Výsledky vyhľadávania - "липидный профиль"
-
1
-
2
-
3
Autori: a ďalší
Prispievatelia: a ďalší
Zdroj: FARMAKOEKONOMIKA. Modern Pharmacoeconomics and Pharmacoepidemiology; Vol 18, No 1 (2025); 95-103 ; ФАРМАКОЭКОНОМИКА. Современная фармакоэкономика и фармакоэпидемиология; Vol 18, No 1 (2025); 95-103 ; 2070-4933 ; 2070-4909
Predmety: оксидативный стресс, chickpea, terpenes, phytosterols, lipid profile, oxidative stress, нут, терпены, фитостерины, липидный профиль
Popis súboru: application/pdf
Relation: https://www.pharmacoeconomics.ru/jour/article/view/1183/610; Abu-Raghif A.R., Sahib H.B., Abbas S.N. Anti-hyperlipidemic effect of Vitex agnus castus extracts in mice. Int J Pharm Sci Rev Res. 2015; 35 (2): 120–5.; Hwerif N., Raghif A., Kadhim E. Effect of terpenes fraction of Iraqi cicer arietinum in experimentally induced hyperlipidemic mice. Int J Health Sci. 2022; 6 (S5): 10514–30. https://doi.org/10.53730/ijhs.v6nS5.11275.; Abbas S.N., Shihab E.M., Shareef S.M., et al. Effect of bosentan in experimentally induced hyperlipidemic mice. J Population Ther Clin Pharmacol. 2023; 30 (9): e231–8.; Ward N.C., Pang J., Ryan J.D., Watts G.F. Nutraceuticals in the management of patients with statin-associated muscle symptoms, with a note on real-world experience. Clin Cardiol. 2018; 41 (1): 159–65. https://doi.org/10.1002/clc.22862.; Acevedo Martinez K.A., Yang M.M., Gonzalez de Mejia E. Technological properties of chickpea (Cicer arietinum): production of snacks and health benefits related to type-2 diabetes. Compr Rev Food Sci Food Saf. 2021; 20 (4): 3762–87. https://doi.org/10.1111/1541-4337.12762.; Hamarash A.M. Study the phnotypic and productive characters of seven selected genotypes of chickpea (Cicer arietinum L.) cv. (Kabuli and Desi) under rainfall conditions in Sulaimani Province, Iraq. Kufa Journal for Agricultural Sciences. 2020; 12 (2): 43–53.; Wallace T.C., Murray R., Zelman K.M. The nutritional value and health benefits of chickpeas and hummus. Nutrients. 2016; 8 (12): 766. https://doi.org/10.3390/nu8120766.; Cox-Georgian D., Ramadoss N., Dona C., Basu C. Therapeutic and medicinal uses of terpenes. Medicinal Plants. 2019 Nov 12: 333–59. https://doi.org/10.1007/978-3-030-31269-5_15.; Hwerif N.R., Raghif A.R.A., Kadhim E.J. Effect of phytosterols fraction of Iraqi cicer arietinum in experimentally induced hyperlipidemic mice. AMJ. 2022; 62 (06): 2677–92.; Moreau R.A., Nyström L., Whitaker B.D., et al. Phytosterols and their derivatives: structural diversity, distribution, metabolism, analysis, and health-promoting uses. Prog Lipid Res. 2018; 70: 35–61. https://doi.org/10.1016/j.plipres.2018.04.001.; Salehi B., Quispe C., Sharifi-Rad J., et al. Phytosterols: From preclinical evidence to potential clinical applications. Front Pharmacol. 2021; 11: 599959. https://doi.org/10.3389/fphar.2020.599959.; Khadim E.J., Abdulrasool A.A., Awad Z.J. Phytochemical investigation of alkaloids in the Iraqi Echinops heterophyllus (Compositae). Iraqi J Pharm Sci. 2014; 23 (1): 26–34.; Coakly W.A. Handbook of automated analysis: continuous flow technique. Mercel Dekker; 1981: 61 pp.; Wang L.X., Liu K., Gao D.W., Hao J.K. Protective effects of two Lactobacillus plantarum strains in hyperlipidemic mice. World J Gastroenterol. 2013; 19 (20): 3150–6. https://doi.org/10.3748/wjg.v19.i20.3150.; Pandit K., Karmarkar S., Bhagwat A. Evaluation of antihyperlipidemic activity of Ficus hispida linn leaves in Triton WR-1339 (Tyloxapol) induced hyperlipidemia in mice. Int J Pharm Pharm Sci. 2011; 3 (Suppl. 5): 188–91.; Bancroft J.D., Gamble M. Theory and practice of histological techniques. 6th ed. Churchill Livingstone; 2007: 744 pp.; Prasanna M. Hypolipidemic effect of fenugreek: a clinical study. Indian J Pharmacol. 2000; 32 (1): 34–6.; Meier B. From medicinal plant to phytotherapeutic drug. Ther Umsch. 2002; 59 (6): 275–82 (in German). https://doi.org/10.1024/0040-5930.59.6.275.; Garcia-Llatas G., Alegria A., Barberá R., Cilla A. Current methodologies for phytosterol analysis in foods. Microchem J. 2021; 168: 106377. https://doi.org/10.1016/j.microc.2021.106377.; Yang R.L., Li W., Shi Y.H., Le G.W. Lipoic acid prevents high-fat dietinduced dyslipidemia and oxidative stress: a microarray analysis. Nutrition. 2008; 24 (6): 582–8. https://doi.org/10.1016/j.nut.2008.02.002.; Ghule B., Ghante M., Saoji A., Yeole P. Hypolipidemic and antihyperlipidemic effects of Lagenaria siceraria (Mol.) fruit extracts. Indian J Exp Biol. 2006; 44 (11): 905–9.; Lim S.M., Goh Y.M., Kuan W.B., Loh S.P. Effect of germinated brown rice extracts on pancreatic lipase, adipogenesis and lipolysis in 3T3-L1 adipocytes. Lipids Health Dis. 2014; 13: 169. https://doi.org/10.1186/1476-511X-13-169.; Zhang B., Deng Z., Ramdath D.D., et al. Phenolic profiles of 20 Canadian lentil cultivars and their contribution to antioxidant activity and inhibitory effects on α-glucosidase and pancreatic lipase. Food Chem. 2015; 172: 862–72. https://doi.org/10.1016/j.foodchem.2014.09.144.; Yin Y., Yu Z., Xia M., et al. Vitamin D attenuates high fat dietinduced hepatic steatosis in rats by modulating lipid metabolism. Eur Clin Invest. 2012; 42 (11): 1189–96. https://doi.org/10.1111/j.1365-2362.2012.02706.x.; Preiss D., Sattar N. Non-alcoholic fatty liver disease: an overview of prevalence, diagnosis, pathogenesis and treatment considerations. Clin Sci. 2008; 115 (5): 141–50. https://doi.org/10.1042/CS20070402.; Kim I.S., Yang M.R., Lee O.H., Kang S.N. Antioxidant activities of hot water extracts from various spices. Int J Mol Sci. 2011; 12 (6): 4120–31. https://doi.org/10.3390/ijms12064120.; Ayala A., Muñoz M.F., Argüelles S. Lipid peroxidation: production, metabolism, and signaling mechanisms of malondialdehyde and 4-hydroxy-2-nonenal. Oxid Med Cell Longev. 2014; 2014: 360438. https://doi.org/10.1155/2014/360438.; Pandey K.B., Rizvi S.I. Markers of oxidative stress in erythrocytes and plasma during aging in humans. Oxid Med Cell Longev. 2010; 3 (1): 2–12. https://doi.org/10.4161/oxim.3.1.10476.; Kim T., Song B., Cho K.S., Lee I.S. Therapeutic potential of volatile terpenes and terpenoids from forests for inflammatory diseases. Int J Mol Sci. 2020; 21 (6): 2187. https://doi.org/10.3390/ijms21062187.; Chaiwong S., Chatturong U., Chanasong R., et al. Dried mulberry fruit ameliorates cardiovascular and liver histopathological changes in high-fat diet-induced hyperlipidemic mice. J Tradit Complement Med. 2021; 11 (4): 356–68. https://doi.org/10.1016/j.jtcme.2021.02.006.; Chi G., Wei M., Xie X., et al. Suppression of MAPK and NF-κB pathways by limonene contributes to attenuation of lipopolysaccharideinduced inflammatory responses in acute lung injury. Inflammation. 2013; 36 (2): 501–11. https://doi.org/10.1007/s10753-012-9571-1.; Vallianou I., Hadzopoulou-Cladaras M. Camphene, a plant derived monoterpene, exerts its hypolipidemic action by affecting SREBP-1 and MTP expression. PLoS One. 2016; 11 (1): e0147117. https://doi.org/10.1371/journal.pone.0147117.; Brüll F., Mensink R. Plant sterols: functional lipids in immune function and inflammation? Clin Lipidol. 2009; 4 (3): 355. https://doi.org/10.2217/clp.09.26.; https://www.pharmacoeconomics.ru/jour/article/view/1183
-
4
Autori: a ďalší
Zdroj: Medical Herald of the South of Russia; Том 16, № 1 (2025); 39-45 ; Медицинский вестник Юга России; Том 16, № 1 (2025); 39-45 ; 2618-7876 ; 2219-8075 ; 10.21886/2219-8075-2025-16-1
Predmety: предиабет, metformin, diet, lipid profile, prediabetes, метформин, диетотерапия, липидный профиль
Popis súboru: application/pdf
Relation: https://www.medicalherald.ru/jour/article/view/2024/1075; Global report on diabetes. Geneva: World Health Organization 2018. License: CC BY-NC-SA 3.0 IGO.; Дедов И.И., Шестакова М.В., Галстян Г.Р. Распространенность сахарного диабета 2 типа у взрослого населения России (исследование NATION). Сахарный диабет. 2016;19(2):104-112. https://doi.org/10.14341/DM2004116-17; Барбараш О.Л., Воевода М.И., Галстян Г.Р., Шестакова М.В., Бойцов С.А., и др. Предиабет как междисциплинарная проблема: определение, риски, подходы к диагностике и профилактике сахарного диабета 2 типа и сердечно-сосудистых осложнений. Российский кардиологический журнал. 2019;(4):83-91. https://doi.org/10.15829/1560-4071-2019-4-83-91; Гринева Е.Н., Мазуров В.И., Халимов Ю.Ш., Бакулин И.Г., Панов А.В., и др. Проект резолюции Экспертного Совета главных специалистов СЗФО по выявлению предиабета и профилактике сахарного диабета 2-го типа и связанных с ним заболеваний сердечно-сосудистой системы, печени, опорно-двигательного аппарата. Артериальная гипертензия. 2019;25(6):693-699. https://doi.org/10.18705/1607-419X-2019-25-6-693-699; Дедов И.И., Шестакова М.В., Майоров А.Ю., Мокрышева Н.Г., Андреева Е.Н., и др. Алгоритмы специализированной медицинской помощи больным сахарным диабетом / Под редакцией И.И. Дедова, М.В. Шестаковой, А.Ю. Майорова. 11-й выпуск. Сахарный диабет. 2023;26(2S):1-157. https://doi.org/10.14341/DM13042; Теплова А.С., Титова В.В., Тенчурина А.И. Биохимические основы органо-протективных свойств метформина. FOCUS. Эндокринология. 2024;5(1):59-64. https://doi.org/10.62751/2713-0177-2024-5-1-08; Поздняков Н.О., Каграманян И.Н., Мирошников А.Е., Емельянов Е.С., Груздева А.А., и др. Фармакогенетические аспекты в терапии сахарного диабета 2-го типа. Acta Biomedica Scientifica. 2020;5(3):13-23. https://doi.org/10.29413/ABS.2020-5.3.2; Graham GG, Punt J, Arora M, Day RO, Doogue MP, et al. Clinical pharmacokinetics of metformin. Clin Pharmacokinet. 2011;50(2):81-98. https://doi.org/10.2165/11534750-000000000-00000; Mofo Mato EP, Guewo-Fokeng M, Essop MF, Owira PMO. Genetic polymorphisms of organic cation transporter 1 (OCT1) and responses to metformin therapy in individuals with type 2 diabetes: A systematic review. Medicine (Baltimore). 2018;97(27):e11349. https://doi.org/10.1097/MD.0000000000011349; Reséndiz-Abarca CA, Flores-Alfaro E, Suárez-Sánchez F, Cruz M, Valladares-Salgado A, Del Carmen Alarcón-Romero L, Vázquez-Moreno MA, Wacher-Rodarte NA, Gómez-Zamudio JH. Altered Glycemic Control Associated With Polymorphisms in the SLC22A1 (OCT1) Gene in a Mexican Population With Type 2 Diabetes Mellitus Treated With Metformin: A Cohort Study. J Clin Pharmacol. 2019;59(10):1384-1390. https://doi.org/10.1002/jcph.1425; Tkáč I, Klimčáková L, Javorský M, Fabianová M, Schroner Z, et al. Pharmacogenomic association between a variant in SLC47A1 gene and therapeutic response to metformin in type 2 diabetes. Diabetes Obes Metab. 2013;15(2):189-191. https://doi.org/10.1111/j.1463-1326.2012.01691.x; Кравцова О.А. Структура ядерного генофонда поволжских татар (по данным аутосомных микросателлитных локусов). Ученые записки Казанского университета. Серия Естественные науки. 2007;149(2):138-147. eLIBRARY ID: 11136942 EDN: JJSLRF; Umamaheswaran G, Praveen RG, Damodaran SE, Das AK, Adithan C. Influence of SLC22A1 rs622342 genetic polymorphism on metformin response in South Indian type 2 diabetes mellitus patients. Clin Exp Med. 2015;15(4):511-517. https://doi.org/10.1007/s10238-014-0322-5; https://www.medicalherald.ru/jour/article/view/2024
