Výsledky vyhledávání - "мультифакториальные заболевания"

  1. 1
  2. 2
  3. 3
  4. 4

    Zdroj: Medical Genetics; Том 15, № 12 (2016); 3-13 ; Медицинская генетика; Том 15, № 12 (2016); 3-13 ; 2073-7998

    Popis souboru: application/pdf

    Relation: https://www.medgen-journal.ru/jour/article/view/190/167; Лебедев В.В., Крылов В.В., Холодов С.А., Шелковский В.Н. Хирургия аневризм головного мозга в остром периоде кровоизлияния. М.: Медицина. 2006; с. 256.; Крылов В.В., Ярцев В.В., Кондаков Е.Н., Пирская Т.Н. Проблемы организации хирургического лечения больных с цереброваскулярной патологией в Российской Федерации. Журн. Вопр. нейрохирургии. 2005. 2: с. 38-40.; Johnston, S.C., S. Selvin, and D.R. Gress, The burden, trends, and demographics of mortality from subarachnoid hemorrhage. Neurology, 1998. 50(5): p. 1413-8.; Vlak, M.H., et al., Prevalence of unruptured intracranial aneurysms, with emphasis on sex, age, comorbidity, country, and time period: a systematic review and meta-analysis. Lancet Neurol, 2011. 10(7): p. 626-36.; Mackey, J., et al., Unruptured intracranial aneurysms in the Familial Intracranial Aneurysm and International Study of Unruptured Intracranial Aneurysms cohorts: differences in multiplicity and location. J Neurosurg, 2012. 117(1): p. 60-4.; de la Monte, S.M., et al., Risk factors for the development and rupture of intracranial berry aneurysms. Am J Med, 1985. 78(6 Pt 1): p. 957-64.; Медведев Ю.А., Забродская Ю.М. Новая концепция происхождения бифуркационных аневризм артерий основания головного мозга. Эскулап, 2000: с. 167.; Ostergaard, J.R. and H. Oxlund, Collagen type III deficiency in patients with rupture of intracranial saccular aneurysms. J Neurosurg, 1987. 67(5): p. 690-6.; O’Brien, J.G., Subarachnoid Haemorrhage in Identical Twins. Br Med J, 1942. 1(4245): p. 607-9.; Jokl, E. and J.B. Wolffe, Sudden nontraumatic death associated with physical exertion in identical twins. Acta Genet Med Gemellol (Roma), 1954. 3(2): p. 245-6.; Chambers, W.R., B.F. Harper, Jr., and J.R. Simpson, Familial incidence of congenital aneurysms of cerebral arteries: report of cases of ruptured aneurysms in father and son. J Am Med Assoc, 1954. 155(4): p. 358-9.; Ullrich, D.P., and Sugar, 0., Familial cerebral aneurysms including one extracranial internal carotid aneurysm. Neurology 1960. 10: p. 288-294.; McKusick, V.A., Intracranial aneurysm. J. chron. Dis., 1961. 14: p. 146.; Graf, C.J., Familial intracranial aneurysms. J Neurosurg, 1966. 25(3): p. 304-8.; Beumont, P.J.V., The familial occurrence of berry aneurysm. J. Neurol. Neurosurg. Psychiat., 1968. 31: p. 399-402.; Edelsohn, L., L. Caplan, and A.E. Rosenbaum, Familial aneurysms and infundibular widening. Neurology, 1972. 22(10): p. 1056-60.; Kheireddin, A.S., et al., [Familial intracranial aneurysms]. Zh Vopr Neirokhir Im N N Burdenko, 2005(4): p. 8-10; discussion 11.; Broderick, J.P., et al., The Familial Intracranial Aneurysm (FIA) study protocol. BMC Med Genet, 2005. 6: p. 17.; Nahed, B.V., et al., Mapping a Mendelian form of intracranial aneurysm to 1p34.3-p36.13. Am J Hum Genet, 2005. 76(1): p. 172-9.; Foroud, T., et al., Genome screen in familial intracranial aneurysm. BMC Med Genet, 2009. 10: p. 3.; Verlaan, D.J., et al., A new locus for autosomal dominant intracranial aneurysm, ANIB4, maps to chromosome 5p15.2-14.3. J Med Genet, 2006. 43(6): p. e31.; Ozturk, A.K., et al., Molecular genetic analysis of two large kindreds with intracranial aneurysms demonstrates linkage to 11q24-25 and 14q23-31. Stroke, 2006. 37(4): p. 1021-7.; Lozano, A.M. and R. Leblanc, Familial intracranial aneurysms. J Neurosurg, 1987. 66(4): p. 522-8.; Schievink, W.I., et al., Familial aneurysmal subarachnoid hemorrhage: a community-based study. J Neurosurg, 1995. 83(3): p. 426-9.; Schievink, W.I., Genetics of intracranial aneurysms. Neurosurgery, 1997. 40(4): p. 651-62; discussion 662-3.; Iwamoto, H., et al., Prevalence of intracranial saccular aneurysms in a Japanese community based on a consecutive autopsy series during a 30-year observation period. The Hisayama study. Stroke, 1999. 30(7): p. 1390-5.; de Rooij, N.K., et al., Incidence of subarachnoid haemorrhage: a systematic review with emphasis on region, age, gender and time trends. J Neurol Neurosurg Psychiatry, 2007. 78(12): p. 1365-72.; Kurki, M.I., et al., High risk population isolate reveals low frequency variants predisposing to intracranial aneurysms. PLoS Genet, 2014. 10(1): p. e1004134.; Group, T.M.R.A.i.R.o.P.w.S.H.S., Risks and Benefits of Screening for Intracranial Aneurysms in First-Degree Relatives of Patients with Sporadic Subarachnoid Hemorrhage. New England Journal of Medicine, 1999. 341(18): p. 1344-1350.; Chalouhi, N., et al., The case for family screening for intracranial aneurysms. Neurosurg Focus, 2011. 31(6): p. E8.; Raaymakers, T.W., G.J. Rinkel, and L.M. Ramos, Initial and follow-up screening for aneurysms in families with familial subarachnoid hemorrhage. Neurology, 1998. 51(4): p. 1125-30.; Onda, H., et al., Genomewide-linkage and haplotype-association studies map intracranial aneurysm to chromosome 7q11. Am J Hum Genet, 2001. 69(4): p. 804-19.; Ronkainen, A., J. Hernesniemi, and G. Tromp, Special features of familial intracranial aneurysms: report of 215 familial aneurysms. Neurosurgery, 1995. 37(1): p. 43-6; discussion 46-7.; Schievink, W.I., et al., On the inheritance of intracranial aneurysms. Stroke, 1994. 25(10): p. 2028-37.; Broderick, J.P., et al., Greater rupture risk for familial as compared to sporadic unruptured intracranial aneurysms. Stroke, 2009. 40(6): p. 1952-7.; Ellison D, L.S., Chimelli L et al., Neuropathology: a reference text of CNS pathology. 2013. 3rd. ed. Edinburgh: Mosby Elsvier.; Bromberg, J.E., et al., Familial subarachnoid hemorrhage: distinctive features and patterns of inheritance. Ann Neurol, 1995. 38(6): p. 929-34.; R, D., Zur Lehre von der Cystenniere, mit besonderer Berucksichtigung ihrer Hereditat. Beitr. path. Anat., 1904. 35: p. 445-509.; Xu, H.W., et al., Screening for intracranial aneurysm in 355 patients with autosomal-dominant polycystic kidney disease. Stroke, 2011. 42(1): p. 204-6.; Chapman A.B., et al., Intracranial Aneurysms in Autosomal Dominant Polycystic Kidney Disease. New England Journal of Medicine, 1992. 327(13): p. 916-920.; Graf, S., et al., Intracranial aneurysms and dolichoectasia in autosomal dominant polycystic kidney disease. Nephrol Dial Transplant, 2002. 17(5): p. 819-23.; Ruggieri, P.M., et al., Occult intracranial aneurysms in polycystic kidney disease: screening with MR angiography. Radiology, 1994. 191(1): p. 33-9.; Huston, J., 3rd, et al., Value of magnetic resonance angiography for the detection of intracranial aneurysms in autosomal dominant polycystic kidney disease. J Am Soc Nephrol, 1993. 3(12): p. 1871-7.; Schievink, W.I., et al., Intracranial aneurysm surgery in Ehlers-Danlos syndrome Type IV. Neurosurgery, 2002. 51(3): p. 607-11; discussion 611-3.; Germain, D.P., Clinical and genetic features of vascular Ehlers-Danlos syndrome. Ann Vasc Surg, 2002. 16(3): p. 391-7.; ter Berg, H.W., et al., Familial association of intracranial aneurysms and multiple congenital anomalies. Arch Neurol, 1986. 43(1): p. 30-3.; van den Berg, J.S., et al., Prevalence of symptomatic intracranial aneurysm and ischaemic stroke in pseudoxanthoma elasticum. Cerebrovasc Dis, 2000. 10(4): p. 315-9.; DeMeo, D.L. and E.K. Silverman, Alpha1-antitrypsin deficiency. 2: genetic aspects of alpha(1)-antitrypsin deficiency: phenotypes and genetic modifiers of emphysema risk. Thorax, 2004. 59(3): p. 259-64.; Bober, M.B., et al., Majewski osteodysplastic primordial dwarfism type II (MOPD II): expanding the vascular phenotype. Am J Med Genet A, 2010. 152A(4): p. 960-5.; Brancati, F., et al., Majewski osteodysplastic primordial dwarfism type II (MOPD II) complicated by stroke: clinical report and review of cerebral vascular anomalies. Am J Med Genet A, 2005. 139(3): p. 212-5.; Hall, J.G., et al., Majewski osteodysplastic primordial dwarfism type II (MOPD II): natural history and clinical findings. Am J Med Genet A, 2004. 130A(1): p. 55-72.; Curtis, S.L., et al., Results of screening for intracranial aneurysms in patients with coarctation of the aorta. AJNR Am J Neuroradiol, 2012. 33(6): p. 1182-6.; Cook, S.C., et al., Assessment of the cerebral circulation in adults with coarctation of the aorta. Congenit Heart Dis, 2013. 8(4): p. 289-95.; Лебедева E.Р., Колотвинов В.С., Сакович В.П., Медведева С.Ю., Системная дисплазия соединительной ткани и клинические проявления интракраниальных аневризм Нейрохирургия: научно-практический журнал. - М.: Ассоциация нейрохирургов России, 2013. N 2: с. 42-48.; Higashida, R.T., et al., Cavernous carotid artery aneurysm associated with Marfan’s syndrome: treatment by balloon embolization therapy. Neurosurgery, 1988. 22(2): p. 297-300.; Croisile, B., et al., [Aneurysm of the internal carotid artery and cervical mega-dolicho-arteries in Marfan syndrome]. Neurochirurgie, 1988. 34(5): p. 342-7.; Conway, J.E., G.M. Hutchins, and R.J. Tamargo, Marfan syndrome is not associated with intracranial aneurysms. Stroke, 1999. 30(8): p. 1632-6.; Roos, Y.B., et al., Genome-wide linkage in a large Dutch consanguineous family maps a locus for intracranial aneurysms to chromosome 2p13. Stroke, 2004. 35(10): p. 2276-81.; Mineharu, Y., et al., Model-based linkage analyses confirm chromosome 19q13.3 as a susceptibility locus for intracranial aneurysm. Stroke, 2007. 38(4): p. 1174-8.; Olson, J.M., et al., Search for intracranial aneurysm susceptibility gene(s) using Finnish families. BMC Med Genet, 2002. 3: p. 7.; Yamada, S., et al., Genome-wide scan for Japanese familial intracranial aneurysms: linkage to several chromosomal regions. Circulation, 2004. 110(24): p. 3727-33.; de Paepe, A., et al., Association of multiple intracranial aneurysms and collagen type III deficiency. Clin Neurol Neurosurg, 1988. 90(1): p. 53-6.; Pearson, T.A. and T.A. Manolio, How to interpret a genome-wide association study. JAMA, 2008. 299(11): p. 1335-44.; Фаворова O.O., Башинская В.В., Кулакова О.Г., Фаворов А.В., Бойко А.Н., Полногеномный поиск ассоциаций как метод анализа генетической архитектуры полигенных заболеваний (на примере рассеянного склероза). Молекулярная биология, 2014. 48(4): с. 573-586.; Farnham, J.M., et al., Confirmation of chromosome 7q11 locus for predisposition to intracranial aneurysm. Hum Genet, 2004. 114(3): p. 250-5.; Hofer, A., et al., Elastin polymorphism haplotype and intracranial aneurysms are not associated in Central Europe. Stroke, 2003. 34(5): p. 1207-11.; van der Voet, M., et al., Intracranial aneurysms in Finnish families: confirmation of linkage and refinement of the interval to chromosome 19q13.3. Am J Hum Genet, 2004. 74(3): p. 564-71.; van den Berg, J.S., et al., Type III collagen deficiency in saccular intracranial aneurysms. Defect in gene regulation? Stroke, 1999. 30(8): p. 1628-31.; Segev, A., N. Nili, and B.H. Strauss, The role of perlecan in arterial injury and angiogenesis. Cardiovasc Res, 2004. 63(4): p. 603-10.; Ruigrok, Y.M., et al., Genomewide linkage in a large Dutch family with intracranial aneurysms: replication of 2 loci for intracranial aneurysms to chromosome 1p36.11-p36.13 and Xp22.2-p22.32. Stroke, 2008. 39(4): p. 1096-102.; Medina, M., et al., Hemizygosity of delta-catenin (CTNND2) is associated with severe mental retardation in cri-du-chat syndrome. Genomics, 2000. 63(2): p. 157-64.; Hashikata, H., et al., Confirmation of an association of single-nucleotide polymorphism rs1333040 on 9p21 with familial and sporadic intracranial aneurysms in Japanese patients. Stroke, 2010. 41(6): p. 1138-44.; Foroud, T. et al., Genome screen to detect linkage to intracranial aneurysm susceptibility genes: the Familial Intracranial Aneurysm (FIA) study. Stroke, 2008. 39(5): p. 1434-40.; Worrall, B.B., et al., Genome screen to detect linkage to common susceptibility genes for intracranial and aortic aneurysms. Stroke, 2009. 40(1): p. 71-6.; Helgadottir, A., et al., The same sequence variant on 9p21 associates with myocardial infarction, abdominal aortic aneurysm and intracranial aneurysm. Nat Genet, 2008. 40(2): p. 217-24.; Bilguvar, K., et al., Susceptibility loci for intracranial aneurysm in European and Japanese populations. Nat Genet, 2008. 40(12): p. 1472-7.; Matsui, T., et al., Redundant roles of Sox17 and Sox18 in postnatal angiogenesis in mice. J Cell Sci, 2006. 119(Pt 17): p. 3513-26.; Lee, S., et al., Deficiency of endothelium-specific transcription factor Sox17 induces intracranial aneurysm. Circulation, 2015. 131(11): p. 995-1005.; Janzen, V., et al., Stem-cell ageing modified by the cyclin-dependent kinase inhibitor p16INK4a. Nature, 2006. 443(7110): p. 421-6.; Yasuno, K., et al., Common variant near the endothelin receptor type A (EDNRA) gene is associated with intracranial aneurysm risk. Proc Natl Acad Sci U S A, 2011. 108(49): p. 19707-12.; Deka, R., et al., The relationship between smoking and replicated sequence variants on chromosomes 8 and 9 with familial intracranial aneurysm. Stroke, 2010. 41(6): p. 1132-7.; Foroud, T., et al., Genome-wide association study of intracranial aneurysm identifies a new association on chromosome 7. Stroke, 2014. 45(11): p. 3194-9.; Matarin, M., et al., A genome-wide genotyping study in patients with ischaemic stroke: initial analysis and data release. Lancet Neurol, 2007. 6(5): p. 414-20.; Farlow, J.L., et al., Lessons Learned from Whole Exome Sequencing in Multiplex Families Affected by a Complex Genetic Disorder, Intracranial Aneurysm. PLoS One, 2015. 10(3).; Yasuno, K., et al., Genome-wide association study of intracranial aneurysm identifies three new risk loci. Nat Genet, 2010. 42(5): p. 420-5.; Yan, J., et al., Genetic study of intracranial aneurysms. Stroke, 2015. 46(3): p. 620-6.; Paschoal, E.H., et al., Relationship between endothelial nitric oxide synthase (eNOS) and natural history of intracranial aneurysms: meta-analysis. Neurosurg Rev, 2016.; Sathyan, S., et al., Association of Versican (VCAN) gene polymorphisms rs251124 and rs2287926 (G428D), with intracranial aneurysm. Meta Gene, 2014. 2: p. 651-60.; Liu, D., et al., Genome-wide microRNA changes in human intracranial aneurysms. BMC Neurol, 2014. 14: p. 188.; Takenaka, K., et al., Polymorphism of the endoglin gene in patients with intracranial saccular aneurysms. J Neurosurg, 1999. 90(5): p. 935-8.; Low, S.K., et al., Impact of LIMK1, MMP2 and TNF-alpha variations for intracranial aneurysm in Japanese population. J Hum Genet, 2011. 56(3): p. 211-6.; Mackey, J., et al., Familial intracranial aneurysms: is anatomic vulnerability heritable? Stroke, 2013. 44(1): p. 38-42.; Mackey, J., et al., Affected twins in the familial intracranial aneurysm study. Cerebrovasc Dis, 2015. 39(2): p. 82-6.; Ruigrok, Y.M., G.J. Rinkel, and C. Wijmenga, Genetics of intracranial aneurysms. Lancet Neurol, 2005. 4(3): p. 179-89.; Thompson, B.G., et al., Guidelines for the Management of Patients With Unruptured Intracranial Aneurysms: A Guideline for Healthcare Professionals From the American Heart Association/American Stroke Association. Stroke, 2015. 46(8): p. 2368-400.; Ruigrok, Y.M., E. Buskens, and G.J. Rinkel, Attributable risk of common and rare determinants of subarachnoid hemorrhage. Stroke, 2001. 32(5): p. 1173-5.; Ronkainen, A., et al., Familial intracranial aneurysms. Lancet, 1997. 349(9049): p. 380-4.; Brown, R.D., Jr., et al., Screening for brain aneurysm in the Familial Intracranial Aneurysm study: frequency and predictors of lesion detection. J Neurosurg, 2008. 108(6): p. 1132-8.; Crawley, F., A. Clifton, and M.M. Brown, Should we screen for familial intracranial aneurysm? Stroke, 1999. 30(2): p. 312-6.; Flahault, A., et al., Screening for Unruptured Intracranial Aneurysms in Autosomal Dominant Polycystic Kidney Disease: A Survey of 420 Nephrologists. PLoS One, 2016. 11(4): p. e0153176.; Feigin, V.L., et al., Risk factors for subarachnoid hemorrhage: an updated systematic review of epidemiological studies. Stroke, 2005. 36(12): p. 2773-80.; Akagawa H, et al., A haplotype spanning two genes, ELN and LIMK1, decreases their transcripts and confers susceptibility to intracranial aneurysms. Hum Mol Genet (2006) 15 (10): 1722-1734.

  5. 5
  6. 6
  7. 7
  8. 8
  9. 9
  10. 10
  11. 11
  12. 12

    Zdroj: Acta Biomedica Scientifica; № 6 (2014); 108-110 ; 2587-9596 ; 2541-9420

    Popis souboru: application/pdf

    Relation: https://www.actabiomedica.ru/jour/article/view/1848/1795; Баранова Е.И., Большакова О.О. Клиническое значение гомоцистеинемии (обзор литературы) // Артериальная гипертензия. - СПб., 2004. - № 10. С. 12-15; Добролюбов А.С., Добрынина М.Л., Дюжев Ж.А., Липин М.А., Поляков А.В., Фетисова И.Н. Полиморфизмы генов фолатного обмена у женщин с привычной потерей беременности ранних сроков // Вестник новых медицинских технологий. - 2006 - Т. XIII, № 4. - С. 60; Колесникова Л.И., Долгих В.В., Баирова Т.А., Бимбаев А.Б. Ген эндотелиальной синтазы оксис азота и эссенциальная артериальная гипертензия у подростков разных этнических групп, проживающих на территории Республики Бурятия // Бюллетень СО РАМН. - 2009. - № 6. - С. 109-115; Мирина Е.А., Коваленко К.А., Машкина Е.В., Шкурат Т.П. Исследование полиморфизма генов фолатного цикла и коагуляционных факторов крови у супружеских пар с бесплодием // Валеология. - 2011. - № 2. - С. 91-95; Фетисова И.Н., Добролюбов А.С., Липин М.А., Поляков А.В. Полиморфизм генов фолатного обмена и болезни человека // Вестник новых медицинских технологий. - 2007. - № 1. - С. 44-48; Шуматова Т.А., Приходченко Н.Г., Оденбах Л.А., Ефремова И.В. Роль метилирования ДНКисостояния фолатного обмена в развитии патологических процессов в организме человека // Тихоокеанский медицинский журнал. - 2013. - № 4. - С. 39-43; Щепотина Е.Г., Прасолова М.А., Иванов М.К. Новые наборы реагентов для выявления однонуклеотидных полиморфизмов генов фолатного цикла и системы свертывания крови // Новости «Вектор-Бест». - 2013. - № 2. - С. 7; Methyltetrahydrofolate-Homocysteine Methyltransferase / Gene Cards [Электронный ресурс]. - Режим доступа: http://www.genecards.org/cgi-bin/carddisp.pl?gene.; Botto N. Genetic polymorphisme in folate and homocysteine metabolisms risk factors for DNA damage // European Journal of Human Genetics. - 2003. - Vol. 11. - P. 671-678.; Li J.Z. Worldwide human relationships inferred from genome-wide patterns of variation // Science. - 2008. - N 319. - P. 1102.; Yu K. Methionine synthase 2756A>G polymorphism and cancer risk: a meta-analysis // European Journal of Human Genetics. - 2010. - N 18. - P. 372-373.; https://www.actabiomedica.ru/jour/article/view/1848

  13. 13
  14. 14
  15. 15
  16. 16
  17. 17
  18. 18
  19. 19
  20. 20