Suchergebnisse - "колоректальный рак"
-
1
Autoren: et al.
Quelle: Южно-Российский онкологический журнал, Vol 6, Iss 2, Pp 14-21 (2025)
-
2
-
3
Autoren: et al.
Weitere Verfasser: et al.
Quelle: Advances in Molecular Oncology; Vol 12, No 2 (2025); 8-21 ; Успехи молекулярной онкологии; Vol 12, No 2 (2025); 8-21 ; 2413-3787 ; 2313-805X
Schlagwörter: genetic biomarker, epigenetic biomarker, colorectal cancer, molecular pathogenesis, liquid biopsy, gene expression panel, antitumor therapy, генетический биомаркер, эпигенетический биомаркер, колоректальный рак, молекулярный патогенез, жидкостная биопсия, панель экспрессии генов, противоопухолевая терапия
Dateibeschreibung: application/pdf
Relation: https://umo.abvpress.ru/jour/article/view/781/388; https://umo.abvpress.ru/jour/article/view/781
-
4
Autoren: et al.
Quelle: Messenger of ANESTHESIOLOGY AND RESUSCITATION; Том 22, № 1 (2025); 16-23 ; Вестник анестезиологии и реаниматологии; Том 22, № 1 (2025); 16-23 ; 2541-8653 ; 2078-5658
Schlagwörter: колоректальный рак, delayed cognitive recovery, TIVA, propofol, POCD, composite Z-score, colorectal cancer, замедленное когнитивное восстановление, ТВВА, пропофол, ПОКД, композитная Z-оценка
Dateibeschreibung: application/pdf
Relation: https://www.vair-journal.com/jour/article/view/1152/773; Александрович Ю. С., Акименко Т. И., Пшениснов К. В. Послеоперационная когнитивная дисфункция – является ли она проблемой для анестезиолога-реаниматолога? // Вестник анестезиологии и реаниматологии. – 2019. – Т. 16, № 4. – С. 5–11. https://doi.org/10.21292/2078-5658-2019-16-4-5-11.; Берикашвили Л. Б., Каданцева К. К., Ермохина Н. В. Послеоперационные нейрокогнитивные расстройства: некоторые итоги почти 400-летней истории вопроса (обзор) // Общая реаниматология. – 2023. – Т. 19, № 4. – С. 29–42. https://doi.org/10.15360/1813-9779-2023-4-29-42.; Боголепова А. Н. Послеоперационная когнитивная дисфункция // Журнал неврологии и психиатрии им. С. С. Корсакова. – 2022. – Т. 122, № 8. – С. 7–11. https://doi.org/10.17116/jnevro202212208174.; Войцеховский Д. В., Аверьянов Д. А., Щеголев А. В. Влияние глубокой анестезии на возникновение послеоперационной когнитивной дисфункции // Вестник анестезиологии и реаниматологии. – 2018. – Т. 15, № 1. – С. 5–9. https://doi.org/10.21292/2078-5658-2018-15-1-5-9.; Губайдуллин Р. Р., Михайлов Е. В., Кулаков В. В. Старческая астения: клинические аспекты периоперационного периода и анестезии // Вестник анестезиологии и реаниматологии. – 2020. – Т. 17, № 2. – С. 12–19. https://doi.org/10.21292/2078-5658-2020-17-2-12-19.; Заболотских И. Б., Горобец Е. С., Григорьев Е. В. Периоперационное ведение пациентов пожилого и старческого возраста. Методические рекомендации // Вестник интенсивной терапии им. А. И. Салтанова. – 2022. – Т. 3. – С. 7–26. https://doi.org/10.21320/1818-474X-2022-3-7-26.; Зозуля М. В., Ленькин А. И., Курапеев И. С., Лебединский К. М. Послеоперационные когнитивные расстройства: патогенез, методы профилактики и лечения (обзор литературы) // Анестезиология и реаниматология. – 2019. – Т. 3. – С. 25–33. https://doi.org/10.17116/anaesthesiology201903125.; Мороз В. В., Долгих В. Т., Карпицкая С. А. Влияние общей анестезии и антиоксидантов на когнитивные и стато-локомоторные функции при лапароскопической холецистэктомии // Общая реаниматология. – 2022. – Т. 18, № 2. – С. 4–11. https://doi.org/10.15360/1813-9779-2022-2-4-11.; Полушин Ю. С., Полушин А. Ю., Юкина Г. Ю., Кожемякина М. В. Послеоперационная когнитивная дисфункция – что мы знаем и куда двигаться далее // Вестник анестезиологии и реаниматологии. – 2019. – Т. 16, № 1. – С. 19–28. https://doi.org/10.21292/2078-5658-2019-16-1-19-28.; Субботин В. В., Душин И. Н., Камнев С. А., Антипов А. Ю. Некоторые аспекты формирования Z-счета для оценки когнитивных расстройств // Вестник анестезиологии и реаниматологии. – 2020. – Т. 17, № 5. – С. 25–30. https://doi.org/10.21292/2078-5658-2020-17-5-25-30.; Andrade C. Z Scores, Standard Scores, and Composite Test Scores Explained // Indian J Psychol Med. – 2021. – Vol. 43, № 6. – P. 555–557. https://doi.org/10.1177/02537176211046525.; Evered L., Silbert B., Knopman D. S. et al. Nomenclature consensus working grouP. recommendations for the nomenclature of cognitive change associated with anaesthesia and surgery-2018 // Anesthesiology. – 2018. – Vol. 129, № 5. – P. 872–879. https://doi.org/10.1097/ALN.0000000000002334. PMID: 30325806.; Hou R., Wang H., Chen L. et al. POCD in patients receiving total knee replacement under deep vs light anesthesia: A randomized controlled trial // Brain Behav. – 2018. – Vol. 8, № 2. – e00910. https://doi.org/10.1002/brb3.910.; Kampman J. M., Hermanides J., Hollmann M. W. et al. Mortality and morbidity after total intravenous anaesthesia versus inhalational anaesthesia: a systematic review and meta-analysis // eClinicalMedicine. – Vol. 72. – 102636. https://doi.org/10.1016/j.eclinm.2024.102636.; Kornak J., Fields J., Kremers W. et al. ARTFL/LEFFTDS Consortium. Nonlinear Z-score modeling for improved detection of cognitive abnormality // Alzheimers Dement (Amst). – 2019. – Vol. 11. – P. 797–808. https://doi.org/10.1016/j.dadm.2019.08.003.; Moller J. T., Cluitmans P., Rasmussen L. S. et al. Long-term postoperative cognitive dysfunction in the elderly ISPOCD1 study. ISPOCD investigators. International Study of Post-Operative Cognitive Dysfunction // Lancet. – 1998. – Vol. 351. – P. 857–861. https://doi.org/10.1016/s0140-6736(97)07382-0.; Sinderen K., Schwarte L. A., Schober P. Diagnostic criteria of postoperative cognitive dysfunction: a focused systematic review // Anesthesiol Res Pract. – 2020. – Vol. 2020. – 7384394. https://doi.org/10.1155/2020/7384394.; Weinstein A. M., Gujral S., Butters M. A. et al. Diagnostic precision in the detection of mild cognitive impairment: a comparison of two approaches // Am J Geriatr Psychiatry. – 2022. – Vol. 30, № 1. – P. 54–64. https://doi.org/10.1016/j.jagp.2021.04.004.; Xiao M. Z., Liu C. X., Zhou L. G. et al. Postoperative delirium, neuroinflammation, and influencing factors of postoperative delirium: A review // Medicine (Baltimore). – 2023. – Vol. 102, № 8. – e32991. https://doi.org/10.1097/MD.0000000000032991.
-
5
Autoren: et al.
Weitere Verfasser: et al.
Quelle: Siberian journal of oncology; Том 24, № 1 (2025); 150-163 ; Сибирский онкологический журнал; Том 24, № 1 (2025); 150-163 ; 2312-3168 ; 1814-4861
Schlagwörter: профилактика и лечение рака, probiotics, breast and colon cancer, gynecological cancers, cancer prevention and treatment, пробиотики, рак молочной железы, колоректальный рак, гинекологический рак
Dateibeschreibung: application/pdf
Relation: https://www.siboncoj.ru/jour/article/view/3456/1315; Summer M., Ali S., Fiaz U., Tahir H.M., Ijaz M., Mumtaz S., Mushtaq R., Khan R., Shahzad H., Fiaz H. Therapeutic and immunomodulatory role of probiotics in breast cancer: A mechanistic review. Arch Microbiol. 2023; 205(8): 296. doi:10.1007/s00203-023-03632-7.; Yan F., Polk D.B. Probiotics and Probiotic-Derived Functional Factors-Mechanistic Insights Into Applications for Intestinal Homeostasis. Front Immunol. 2020; 11. doi:10.3389/fimmu.2020.01428.; Huang R., Liu Z., Sun T., Zhu L. Cervicovaginal microbiome, high-risk HPV infection and cervical cancer: Mechanisms and therapeutic potential. Microbiol Res. 2024; 287. doi:10.1016/j.micres.2024.127857.; Kvakova M., Kamlarova A., Stofilova J., Benetinova V., Bertkova I. Probiotics and postbiotics in colorectal cancer: Prevention and complementary therapy. World J Gastroenterol. 2022; 28(27): 3370-82. doi:10.3748/wjg.v28.i27.3370.; Singh A., Alexander S.G., Mariin S. Gut microbiome homeostasis and the future of probiotics in cancer immunotherapy. Front Immunol. 2023; 14. doi:10.3389/fimmu.2023.1114499.; Singh D., Singh A., Kumar S. Probiotics: friend or foe to the human immune system. Bull Natl Res Cent. 2023; 47. doi.org/10.1186/s42269-023-01098-7.; Dos Reis SA., da Conceicao L.L., SiqueiraN.P., Rosa D.D., da Silva LL., Peluzio M.D. Review of the mechanisms of probiotic actions in the prevention of colorectal cancer. Nutr Res. 2017; 37: 1-19. doi:10.1016/j.nutres.2016.11.009.; Miira A., Guliekin M., Burney Ellis L., Bizzarri N., Bowden S., Taumberger N., Bracic T., Vieira-Bapiisia P., Sehouli J., Kyrgiou M. Genital tract microbiota composition profiles and use of prebiotics and probiotics in gynaecological cancer prevention: review of the current evidence, the European Society of Gynaecological Oncology prevention committee statement. Lancet Microbe. 2024; 5(3): 291-300. doi:10.1016/S2666-5247(23)00257-4.; Mei Z., Li D. The role of probiotics in vaginal health. Front Cell Infect Microbiol. 2022; 12. doi:10.3389/fcimb.2022.963868.; Zitvogel L., Daillere R., Roberti M.P., Routy B., Kroemer G. Anticancer effects of the microbiome and its products. Nat Rev Microbiol. 2017; 15(8): 465-78. doi:10.1038/nrmicro.2017.44.; Pourmollaei S., Barzegari A., Farshbaf-Khalili A., Nouri M., Fattahi A., Shahnazi M., Dittrich R. Anticancer effect of bacteria on cervical cancer: Molecular aspects and therapeutic implications. Life Sci. 2020; 246. doi:10.1016/j.lfs.2020.117413.; Piqué N., Berlanga M., Miñana-Galbis D. Health Benefits of Heat-Killed (Tyndallized) Probiotics: An Overview. Int J Mol Sci. 2019; 20(10). doi:10.3390/ijms20102534.; Chee W.J.Y., Chew S.Y., Than L.T.L. Vaginal microbiota and the potential of Lactobacillus derivatives in maintaining vaginal health. Microb Cell Fact. 2020; 19(1): 203. doi:10.1186/s12934-020-01464-4.; Liang K., Liu Q., Li P., Luo H., Wang H., Kong Q. Genetically engineered Salmonella Typhimurium: Recent advances in cancer therapy. Cancer Lett. 2019; 448: 168-81. doi:10.1016/j.canlet.2019.01.037.; Landry B.P., Tabor J.J. Engineering Diagnostic and Therapeutic Gut Bacteria. Microbiol Spectr. 2017; 5(5). doi:10.1128/microbiolspec.BAD-0020-2017.; Komatsu A., Igimi S., Kawana K. Optimization of human papillomavirus (HPV) type 16 E7-expressing lactobacillus-based vaccine for induction of mucosal E7-specific IFNY-producing cells. Vaccine. 2018; 36(24): 3423-26. doi:10.1016/j.vaccine.2018.05.009.; Cortes-Perez N.G., Azevedo V., Alcocer-González J.M., Rodriguez-Padilla C., Tamez-Guerra R.S., Corthier G., Gruss A., Langella P., Bermúdez-Humarán L.G. Cell-surface display of E7 antigen from human papillomavirus type-16 in Lactococcus lactis and in Lactobacillus plantarum using a new cell-wall anchor from lactobacilli. J Drug Target. 2005; 13(2): 89-98. doi:10.1080/10611860400024219.; Чердынцева Н.В., Литвяков Н.В., Смольянинов Е.С., Белявская В.А., Масычева В.И. Модуляция противоопухолевой активности циклофосфана рекомбинантным пробиотиком субалином. Вопросы онкологии. 1997; 43(3): 313-16. EDN: TOXOZJ.; Kanmani P., Satish Kumar R., Yuvaraj N., Paari K.A., Pat-tukumar V., Arul V. Probiotics and its functionally valuable prod-ucts-a review. Crit Rev Food Sci Nutr. 2013; 53(6): 641-58. doi:10.1080/10408398.2011.553752.; Sorokulova I. Modern status and perspectives of Bacillus bacteria as probiotics. J. Prob. Health. 2013; 1(4). doi:10.4172/2329-8901.1000e106.; Bernardeau M., Lehtinen M.J., Forssten S.D., Nurminen P. Importance of the gastrointestinal life cycle of Bacillus for probiotic functionality. J Food Sci Technol. 2017; 54(8): 2570-84. doi:10.1007/s13197-017-2688-3.; Jeżewska-Frąckowiak J., Seroczyńska K., Banaszczyk J., Jedrzejczak G., Żylicz-Stachula A., Skowron P.M. The promises and risks of probiotic Bacillus species. Acta Biochim Pol. 2018; 65(4): 509-19. doi:10.18388/abp.2018_2652.; Lee N.K., Won-Suck Kim W.S., Paik H.D. Bacillus strains as human probiotics: characterization, safety, microbiome, and probiotic carrier. Food Sci Biotechnol. 2019; 28(5): 1297-305. doi:10.1007/s10068-019-00691-9.; RiazRajokaM.S., ZhaoH., Lu Y., LianZ., LiN., HussainN., ShaoD., Jin M., Li Q., Shi J. Anticancer potential against cervix cancer (HeLa) cell line of probiotic Lactobacillus casei and Lactobacillus paracasei strains isolated from human breast milk. Food Funct. 2018; 9(5): 2705-15. doi:10.1039/c8fo00547h.; Wang K.D., Xu D.J., Wang B.Y., Yan D.H., Lv Z., Su J.R. Inhibitory Effect of Vaginal Lactobacillus Supernatants on Cervical Cancer Cells. Probiotics Antimicrob Proteins. 2018; 10(2): 236-42. doi:10.1007/s12602-017-9339-x.; Shin R., Itoh Y., Kataoka M., Iino-Miura S., Miura R., Mizutani T., Fujisawa T. Anti-tumor activity of heat-killed Lactobacillus plantarum BF-LP284 on Meth-A tumor cells in BALB/c mice. Int J Food Sci Nutr. 2016; 67(6): 641-49. doi:10.1080/09637486.2016.1185771.; Dubey V., Ghosh A.R., Bishayee K., Khuda-Bukhsh A.R. Appraisal of the anti-cancer potential of probiotic Pediococcus pentosaceus GS4 against colon cancer: in vitro and in vivo approaches. J. Funct. Foods. 2016; 23: 66-79. https://doi.org/10.1016/j.jff.2016.02.032.; Arai S., Iwabuchi N., Takahashi S., Xiao J.Z., Abe F., Hachimura S. Orally administered heat-killed Lactobacillus paracasei MCC1849 enhances antigen-specific IgA secretion and induces follicular helper T cells in mice. PLoS One. 2018; 13(6). doi:10.1371/journal.pone.0199018.; Sungur T., Aslim B., Karaaslan C., Aktas B. Impact of Exopolysaccharides (EPSs) of Lactobacillus gasseri strains isolated from human vagina on cervical tumor cells (HeLa). Anaerobe. 2017; 47: 137-44. doi:10.1016/j.anaerobe.2017.05.013.; Li X., Wang H., Du X., Yu W., Jiang J., Geng Y., Guo X., Fan X., Ma C. Lactobacilli inhibit cervical cancer cell migration in vitro and reduce tumor burden in vivo through upregulation of E-cadherin. Oncol Rep. 2017; 38(3): 1561-68. doi:10.3892/or.2017.5791.; Yin T.Q., Ou-Yang X., Jiao F.Y., Huang L.P., Tang X.D., Ren B.Q. Pseudomonas aeruginosa mannose-sensitive hemagglutinin inhibits proliferation and invasion via the PTEN/AKT pathway in HeLa cells. Oncotarget. 2016; 7(24): 37121-31. doi:10.18632/oncotarget.9467.; Peng M., Tabashsum Z., Patel P., Bernhardt C., Biswas D. Linoleic Acids Overproducing Lactobacillus casei Limits Growth, Survival, and Virulence of Salmonella Typhimurium and Enterohaemorrhagic Escherichia coli. Front Microbiol. 2018; 9. doi:10.3389/fmicb.2018.02663.; Cha M.K., Lee D.K., An H.M., Lee S.W., Shin S.H., Kwon J.H., Kim K.J., Ha N.J. Antiviral activity of Bifidobacterium adolescentis SPM1005-A on human papillomavirus type 16. BMC Med. 2012; 10: 72. doi:10.1186/1741-7015-10-72.; ChuahLO.,FooHR.,Loh T.C., MohammedAUtheenN.B., YeapS.K., Abdul Mutalib N.E., Abdul Rahim R., Yusoff K. Postbiotic metabolites produced by Lactobacillus plantarum strains exert selective cytotoxicity effects on cancer cells. BMC Complement Altern Med. 2019; 19(1). doi:10.1186/s12906-019-2528-2.; Ciffo F. Determination of the spectrum of antibiotic resistance of the “Bacillus subtilis” strains of Enterogermina. Chemioterapia. 1984; 3(1): 45-52.; MarsegliaG.L., ToscaM., CirilloI.,LicariA.,LeoneM.,MarsegliaA., Castellazzi A.M., Ciprandi G. Efficacy of Bacillus clausii spores in the prevention of recurrent respiratory infections in children: a pilot study. Ther Clin Risk Manag. 2007; 3(1): 13-17. doi:10.2147/tcrm.2007.3.1.13.; Hyronimus B., Le Marrec C., Urdaci M.C. Coagulin, a bacteriocin-like inhibitory substance produced by Bacillus coagulans I4. J Appl Microbiol. 1998; 85(1): 42-50. doi:10.1046/j.1365-2672.1998.00466.x.; Mandel D.R., Eichas K., Holmes J. Bacillus coagulans: a viable adjunct therapy for relieving symptoms of rheumatoid arthritis according to a randomized, controlled trial. BMC Complement Altern Med. 2010; 10: 1. doi:10.1186/1472-6882-10-1.; Le Marrec C., Hyronimus B., Bressollier P., Verneuil B., Urdaci M.C. Biochemical and genetic characterization of coagulin, a new antilisterial bacteriocin in the pediocin family of bacteriocins, produced by Bacillus coagulans I(4). Appl Environ Microbiol. 2000; 66(12): 5213-20. doi:10.1128/AEM.66.12.5213-5220.2000.; Hong H.A., Duc le H., Cutting S.M. The use of bacterial spore formers as probiotics. FEMS Microbiol Rev. 2005; 29(4): 813-35. doi:10.1016/j.femsre.2004.12.001.; Yang HJ., Kwon D.Y., Kim HJ., Kim MJ., Jung D.Y., Kang HJ., Kim D.S., Kang S., Moon N.R., Shin B.K., Park S. Fermenting soybeans with Bacillus licheniformis potentiates their capacity to improve cognitive function and glucose homeostaisis in diabetic rats with experimental Alzheimer's type dementia. Eur J Nutr. 2015; 54(1): 77-88. doi:10.1007/s00394-014-0687-y.; Pan X., Cai Y., Kong L., Xiao C., Zhu Q., Song Z. Probiotic Effects of Bacillus licheniformis DSM5749 on Growth Performance and Intestinal Microecological Balance of Laying Hens. Front Nutr. 2022; 9. doi:10.3389/fnut.2022.868093.; Paik H.D., Park J.S., Park E. Effects of Bacillus polyfermenticus SCD on lipid and antioxidant metabolisms in rats fed a high-fat and high-cholesterol diet. Biol Pharm Bull. 2005; 28(7): 1270-74. doi:10.1248/bpb.28.1270.; Ma E.L., Choi Y.J., Choi J., Pothoulakis C., Rhee S.H., Im E. The anticancer effect of probiotic Bacillus polyfermenticus on human colon cancer cells is mediated through ErbB2 and ErbB3 inhibition. Int J Cancer. 2010; 127(4): 780-90. doi:10.1002/ijc.25011. Erratum in: Int J Cancer. 2010; 127(11).; Lee N.K., Son S.H., Jeon E.B., Jung G.H., Lee J.Y., Paik H.D. The prophylactic effect of probiotic Bacillus polyfermenticus KU3 against cancer cells. J. Funct. Foods. 2015; 14: 513-18. doi:10.1016/j.jff.2015.02.019.; Ma Y., Wang W., Zhang H., Wang J., Zhang W., Gao J., Wu S., Qi G. Supplemental Bacillus subtilis DSM 32315 manipulates intestinal structure and microbial composition in broiler chickens. Sci Rep. 2018; 8(1). doi:10.1038/s41598-018-33762-8.; Hoa N.T., Baccigalupi L., Huxham A., Smertenko A., Van P.H., Ammendola S., Ricca E., Cutting A.S. Characterization of Bacillus species used for oral bacteriotherapy and bacterioprophylaxis of gastrointestinal disorders. Appl Environ Microbiol. 2000; 66(12): 5241-47. doi:10.1128/AEM.66.12.5241-5247.2000.; Jeon H.L., Lee N.K., Yang S.J., Kim W.S., Paik H.D. Probiotic characterization of Bacillus subtilis P223 isolated from kimchi. Food Sci Biotechnol. 2017; 26(6): 1641-48. doi:10.1007/s10068-017-0148-5.; Pinchuk I.V., Bressollier P., Verneuil B., Fenet B., Sorokulova I.B., Megraud F., Urdaci M.C. In vitro anti-Helicobacter pylori activity of the probiotic strain Bacillus subtilis 3 is due to secretion of antibiotics. Antimicrob Agents Chemother. 2001; 45(11): 3156-61. doi:10.1128/AAC.45.11.3156-3161.2001.; Chudnovskaya N.V., Ribalko S.L., Sorokulova I.B., Smirnov V.V., Belyavskaya V.A. Antiviral activity of Bacillus probiotics. Dopovidi Nac Acad Nauk Ukraini. 1995; 124-26.; Starosila D., Rybalko S., Varbanetz L., Ivanskaya N., Sorokulova I. Anti-influenza Activity of a Bacillus subtilis Probiotic Strain. Antimicrob Agents Chemother. 2017; 61(7). doi:10.1128/AAC.00539-17.; Elshaghabee F.M.F., Rokana N., Gulhane R.D., Sharma C., Panwar H. Bacillus As Potential Probiotics: Status, Concerns, and Future Perspectives. Front Microbiol. 2017; 8. doi:10.3389/fmicb.2017.01490.; Sanders M.E., Morelli L., Tompkins T.A. Sporeformers as Human Probiotics: Bacillus, Sporolactobacillus, and Brevibacillus. Compr Rev Food Sci Food Saf. 2003; 2(3): 101-10. doi:10.1111/j.1541-4337.2003.tb00017.x.; Jacquier V., Nelson A., Jlali M., Rhayat L., Brinch K.S., Devillard E. Bacillus subtilis 29784 induces a shift in broiler gut microbiome toward butyrate-producing bacteria and improves intestinal histomor-phology and animal performance. Poult Sci. 2019; 98(6): 2548-54. doi:10.3382/ps/pey602.; Muscettola M., Grasso G., Blach-Olszewska Z., Migliaccio P., Borghesi-Nicoletti C., Giarratana M., Gallo V.C. Effects of Bacillus subtilis spores on interferon production. Pharmacol Res. 1992; 26s2: 176-77. doi:10.1016/1043-6618(92)90652-r.; Bortoluzzi C., Serpa Vieira B., de Paula Dorigam J.C., Menconi A., Sokale A., Doranalli K., Applegate T.J. Bacillus subtilis DSM 32315 Supplementation Attenuates the Effects of Clostridium perfringens Challenge on the Growth Performance and Intestinal Microbiota of Broiler Chickens. Microorganisms. 2019; 7(3). doi:10.3390/microorganisms7030071.; Grasso G., Migliaccio P., Tanganelli C., Brugo M.A., Muscettola M. Restorative effect of Bacillus subtilis spores on interferon production in aged mice. Ann NY Acad Sci. 1994; 717: 198-208. doi:10.1111/j.1749-6632.1994.tb12088.x.; https://www.siboncoj.ru/jour/article/view/3456
-
6
Autoren: et al.
Quelle: Research and Practical Medicine Journal; Том 12, № 1 (2025); 26-39 ; Research'n Practical Medicine Journal; Том 12, № 1 (2025); 26-39 ; 2410-1893 ; 10.17709/2410-1893-2025-12-1
Schlagwörter: ткань кишки, colorectal cancer, men, women, Bcl-2, cytochrome C, calcium, AIF, tumor tissue, intestinal tissue, колоректальный рак, мужчины, женщины, цитохром С, кальций, ткань опухоли
Dateibeschreibung: application/pdf
Relation: https://www.rpmj.ru/rpmj/article/view/1061/672; Patel SG, Karlitz JJ, Yen T, Lieu CH, Boland CR. The rising tide of early-onset colorectal cancer: a comprehensive review of epidemiology, clinical features, biology, risk factors, prevention, and early detection. Lancet Gastroenterol Hepatol. 2022;7(3):262–274. https://doi.org/10.1016/s2468-1253(21)00426-x; Кит О. И., Дженкова Е. А., Мирзоян Э. А., Геворкян Ю. А., Сагакянц А. Б., Тимошкина Н. Н., и др. Молекулярно-генетическая классификация подтипов колоректального рака: современное состояние проблемы. Южно-Российский онкологический журнал. 2021;2(2):50–56. https://doi.org/10.37748/2686-9039-2021-2-2-6; Abancens M, Bustos V, Harvey H, McBryan J, Harvey BJ. Sexual Dimorphism in Colon Cancer. Front Oncol. 2020 Dec 9;10:607909. https://doi.org/10.3389/fonc.2020.607909; Wu Z, Xiao C, Long J, Huang W, You F, Li X. Mitochondrial dynamics and colorectal cancer biology: mechanisms and potential tar gets. Cell Comm Sig. 2024;22(1):91. https://doi.org/10.1186/s12964-024-01490-4; Zhang L, Yu J. Role of apoptosis in colon cancer biology, therapy, and prevention. Curr Colorectal Cancer Rep. 2013 Dec;9(4):10. https://doi.org/10.1007/s11888-013-0188-z; Кит О. И., Шихлярова А. И., Франциянц Е. М., Нескубина И. В., Каплиева И. В., Гончарова А. С., и др. