelini C, Peterle E. Old and new therapeutic developments in steroid treatment in Duchenne muscular dystrophy. Acta Myol. 2012;31(1):9–15.; Гремякова Т.А., Суслов В.М., Сакбаева Г.Е., Степанов А.А. Витамин D в профилактике и терапии коморбидных состояний при мышечной дистрофии Дюшенна // Неврологический журнал им. Л.О. Бадаляна. — 2021. — Т. 2. — № 1. — С. 38–50. — doi: https://doi.org/10.46563/2686-8997-2021-2-1-38-50; Allington N, Vivegnis D, Gerard P. Cyclic administration of pamidronate to treat osteoporosis in children with cerebral palsy or a neuromuscular disorder: a clinical study. Acta Orthop Belg. 2005;71(1):91–97.; Wood CL, Cheetham TD, Guglieri M, et al. Testosterone Treatment of Pubertal Delay in Duchenne Muscular Dystrophy. Neuropediatrics. 2015;46(6):371–376. doi: https://doi.org/10.1055/s-0035-1563696; Bhasin S, Cunningham GR, Hayes FJ, et al. Testosterone therapy in men with androgen deficiency syndromes: an Endocrine Society clinical practice guideline. J Clin Endocrinol Metab. 2010;95(6):2536–2559. doi: https://doi.org/10.1210/jc.2009-2354; Wood CL, Straub V, Guglieri M, et al. Short stature and pubertal delay in Duchenne muscular dystrophy. Arch Dis Child. 2016;101(1):101–106. doi: https://doi.org/10.1136/archdischild-2015-308654; Bianchi ML, Biggar D, Bushby K, et al. Endocrine aspects of Duchenne muscular dystrophy. Neuromuscul Disord. 2011;21(4):298–303. doi: https://doi.org/10.1016/j.nmd.2011.02.006; Martigne L, Seguy D, Pellegrini N, et al. Efficacy and tolerance of gastrostomy feeding in Duchenne muscular dystrophy. Clin Nutr. 2010;29(1):60–64. doi: https://doi.org/10.1016/j.clnu.2009.06.009; McKim DA, Katz SL, Barrowman N, et al. Lung volume recruitment slows pulmonary function decline in Duchenne muscular dystrophy. Arch Phys Med Rehabil. 2012;93(7):1117–1122. doi: https://doi.org/10.1016/j.apmr.2012.02.024; Stehling F, Bouikidis A, Schara U, Mellies U. Mechanical insufflation/exsufflation improves vital capacity in neuromuscular disorders. Chron Respir Dis. 2015;12(1):31–35. doi: https://doi.org/10.1177/1479972314562209; Chiou M, Bach JR, Jethani L, Gallagher MF. Active lung volume recruitment to preserve vital capacity in Duchenne muscular dystrophy. J Rehabil Med. 2017;49(1):49–53. doi: https://doi.org/10.2340/16501977-2144; Archer JE, Gardner AC, Roper HP, et al. Duchenne muscular dystrophy: the management of scoliosis. J Spine Surg. 2016;2(3):185–194. doi: https://doi.org/10.21037/jss.2016.08.05; Alexander WM, Smith M, Freeman BJ, et al. The effect of posterior spinal fusion on respiratory function in Duchenne muscular dystrophy. Eur Spine J. 2013;22(2):411–416. doi: https://doi.org/10.1007/s00586-012-2585-4; Takaso M, Nakazawa T, Imura T, et al. Surgical management of severe scoliosis with high risk pulmonary dysfunction in Duchenne muscular dystrophy: patient function, quality of life and satisfaction. Int Orthop. 2010;34(5):695–702. doi: https://doi.org/10.1007/s00264-010-0957-0; Cullom C, Vo V, McCabe MD. Orthotopic Heart Transplantation in Manifesting Carrier of Duchenne Muscular Dystrophy. J Cardiothorac Vasc Anesth. 2022;36(8 Pt A):2593–2599. doi: https://doi.org/10.1053/j.jvca.2021.09.047; Hayes J, Veyckemans F, Bissonnette B. Duchenne muscular dystrophy: an old anesthesia problem revisited. Paediatr Anaesth. 