-
5
Autori: a ďalší
Zdroj: Meditsinskiy sovet = Medical Council; № 1 (2025); 187-194 ; Медицинский Совет; № 1 (2025); 187-194 ; 2658-5790 ; 2079-701X
Predmety: персонализированный подход, ezetimibe, monotherapy, combined therapy, atorvastatin, LDL-C, lipid profile, children, adolescents, hypolipidemic therapy, personalized approach, эзетимиб, монотерапия, комбинированная терапия, аторвастатин, ХС ЛНП, липидный профиль, дети, подростки, гиполипидемическая терапия
Popis súboru: application/pdf
Relation: https://www.med-sovet.pro/jour/article/view/8981/7810; Ference BA, Ginsberg HN, GrahamI, Ray KK, Packard CJ, Bruckert E Iet al. Low-density lipoproteins cause atherosclerotic cardiovascular disease. 1. Evidence from genetic, epidemiologic, and clinical studies. A consensus statement from the European Atherosclerosis Society Consensus Panel. Eur Heart J. 2017;38(32):2459–2472. https://doi.org/10.1093/eurheartj/ehx144.; Risk of fatal coronary heart disease in familial hypercholesterolaemia. Scientific Steering Committee on behalf of the Simon Broome Register Group. BMJ. 1991;303(6807):893–896. https://doi.org/10.1136/bmj.303.6807.893.; Hokanson JS, Arce AB, Ahmed SA, Zhang X, Dodge AM, Peterson AL. Preventive Medicine in Pediatric Cardiology Practice. J Pediatr. 2023;253:1–17.e3. https://doi.org/10.1016/j.jpeds.2022.08.034.; Wiegman A, Gidding SS, Watts GF, Chapman MJ, Ginsberg HN, Cuchel M et al. Familial hypercholesterolaemia in children and adolescents: gaining decades of life by optimizing detection and treatment. Eur Heart J. 2015;36(36):2425–2437. https://doi.org/10.1093/eurheartj/ehv157.; Falkner B, Gidding S. Life-Course Implications of Pediatric Risk Factors for Cardiovascular Disease. Can J Cardiol. 2021;37(5):766–775. https://doi.org/10.1016/j.cjca.2021.02.001.; Grundy SM, Stone NJ, Bailey AL, Beam C, Birtcher KK, Blumenthal RS et al. 2018 AHA/ACC/AACVPR/AAPA/ABC/ACPM/ADA/AGS/APhA/ASPC/NLA/PCNA Guideline on the Management of Blood Cholesterol: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. J Am Coll Cardiol. 2019;73(24):e285–e350. https://doi.org/10.1016/j.jacc.2018.11.003.; Cohen H, Stefanutti C. The Mighty Medic Satellite Research Group for Pediatric Dyslipidemia. Current Approach to the Diagnosis and Treatment of Heterozygote and Homozygous FH Children and Adolescents. Curr Atheroscler Rep. 2021;23(6):30. https://doi.org/10.1007/s11883-021-00926-3.; Mendelson MM, Regh T, Chan J, Baker A, Ryan HH, Palumbo N et al. Correlates of Achieving Statin Therapy Goals in Children and Adolescents with Dyslipidemia. J Pediatr. 2016;178:149–155.e9. https://doi.org/10.1016/j.jpeds.2016.08.003.; Pinal-Fernandez I, Casal-Dominguez M, Mammen AL. Statins: pros and cons. Med Clin. 2018;150(10):398–402. https://doi.org/10.1016/j.medcli.2017.11.030.; Singh A, Cho LS. Nonstatin therapy to reduce low-density lipoprotein cholesterol and improve cardiovascular outcomes. Cleve Clin J Med. 2024;91(1):53–63. https://doi.org/10.3949/ccjm.91a.23058.; Тюрюмин ЯЛ, Шантуров ВА, Тюрюмина ЕЭ. Физиология обмена холестерина (обзор). Acta Biomedica Scientifica. 2012;2(1):153–158. Режим доступа: https://www.actabiomedica.ru/jour/article/view/803.; Van Heek M, Davis H. Pharmacology of ezetimibe. European Heart Journal, Supplement. 2004;4:J5–J8. https://doi.org/10.1016/S1520-765X(02)90076-3.; Araujo MB, Pacce MS. A 10-year experience using combined lipid-lowering pharmacotherapy in children and adolescents. J Pediatr Endocrinol Metab. 2016;29(11):1285–1291. https://doi.org/10.1515/jpem-2016-0117.; Benekos T, Kosmeri C, Vlahos A, Milionis H. Nine-year overview of dyslipidemia management in children with heterozygous familial hypercholesterolemia: a university hospital outpatient lipid clinic project in Northwestern Greece. J Pediatr Endocrinol Metab. 2020;33(4):533–538. https://doi.org/10.1515/jpem-2019-0250.; van der Graaf A, Cuffie-Jackson C, Vissers MN, Trip MD, Gagne C, Shi G et al. Efficacy and safety of coadministration of ezetimibe and simvastatin in adolescents with heterozygous familial hypercholesterolemia. J Am Coll Cardiol. 2008;52(17):1421–1429. https://doi.org/10.1016/j.jacc.2008.09.002.; Bytyçi I, Bytyqi S, Lewek J, Surma S, Bajraktari G, Henein M et al. Management of children with heterozygous familial hypercholesterolaemia worldwide: a meta-analysis. Eur Heart J Open. 2025;5(1):oeaf001. https://doi.org/10.1093/ehjopen/oeaf001.; Clauss S, Wai KM, Kavey RE, Kuehl K. Ezetimibe treatment of pediatric patients with hypercholesterolemia. J Pediatr. 2009;154(6):869–872. https://doi.org/10.1016/j.jpeds.2008.12.044.; Araujo MB, Botto PM, Mazza CS. Uso de ezetimibe en el tratamiento de la hipercolesterolemia [Use of ezetimibe in the treatment of familial hypercholesterolemia in children and adolescents]. An Pediatr. 2012;77(1):37–42. https://doi.org/10.1016/j.anpedi.2011.11.007.; Kusters DM, Caceres M, Coll M, Cuffie C, Gagne C, Jacobson MS et al. Efficacy and safety of ezetimibe monotherapy in children with heterozygous familial or nonfamilial hypercholesterolemia. J Pediatr. 2015;166(6):1377–1384.E3. https://doi.org/10.1016/j.jpeds.2015.02.043.; Llewellyn A, Simmonds M, Marshall D, Harden M, Woods B, Humphries SE et al. Efficacy and safety of statins, ezetimibe and statins-ezetimibe therapies for children and adolescents with heterozygous familial hypercholesterolaemia: Systematic review, pairwise and network meta-analyses of randomised controlled trials. Atherosclerosis. 2025;401:118598. https://doi.org/10.1016/j.atherosclerosis.2024.118598.