2008;18(2):100–106. doi: https://doi.org/10.1111/j.1460-9592.2007.02302.x; Sepulveda C, Marlin A, Yoshida T, Ullrich A. Palliative care: the World Health Organization’s global perspective. J Pain Symptom Manage. 2002;24(2):91–96. doi: https://doi.org/10.1016/s0885-3924(02)00440-2; Pastrana T, Junger S, Ostgathe C, et al. A matter of definition — key elements identified in a discourse analysis of definitions of palliative care. Palliat Med. 2008;22(3):222–232. doi: https://doi.org/10.1177/0269216308089803; Жданова Л.В., Лебедева О.А., Колмакова В.В., Русинова Т.А. Развитие амбулаторной паллиативной помощи детям и подросткам в Республике Бурятия // Вестник Бурятского государственного университета. Медицина и фармация. — 2019. — Вып. 1. — С. 39–43. — doi: https://doi.org/10.18101/2306-1995-2019-1-39-43; Минаева Н.В., Исламова Р.И., Баженова М.И. Выездная патронажная паллиативная медицинская помощь детям: двухлетний опыт работы некоммерческой благотворительной организации // Вопросы современной педиатрии. — 2020. — Т. 9. — № 1. — С. 46–56. — doi: https://doi.org/10.15690/vsp.v19i1.2085; Соколова М.Г., Никишина О.А. Использование искусственной вентиляции легких у тяжелобольных детей в домашних условиях // Здоровье — основа человеческого потенциала: проблемы и пути их решения. — 2013. — Т. 8. — № 1. — С. 262–263.; Rehabilitation & physical therapy. In: Parent Project Muscular Dystrophy: Official website. Available online: https://www.parent-projectmd.org/care/care-guidelines/by-area/physical-therapy-and-stretching. Accessed on August 18, 2023.; Gianola S, Castellini G, Pecoraro V, et al. Effect of Muscular Exercise on Patients With Muscular Dystrophy: A Systematic Review and Meta-Analysis of the Literature. Front Neurol. 2020;11:958. doi: https://doi.org/10.3389/fneur.2020.00958; Sacks D, Baxter B, Campbell BCV, et al. Multisociety Consensus Quality Improvement Revised Consensus Statement for Endovascular Therapy of Acute Ischemic Stroke. Int J Stroke. 2018;13(6):612–632. doi: https://doi.org/10.1177/1747493018778713; Case LE, Apkon SD, Eagle M, et al. Rehabilitation Management of the Patient With Duchenne Muscular Dystrophy. Pediatrics. 2018;142(Suppl 2):S17–S33. doi: https://doi.org/10.1542/peds.2018-0333D; Association of Paediatric Chartered Physiotherapists. Guidance for Paediatric Physiotherapists Managing Neuromuscular Disorders. Published: March 2017. Review: March 2020. Available online: https://apcp.csp.org.uk/system/files/guidance_for_paediatric_physiotherapists_managing_neuromuscular_disorders_-_2017.pdf. Accessed on August 18, 2023.; Uttley L, Carlton J, Woods HB, Brazier J. A review of quality of life themes in Duchenne muscular dystrophy for patients and carers. Health Qual Life Outcomes. 2018;16(1):237. doi: https://doi.org/10.1186/s12955-018-1062-0; Pandya S, Andrews J, Campbell K, Meaney FJ. Rehabilitative technology use among individuals with Duchenne/Becker muscular dystrophy. J Pediatr Rehabil Med. 2016;9(1):45–53. doi: https://doi.org/10.3233/PRM-160356; Pardo AC, Do T, Ryder T, et al. Combination of steroids and ischial weight-bearing knee ankle foot orthoses in Duchenne’s muscular dystrophy prolongs ambulation past 20 years of age — a case report. Neuromuscul Disord. 