-
6
Autori:
Zdroj: Medical science of Uzbekistan; No. 3 (2025): May-June; 81-87 ; Медицинская наука Узбекистана; № 3 (2025): Май-Июнь; 81-87 ; O`zbekiston tibbiyot ilmi; No. 3 (2025): May-Iyun; 81-87 ; 2181-3612
Predmety: physical exercise, adaptation, blood glucose, blood lactic acid, lipid profile, DNA methylation, DNA methyltransferase 1, 5-methyl-2'-deoxycytidine, физические нагрузки, адаптация, глюкоза крови, молочная кислота в крови, липидный профиль, метилирование ДНК, ДНК метил-трансфераза 1, 5-метил-2'-дез-оксицитидин, jismoniy faollik, moslashish, qon glyukozasi, qondagi sut kislotasi, lipid profili, DNK metilatsiyasi, DNK metiltransferaza 1, 5-metil-2'-deoksisitidin
Popis súboru: application/pdf
Relation: https://fdoctors.uz/index.php/journal/article/view/166/128; https://fdoctors.uz/index.php/journal/article/view/166
-
7
Autori: a ďalší
Zdroj: Food systems; Vol 8, No 1 (2025); 106-113 ; Пищевые системы; Vol 8, No 1 (2025); 106-113 ; 2618-7272 ; 2618-9771 ; 10.21323/2618-9771-2025-8-1
Predmety: липидный профиль, soft drink, transaminases, lipid profile, газированный напиток, трансаминазы
Popis súboru: application/pdf
Relation: https://www.fsjour.com/jour/article/view/712/380; Vilela, A., Cosme, F., Pinto, T. (2018). Emulsions, foams, and suspensions: The microscience of the beverage industry. Beverages, 4(2), 25. https://doi.org/10.3390/beverages4020025; Izah, S., Inyang, I., Angaye, T., Okowa, I. (2016). A review of heavy metal concentration and potential health implications of beverages consumed in Nigeria. Toxics, 5(1), Article 1. https://doi.org/10.3390/toxics5010001; Lee, C.-Y., Chuang, Y.-S., Lee, C.-H., Wu, M.-T. (2023). Linking metabolic syndrome with low bone mass through insights from BMI and health behaviors. Scientific Reports, 13(1), Article 14393. https://doi.org/10.1038/s41598-023-41513-7; De Longis, E., Lerond, C., Costello, S. E., Hudry, J. (2022). The matrix matters: Beverage carbonation impacts the timing of caffeine effects on sustained attention. Nutrients, 14(11), Article 2305. https://doi.org/10.3390/nu14112305; dePaula, J., Farah, A. (2019). Caffeine consumption through coffee: Content in the beverage, metabolism, health benefits and risks. Beverages, 5(2), Article 37. https://doi.org/10.3390/beverages5020037; Jamshed, N., Kumar, A., Baitha, U., Aggarwal, P. (2016). A fatal case of menthol poisoning. International Journal of Applied and Basic Medical Research, 6(2), Article 137. https://doi.org/10.4103/2229-516x.179015; Fan, M., Yuan, S., Li, L., Zheng, J., Zhao, D., Wang, C. et al (2023). Application of terpenoid compounds in food and pharmaceutical products. Fermentation, 9(2), Article 119. https://doi.org/10.3390/fermentation9020119; Jatau, A. I., Sha’aban, A., Gulma, K. A., Shitu, Z., Khalid, G. M., Isa, A. et al. (2021). The burden of drug abuse in Nigeria: A scoping review of epidemiological studies and drug laws. Public Health Reviews, 42, Article 1603960. https://doi.org/10.3389/phrs.2021.1603960; Ibtissem, B. A., Hajer, B. S., Ahmed, H., Awatef, E., Choumous, K., Ons, B. et al. (2017). Oxidative stress and histopathological changes induced by methylthiophanate, a systemic fungicide, in blood, liver and kidney of adult rats. African Health Sciences, 17(1), Article 154. https://doi.org/10.4314/ahs.v17i1.20; Isoje, E. F., Okoro, I. O. (2022). Changes in oxidative stress parameters in wistar rats administered soft drink and menthol candy. Journal of Applied Sciences and Environmental Management, 25(12), 2047–2052. https://doi.org/10.4314/jasem.v25i12.8; Edo, G. I., Onoharigho, F. O., Jikah, A. N., Agbo, J. J. (2024). The ameliorative effect of methanol extract of Ricinodendron heudelotii (Baill.) leaves on paracetamol-induced hepatotoxicity in Wistar rats. Drug and Chemical Toxicology, 48(1), 98–106. https://doi.org/10.1080/01480545.2024.2362891; Baibars, M., Eng, S., Shaheen, K., Alraiyes, A. H., Alraies, M. C. (2012). Menthol toxicity: An unusual cause of coma. Case Reports in Medicine, 2012, 1–3. https://doi.org/10.1155/2012/187039; Earp, B. D., Wudarczyk, O. A., Foddy, B., Savulescu, J. (2017). Addicted to love: What is love addiction and when should it be treated? Philosophy, Psychiatry, and Psychology, 24(1), 77–92. https://doi.org/10.1353/ppp.2017.0011; Edo, G. I. (2022). Effects of paraquat dichloride on adult male wistar rat. an approach in the toxicity of body weights and hematological tissues. Journal of Analytical and Pharmaceutical Research, 11(1), 1–7. https://doi.org/10.15406/japlr.2022.11.00394; Vaja, R., Rana, M. (2020). Drugs and the liver. Anaesthesia and Intensive Care Medicine, 21(10), 517–523. https://doi.org/10.1016/j.mpaic.2020.07.001; Edo, G. I., Ugbune, U., Onoharigho, F. O., Ezekiel, G. O., Agbo, J. J. (2023). Antioxidant activities of reissantia indica willd. (mopane paddle-pod) and nephroprotective effect on paracetamol-induced nephrotoxicity in male wistar rats. Nutrire, 48, Article 26. https://doi.org/10.1186/s41110-023-00214-x; Coleman, J. J., Pontefract, S. K. (2016). Adverse drug reactions. Clinical Medicine, 16(5), 481–485. https://doi.org/10.7861/clinmedicine.16-5-481; Yang, S., Kar, S. (2023). Application of artificial intelligence and machine learning in early detection of adverse drug reactions (ADRs) and drug-induced toxicity. Artificial Intelligence Chemistry, 1(2), Article 100011. https://doi.org/10.1016/j.aichem.2023.100011; Owheruo, J. O., Edo, G. I., Oluwajuyitan, D. T., Faturoti, A. O., Martins, I. E., Akpoghelie, P. O. et al. (2023). Quality evaluation of value-added nutritious biscuit with high antidiabetic properties from blends of wheat flour and oyster mushroom. Food Chemistry Advances, 3, Article 100375. https://doi.org/10.1016/j.focha.2023.100375; Edo, G. I., Onoharigho, F. O. (2023). A comparative study of biological and chemical composition of African spinach (Amaranthus cruentus) extract: An approach in drug formulation, food and nutrition. Advances in Traditional Medicine, 24(2), 519–529. https://doi.org/10.1007/s13596-023-00718-x; Nwosu, L. C., Edo, G. I., Özgör, E. (2022). The phytochemical, proximate, pharmacological, GC–MS analysis of Cyperus esculentus (Tiger nut): A fully validated approach in health, food and nutrition. Food Bioscience, 46, Article 101551. https://doi.org/10.1016/j.fbio.2022.101551; Edo, G. I., Jikah, A. N., Onoharigho, F. O., Akpoghelie, P. O., Agbo, J. J., Ekokotu, H. A. et al. (2024). The ameliorative effects of Vernonia amygdalina extract on superoxide dismutase and glutathione s-transferase on alloxan induced diabetes on male Wistar rats. Food Chemistry Advances, 4, Article 100620. https://doi.org/10.1016/j.focha.2024.100620; Onyibe, P. N., Edo, G. I., Nwosu, L. C., Ozgor, E. (2021). Effects of vernonia amygdalina fractionate on glutathione reductase and glutathione-S‑transferase on alloxan induced diabetes wistar rat. Biocatalysis and Agricultural Biotechnology, 36, Article 102118. https://doi.org/10.1016/j.bcab.2021.102118; Edo, G. I. (2022). Antibacterial, phytochemical and GC–MS analysis of Thevetia peruviana extracts: An approach in drug formulation. Natural Resources for Human Health, 2(4), 418–426. https://doi.org/10.53365/nrfhh/146543; Onanuga, I. O., Jegede, A. I., Offor, U., Ogedengbe, O. O., Naidu, E. C. S., Peter, A. I. et al. (2020). Hypoxis hemerocallidea alters metabolic parameters and hepatic histomorphology in streptozotocin-nicotinamide-induced diabetic male rats under antiretroviral therapy. Archives of Medical Science, 16(1), 212–224. https://doi.org/10.5114/aoms.2018.75220; Kerimi, A., Nyambe-Silavwe, H., Pyner, A., Oladele, E., Gauer, J. S., Stevens, Y. et al. (2019). Nutritional implications of olives and sugar: attenuation of postprandial glucose spikes in healthy volunteers by inhibition of sucrose hydrolysis and glucose transport by oleuropein. European Journal of Nutrition, 58(3), 1315–1330. https://doi.org/10.1007/s00394-018-1662-9; Okpoghono, J., Achuba, F. I., George, B. O. (2018). Protective effect of Monodora myristica extracts on crude petroleum oil-contaminated catfish (Clarias gariepinus) diet in rats. International Journal of Veterinary Science and Medicine, 6(1), 117–122. https://doi.org/10.1016/j.ijvsm.2018.03.006; Ozer, A., Tome, J. M., Friedman, R. C., Gheba, D., Schroth, G. P., Lis, J. T. (2015). Quantitative assessment of RNA‑protein interactions with high-throughput sequencing–RNA affinity profiling. Nature Protocols, 10(8), 1212–1233. https://doi.org/10.1038/nprot.2015.074; Hassan, I. U., Ehsan, N., Ijaz, M. U., Afsar, T., Amor, H., Almajwal, A. et al. (2022). Iridoid glycoside Aucubin protects against nonylphenol-induced testicular damage in male rats via modulation of steroidogenic and apoptotic signaling. Scientific Reports, 12(1), Article 13783. https://doi.org/10.1038/s41598-022-18148-1; Charmier, L. M. J., McLoughlin, C., McCleary, B. V. (2021). Diastatic power and maltose value: A method for the measurement of amylolytic enzymes in malt. Journal of the Institute of Brewing, 127(4), 327–344. https://doi.org/10.1002/jib.665; Nagababu, E., Rifkind, J. M., Boindala, S., Nakka, L. (2010). Assessment of antioxidant activity of eugenol in Vitro and in Vivo. Chapter in a book: Free Radicals and Antioxidant Protocols. Methods in Molecular Biology. Humana Press, 2010. https://doi.org/10.1007/978-1-60327-029-8_10; Perry, C., Chung, J.-Y., Ylaya, K., Choi, C. H., Simpson, A., Matsumoto, K. T. et al. (2016). A buffered alcohol-based fixative for histomorphologic and molecular applications. Journal of Histochemistry and Cytochemistry, 64(7), 425–440. https://doi.org/10.1369/0022155416649579; Alsunni, A.A. (2015). Energy drink consumption: Beneficial and adverse health effects. International Journal of Health Sciences, 9(4), 468–474.; Battram, D. S., Graham, T. E., Richter, E. A., Dela, F. (2005). The effect of caffeine on glucose kinetics in humans — influence of adrenaline. The Journal of Physiology, 569(1), 347–355. https://doi.org/10.1113/jphysiol.2005.097444; Malik, V. S., Popkin, B. M., Bray, G. A., Després, J.-P., Hu, F. B. (2010). Sugar-sweetened beverages, obesity, type 2 diabetes mellitus, and cardiovascular disease risk. Circulation, 121(11), 1356–1364. https://doi.org/10.1161/CIRCULATIONAHA.109.876185; Muruganathan, U., Srinivasan, S., Vinothkumar, V. (2017). Antidiabetogenic efficiency of menthol, improves glucose homeostasis and attenuates pancreatic; β-cell apoptosis in streptozotocin–nicotinamide induced experimental rats through ameliorating glucose metabolic enzymes. Biomedicine and Pharmacotherapy, 92, 229–239. https://doi.org/10.1016/j.biopha.2017.05.068; Haeusler, R. A., Camastra, S., Astiarraga, B., Nannipieri, M., Anselmino, M., Ferrannini, E. (2015). Decreased expression of hepatic glucokinase in type 2 diabetes. Molecular Metabolism, 4(3), 222–226. https://doi.org/10.1016/j.molmet.2014.12.007; Whitticar, N. B., Nunemaker, C. S. (2020). Reducing glucokinase activity to enhance insulin secretion: A counterintuitive theory to preserve cellular function and glucose homeostasis. Frontiers in Endocrinology, 11, Article 378. https://doi.org/10.3389/fendo.2020.00378; Dubey, S., Yadav, C., Bajpeyee, A., Singh, M. P. (2020). Effect of Pleurotus fossulatus aqueous extract on biochemical properties of liver and kidney in streptozotocin-induced diabetic rat. Diabetes, Metabolic Syndrome and Obesity: Targets and Therapy, 13, 3035–3046. https://doi.org/10.2147/DMSO.S265798; Hasan, K. Md. M., Tamanna, N., Haque, Md. A. (2018). Biochemical and histopathological profiling of Wistar rat treated with Brassica napus as a supplementary feed. Food Science and Human Wellness, 7(1), 77–82. https://doi.org/10.1016/j.fshw.2017.12.002; Díaz-Juárez, J. A., Hernández-Muñoz, R. (2017). Rat liver enzyme release depends on blood flow-bearing physical forces acting in endothelium glycocalyx rather than on liver damage. Oxidative Medicine and Cellular Longevity, 2017(1), Article 1360565. https://doi.org/10.1155/2017/1360565; Zhao, Y., Pan, H., Liu, W., Liu, E., Pang, Y., Gao, H. et al. (2023). Menthol: An underestimated anticancer agent. Frontiers in Pharmacology, 14, Article 1148790. https://doi.org/10.3389/fphar.2023.1148790; Belinskaia, D. A., Voronina, P. A., Shmurak, V. I., Jenkins, R. O., Goncharov, N. V. (2021). Serum albumin in health and disease: Esterase, antioxidant, transporting and signaling properties. International Journal of Molecular Sciences, 22(19), Article 10318. https://doi.org/10.3390/ijms221910318; Bomback, A. S., Derebail, V. K., Shoham, D. A., Anderson, C. A., Steffen, L. M., Rosamond, W. D. et al. (2010). Sugar-sweetened soda consumption, hyperuricemia, and kidney disease. Kidney International, 77(7), 609–616. https://doi.org/10.1038/ki.2009.500; Elbendary, E. Y., Mahmoud, M. H., Salem, S. F., Farah, A. M. (2023). The Effects of energy drink consumption on kidney and liver function: A comparative study. Journal of Biosciences and Medicines, 11(03), 171–181. https://doi.org/10.4236/jbm.2023.113017; Wen, J., Chen, X., Wei, S., Ma, X., Zhao, Y. (2022). Research progress and treatment status of liver cirrhosis with hypoproteinemia. Evidence-Based Complementary and Alternative Medicine, 2022, 1–8. https://doi.org/10.1155/2022/2245491; Chen, L., Liu, R., Zhao, Y., Shi, Z. (2020). High consumption of soft drinks is associated with an increased risk of fracture: A 7-year follow-up study. Nutrients, 12(2), Article 530. https://doi.org/10.3390/nu12020530; Paraskeuas, V., Fegeros, K., Palamidi, I., Hunger, C., Mountzouris, K. C. (2017). Growth performance, nutrient digestibility, antioxidant capacity, blood biochemical biomarkers and cytokines expression in broiler chickens fed different phytogenic levels. Animal Nutrition, 3(2), 114–120. https://doi.org/10.1016/j.aninu.2017.01.005; Gugliucci, A. (2023). Sugar and dyslipidemia: A double-hit, perfect storm. Journal of Clinical Medicine, 12(17), Article 5660. https://doi.org/10.3390/jcm12175660; Singh, A., Singh, R. (2016). Triglyceride and cardiovascular risk: A critical appraisal. Indian Journal of Endocrinology and Metabolism, 20(4), Article 418. https://doi.org/10.4103/2230-8210.183460; https://www.fsjour.com/jour/article/view/712
-
8
-
9
Autori:
Zdroj: Журнал медико-биологических исследований, Vol 11, Iss 2, Pp 174-183 (2023)
Predmety: цитокины, цитокиновые реакции, воспаление, липидный профиль, дислипопротеинемии, ожирение, европейский север россии, Sports medicine, RC1200-1245, Biology (General), QH301-705.5
Popis súboru: electronic resource
Relation: https://journals.narfu.ru/index.php/med/article/view/1238; https://doaj.org/toc/2542-1298; https://doaj.org/toc/2687-1491
Prístupová URL adresa: https://doaj.org/article/040e0fc3f6ba4925a5aad4bb3914d475
-
10
Autori:
Zdroj: Mìžnarodnij Endokrinologìčnij Žurnal, Vol 11, Iss 5.69, Pp 31-34 (2015)
INTERNATIONAL JOURNAL OF ENDOCRINOLOGY; № 5.69 (2015); 31-34
Международный эндокринологический журнал-Mìžnarodnij endokrinologìčnij žurnal; № 5.69 (2015); 31-34
Міжнародний ендокринологічний журнал-Mìžnarodnij endokrinologìčnij žurnal; № 5.69 (2015); 31-34Predmety: nonalcoholic fatty liver disease, неалкогольна жирова хвороба печінки, цукровий діабет, гомоцистеїн, трансамінази, ліпідний профіль, homocysteine, неалкогольная жировая болезнь печени, сахарный диабет, гомоцистеин, трансаминазы, липидный профиль, diabetes mellitus, transaminases, lipid profile, RC648-665, Diseases of the endocrine glands. Clinical endocrinology, 3. Good health, 03 medical and health sciences, 0302 clinical medicine, 13. Climate action
Popis súboru: application/pdf
Prístupová URL adresa: http://iej.zaslavsky.com.ua/article/download/75074/144197
https://doaj.org/article/856547880aff469aa2544ceeeb3504ba
https://core.ac.uk/display/87762917
http://iej.zaslavsky.com.ua/article/download/75074/144197
http://iej.zaslavsky.com.ua/article/view/75074
http://iej.zaslavsky.com.ua/article/view/75074 -
11
Autori: Braitsara, M.V.
Zdroj: Практична онкологія-Praktična onkologìâ; Том 3, № 2 (2020); 31-44
Practical oncology; Том 3, № 2 (2020); 31-44
Практическая онкология-Praktična onkologìâ; Том 3, № 2 (2020); 31-44Predmety: hormone-sensitive breast cancer, dyslipidemia, serum lipid profile, adjuvant endocrine therapy for breast cancer, selective estrogen receptor modulators, aromatase inhibitors, гормончутливий рак молочної залози, дисліпідемія, ліпідний профіль сироватки, ад'ювантна ендокринотерапія раку молочної залози, селективні модулятори естрогенових рецепторів, інгібітори ароматази, гормончувствительный рак молочной железы, дислипидемия, липидный профиль сыворотки, адъювантная эндокринотерапия рака молочной железы, селективные модуляторы эстрогеновых рецепторов, ингибиторы ароматазы, 3. Good health
Popis súboru: application/pdf
-
12
Autori:
Zdroj: Mìžnarodnij Endokrinologìčnij Žurnal, Vol 12, Iss 5.77, Pp 51-55 (2016)
INTERNATIONAL JOURNAL OF ENDOCRINOLOGY; № 5.77 (2016); 51-55
Международный эндокринологический журнал-Mìžnarodnij endokrinologìčnij žurnal; № 5.77 (2016); 51-55
Міжнародний ендокринологічний журнал-Mìžnarodnij endokrinologìčnij žurnal; № 5.77 (2016); 51-55Predmety: preeclampsia, lipid pattern, atherogenic dysfunction, 03 medical and health sciences, 0302 clinical medicine, прееклампсія, ліпідний профіль, атерогенна дисфункція, RC648-665, преэклампсия, липидный профиль, атерогенная дисфункция, Diseases of the endocrine glands. Clinical endocrinology, 3. Good health
Popis súboru: application/pdf
Prístupová URL adresa: http://iej.zaslavsky.com.ua/article/download/78754/116108
https://doaj.org/article/6be911173ecd4ac8b43ceeec93948e8d
http://iej.zaslavsky.com.ua/article/view/78754
http://iej.zaslavsky.com.ua/article/download/78754/116108
https://core.ac.uk/display/87785379
http://iej.zaslavsky.com.ua/article/view/78754 -
13
Autori:
Zdroj: Mìžnarodnij Endokrinologìčnij Žurnal, Vol 13, Iss 1, Pp 79-84 (2017)
INTERNATIONAL JOURNAL OF ENDOCRINOLOGY (Ukraine); Vol. 13 No. 1 (2017); 79-84
Международный эндокринологический журнал-Mìžnarodnij endokrinologìčnij žurnal; Том 13 № 1 (2017); 79-84
Міжнародний ендокринологічний журнал-Mìžnarodnij endokrinologìčnij žurnal; Том 13 № 1 (2017); 79-84Predmety: rheumatoid arthritis, 2. Zero hunger, arterial hypertension, ревматоїдний артрит, type 2 diabetes mellitus, абдоминальное ожирение, полиморфизм гена T-786C eNOS, ліпідний профіль, поліморфізм гена T-786C eNOS, ревматоидный артрит, артериальная гипертензия, сахарный диабет типа 2, RC648-665, Diseases of the endocrine glands. Clinical endocrinology, abdominal obesity, 3. Good health, eNOS gene T-786C polymorphism, lipid profile, 03 medical and health sciences, цукровий діабет типу 2, 0302 clinical medicine, липидный профиль, абдомінальне ожиріння, артеріальна гіпертензія
Popis súboru: application/pdf
-
14
Autori: a ďalší
Zdroj: Наука и здравоохранение. :49-60
-
15
Autori:
Zdroj: Современная гастроэнтерология; № 2 (2020); 30—36
Сучасна гастроентерологія; № 2 (2020); 30—36
Modern Gastroenterology; № 2 (2020); 30—36Predmety: сахарный диабет 2 типа, желчные кислоты, липидный профиль, фактор роста фибробластов‑19, хронический бескаменный холецистит, type 2 diabetes mellitus, bile acids, lipid profile, fibroblast growth factor 19, chronic non‑calculous cholecystitis, цукровий діабет 2 типу, жовчні кислоти, ліпідний профіль, фактор росту фібробластів‑19, хронічний безкам'яний холецистит, 3. Good health
Popis súboru: application/pdf
Prístupová URL adresa: http://sgastro.com.ua/article/view/MG-2020-2-30
-
16
-
17
-
18
Autori: a ďalší
Zdroj: Andrology and Genital Surgery; Том 24, № 3 (2023); 75-81 ; Андрология и генитальная хирургия; Том 24, № 3 (2023); 75-81 ; 2412-8902 ; 2070-9781
Predmety: мужское бесплодие, lipidomics, lipid profile, varicocele, semen analysis, male infertility, липидомика, липидный профиль, варикоцеле, спермограмма
Popis súboru: application/pdf
Relation: https://agx.abvpress.ru/jour/article/view/685/535; Ferlin A., Raicu F., Gatta V. et al. Male infertility: role of genetic background. Reprod Biomed Online 2007;14(6):734–45. DOI:10.1016/s1472-6483(10)60677-3; Brugh V.M. 3rd, Matschke H.M., Lipshultz L.I. Male factor infertility. Endocrinol Metab Clin North Am 2003;32(3):689–707. DOI:10.1016/s0889-8529(03)00047-1; Котов С.В., Ирицян М.М., Бадаква Г.В. Результаты применения комплекса ББЕСТФертил у пациентов после микрохирургической подпаховой варикоцелэктомии (операции Мармара). Урология 2022;1:50–4. DOI:10.18565/urology.2022.1.50-54; Diegidio P., Jhaveri J.K., Ghannam S. et al. Review of current varicocelectomy techniques and their outcomes. BJU Int 2011;108(7):1157–72. DOI:10.1111/j.1464-410X.2010.09959.x; Agarwal A., Roychoudhury S., Bjugstad K.B., Cho C.L. Oxidation-reduction potential of semen: what is its role in the treatment of male infertility? Ther Adv Urol 2016;8(5):302–18. DOI:10.1177/1756287216652779; Корнеев И.А. Мужское бесплодие при оксидативном стрессе: пути решения проблемы. Урология 2022;1:102–8. DOI:10.18565/urology.2022.1.102-108; Agarwal A., Gupta S., Sharma R. Measurement of DNA fragmentation in spermatozoa by TUNEL assay using bench top flow cytometer. In: Andrological evaluation of male infertility. Ed. by A. Agarwal, S. Gupta, R. Sharma. Springer, Cham, 2016. P. 181–203. DOI:10.1007/978-3-319-26797-5_24; Kovac J.R., Pastuszak A.W., Lamb D.J. The use of genomics, proteomics, and metabolomics in identifying biomarkers of male infertility. Fertil Steril 2013;99(4):998–1007. DOI:10.1016/j.fertnstert.2013.01.111; Тулаганов К.А., Садриддинов Х.Н., Ибрагимов У.К. Фертильность мужчин и биохимический состав спермоплазмы. Андрология и генитальная хирургия 2009;10(2):94.; Lenzi A., Picardo M., Gandini L., Dondero F. Lipids of the sperm plasma membrane: from polyunsaturated fatty acids considered as markers of sperm function to possible scavenger therapy. Hum Reprod Update 1996;2(3):246–56. DOI:10.1093/humupd/2.3.246; Koelmel J.P., Kroeger N.M., Ulmer C.Z. et al. LipidMatch: an automated workflow for rule-based lipid identification using untargeted high-resolution tandem mass spectrometry data. BMC Bioinformatics 2017;18(1):331. DOI:10.1186/s12859-017-1744-3; Team R.C. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. Available at: https://www.r-project.org/; Team R.C. RStudio: Integrated Development for R. Available at: http://www.rstudio.com/; Poulos A., Voglmayr J.K., White I.G. Phospholipid changes in spermatozoa during passage through the genital tract of the bull. Biochim Biophys Acta 1973;306(2):194–202. DOI:10.1016/0005-2760(73)90225-7; Parks J.E., Graham J.K. Effects of cryopreservation procedures on sperm membranes. Theriogenology 1992;38(2):209–22. DOI:10.1016/0093-691x(92)90231-f; Watson P.F. The causes of reduced fertility with cryopreserved semen. Anim Reprod Sci 2000;60–61:481–92. DOI:10.1016/s0378-4320(00)00099-3; Evans H.C., Dinh T.T.N., Ugur M.R. et al. Lipidomic markers of sperm cryotolerance in cattle. Sci Rep 2020;10(1):20192. DOI:10.1038/s41598-020-77089-9; Amaral A., Castillo J., Estanyol J.M. et al. Human sperm tail proteome suggests new endogenous metabolic pathways. Mol Cell Proteomics 2013;12(2):330–42. DOI:10.1074/mcp.M112.020552; Esmaeili V., Shahverdi A.H., Moghadasian M.H., Alizadeh A.R. Dietary fatty acids affect semen quality: a review. Andrology 2015;3(3):450–61. DOI:10.1111/andr.12024; Zerbinati C., Caponecchia L., Rago R. et al. Fatty acids profiling reveals potential candidate markers of semen quality. Andrology 2016;4(6):1094–101. DOI:10.1111/andr.12236; Tavilani H., Doosti M., Nourmohammadi I. et al. Lipid composition of spermatozoa in normozoospermic and asthenozoospermic males. Prostaglandins Leukot Essent Fatty Acids 2007;77(1):45–50. DOI:10.1016/j.plefa.2007.07.001; Lopalco P., Vitale R., Cho Y.S. et al. Alteration of cholesterol sulfate/seminolipid ratio in semen lipid profile of men with oligoasthenozoospermia. Front Physiol 2019;10:1344. DOI:10.3389/fphys.2019.01344; Гамидов С.И., Шатылко Т.В., Тамбиев А.Х. и др. Липидомный профиль семенной плазмы при необструктивной азооспермии с остановкой созревания сперматозоидов. Вестник урологии 2021;9(4):30–9. DOI:10.21886/2308-6424-2021-9-4-30-39; Tasseva G., Bai H.D., Davidescu M. et al. Phosphatidylethanolamine deficiency in Mammalian mitochondria impairs oxidative phosphorylation and alters mitochondrial morphology. J Biol Chem 2013;288(6):4158–73. DOI:10.1074/jbc.M112.434183; Jiang F., Ryan M.T., Schlame M. et al. Absence of cardiolipin in the crd1 null mutant results in decreased mitochondrial membrane potential and reduced mitochondrial function. J Biol Chem 2000;275(29):22387–94. DOI:10.1074/jbc.M909868199; Horvath S.E., Daum G. Lipids of mitochondria. Prog Lipid Res 2013;52(4):590–614. DOI:10.1016/j.plipres.2013.07.002; Mejia E.M., Hatch G.M. Mitochondrial phospholipids: role in mitochondrial function. J Bioenerg Biomembr 2016;48(2):99–112. DOI:10.1007/s10863-015-9601-4; Ren M., Phoon C.K., Schlame M. Metabolism and function of mitochondrial cardiolipin. Prog Lipid Res 2014;55:1–16. DOI:10.1016/j.plipres.2014.04.001; Vance J.E. Phospholipid synthesis and transport in mammalian cells. Traffic 2015;16(1):1–18. DOI:10.1111/tra.12230; Bogdanov M., Dowhan W. Lipid-assisted protein folding. J Biol Chem 1999;274(52):36827–30. DOI:10.1074/jbc.274.52.36827; https://agx.abvpress.ru/jour/article/view/685
-
19
Zdroj: Сучасна педіатрія. Україна; № 8(128) (2022): Сучасна педіатрія. Україна; 12-20
Modern Pediatrics. Ukraine; No. 8(128) (2022): Modern pediatrics. Ukraine; 12-20
Modern Pediatrics. Ukraine; № 8(128) (2022): Modern pediatrics. Ukraine; 12-20Predmety: комплекс інтима-медіа, familial hypercholesterolemia, ліпідний профіль, lipoprotein (a), аполипопротеин B, аполипопротеин A1, діти, аполіпопротеїн B, dp-uc matrix Gla protein, дети, intima-media complex thickness, матриксный Gla белок, липопротеин (а), 3. Good health, матриксний Gla-білок, lipid profile, семейная гиперхолестеринемия, children, комплекс интима-медиа, сімейна гіперхолестеринемія, apolipoprotein A1, ліпопротеїн (а), apolipoprotein B, липидный профиль, аполіпопротеїн A1
Popis súboru: application/pdf
Prístupová URL adresa: http://mpu.med-expert.com.ua/article/view/273144
-
20
Zdroj: ZHurnal «Patologicheskaia fiziologiia i eksperimental`naia terapiia». :13-19
Predmety: 2. Zero hunger, 0301 basic medicine, антиэндотоксиновый иммунитет, 0303 health sciences, endotoxin, endotoxin aggression, lipopolysaccharide, факторы риска, системная эндотоксинемия, эндотоксин, systemic endotoxemia, 3. Good health, 03 medical and health sciences, lipid profile, атеросклероз, risk factors, anti-endotoxin immunity, atherosclerosis, липидный профиль, холестерин
Prístupová URL adresa: https://pfiet.ru/article/download/3321/2404
https://pfiet.ru/article/view/3321
Nájsť tento článok vo Web of Science