2011;21(11):800–802. doi: https://doi.org/10.1016/j.nmd.2011.06.006; Garralda ME, Muntoni F, Cunniff A, Caneja AD. Knee-ankle-foot orthosis in children with Duchenne muscular dystrophy: user views and adjustment. Eur J Paediatr Neurol. 2006;10(4):186–191. doi: https://doi.org/10.1016/j.ejpn.2006.07.002; Aydin Yağcioğlu G, Alemdaroğlu Gürbüz İ, Karaduman A, et al. Kinesiology Taping in Duchenne Muscular Dystrophy: Acute Effects on Performance, Gait Characteristics, and Balance. Dev Neurorehabil. 2021;24(3):199–204. doi: https://doi.org/10.1080/17518423.2020.1839805; Abresch RT, Carter GT, Han JJ, McDonald CM. Exercise in neuromuscular diseases. Phys Med Rehabil Clin N Am. 2012;23(3):653–673. doi: https://doi.org/10.1016/j.pmr.2012.06.001; Alemdaroğlu I, Karaduman A, Yilmaz ÖT, Topaloğlu H. Different types of upper extremity exercise training in Duchenne muscular dystrophy: effects on functional performance, strength, endurance, and ambulation. Muscle Nerve. 2015;51(5):697–705. doi: https://doi.org/10.1002/mus.24451; Hind D, Parkin J, Whitworth V, et al. Aquatic therapy for children with Duchenne muscular dystrophy: a pilot feasibility randomised controlled trial and mixed-methods process evaluation. Health Technol Assess. 2017;21(27):1–120. doi: https://doi.org/10.3310/hta21270; Bulut N, Karaduman A, Alemdaroğlu-Gürbüz İ, et al. The effect of aerobic training on motor function and muscle architecture in children with Duchenne muscular dystrophy: A randomized controlled study. Clin Rehabil. 2022;36(8):1062–1071. doi: https://doi.org/10.1177/02692155221095491; Jansen M, van Alfen N, Geurts AC, de Groot IJ. Assisted bicycle training delays functional deterioration in boys with Duchenne muscular dystrophy: the randomized controlled trial “no use is disuse”. Neurorehabil Neural Repair. 2013;27(9):816–827. doi: https://doi.org/10.1177/1545968313496326; Darmahkasih AJ, Rybalsky I, Tian C, et al. Neurodevelopmental, Behavioral, and Emotional Symptoms Common in Duchenne Muscular Dystrophy. Muscle Nerve. 2020;61(4):466–474. doi: https://doi.org/10.1002/mus.26803; Araujo APQC, Nardes F, Fortes CPDD, et al. Brazilian consensus on Duchenne muscular dystrophy. Part 2: rehabilitation and systemic care. Arq Neuropsiquiatr. 2018;76(7):481–489. doi: https://doi.org/10.1590/0004-282X20180062; Chen H. A Mini-Review on The Rehabilitation of Duchenne Muscular Dystrophy. EPMR. 2021;3(2):000560. doi: https://doi.org/10.31031/EPMR.2021.03.000560; Richardson M, Frank AO. Electric powered wheelchairs for those with muscular dystrophy: problems of posture, pain and deformity. Disabil Rehabil Assist Technol. 2009;4(3):181–188. doi: https://doi.org/10.1080/17483100802543114; Pedlow K, McDonough S, Lennon S, et al. Assisted standing for Duchenne muscular dystrophy. Cochrane Database Syst Rev. 2019;10(10):CD011550. doi: https://doi.org/10.1002/14651858.CD011550.pub2; Saito T, Ohfuji S, Matsumura T, et al. Safety of a Pandemic Influenza Vaccine and the Immune Response in Patients with Duchenne Muscular Dystrophy. Intern Med. 2015;54(10):1199–1205. doi: https://doi.org/10.2169/internalmedicine.54.1186; Vaccination recommendations. In: Parent Project Muscular Dystrophy: Official website. Available online: https://www.parentpro-jectmd.org/site/PageServer?pagename=Care_area_vaccinations. Accessed on August 18, 2023.; Mochizuki H, Okahashi S, Ugawa Y, et al. Heart rate variability and hypercapnia in Duchenne muscular dystrophy. Intern Med. 2008;47(21):1893–1897. doi: https://doi.org/10.2169/internalmedicine.47.1118; Takasugi T, Ishihara T, Kawamura J, et al. Blood gas changes in Duchenne type muscular dystrophy. Nihon Kyobu Shikkan Gakkai Zasshi. 1995;33(1):17–22.; West NA, Yang ML, Weitzenkamp DA, et al. Patterns of growth in ambulatory males with Duchenne muscular dystrophy. J Pediatr. 2013;163(6):1759–1763.e1. doi: https://doi.org/10.1016/j.jpeds.2013.08.004; Lohman TG, Roche AF, Martorell R. Anthropometric standardization reference manual. Champaign, IL: Human Kinetic Books; 1988.; van Bockel EA, Lind JS, Zijlstra JG, et al. Cardiac assessment of patients with late stage Duchenne muscular dystrophy. Neth Heart J. 2009;17(6):232–237. doi: https://doi.org/10.1007/BF03086253; Martins E, Silva-Cardoso J, Silveira F, et al. Left ventricular function in adults with muscular dystrophies: genotype-phenotype correlations. Rev Port Cardiol. 2005;24(1):23–35.; Cummings EA, Ma J, Fernandez CV, et al. Incident Vertebral Fractures in Children With Leukemia During the Four Years Following Diagnosis. J Clin Endocrinol Metab. 2015;100(9):3408–3417. doi: https://doi.org/10.1210/JC.2015-2176; Christiansen BA, Bouxsein ML. Biomechanics of vertebral fractures and the vertebral fracture cascade. Curr Osteoporos Rep. 2010;8(4):198–204. doi: https://doi.org/10.1007/s11914-010-0031-2; Janisch M, Boehme K, Thiele S, et al. Tasks and interfaces in primary and specialized palliative care for Duchenne muscular dystrophy — A patients’ perspective. Neuromuscul Disord. 2020;30(12):975–985. doi: https://doi.org/10.1016/j.nmd.2020.09.031; Arias R, Andrews J, Pandya S, et al. Palliative care services in families of males with Duchenne muscular dystrophy. Muscle Nerve. 2011;44(1):93–101. doi: https://doi.org/10.1002/mus.22005; https://www.pedpharma.ru/jour/article/view/2348
-
19
Autoren: et al.
Quelle: Вестник Томского государственного университета. Биология. 2025. № 69. С. 83-92
Schlagwörter: наследственные спастические параплегии, нейродегенеративные наследственные заболевания, секвенирование нового поколения, сплайсинг, SPAST, ген
Dateibeschreibung: application/pdf
Relation: koha:001154766; https://vital.lib.tsu.ru/vital/access/manager/Repository/koha:001154766
-
20
Quelle: Nauchno-prakticheskii zhurnal «Medicinskaia genetika». :24-33
Schlagwörter: nonsyndromic hearing loss and deafness (DFNB1) type 1A, синтетические олигонуклеотиды, Yakuts, точковые мутации, methaemoglobinaemia type 1, DNA-microarray, SOPH syndrome, диагностический биочип, SOPH-синдром, 3. Good health, наследственные заболевания, heterozygous carriage, 3-M syndrome, diagnostics, тирозинемия 1 типа, метгемоглобинемия 1 типа, якуты, 3-М синдром, tyrosinemia type 1, гетерозиготное носительство, несиндромальная глухота 1 типа, synthesized oligonucleotides, inherited diseases, point mutatios
Nájsť tento článok vo Web of Science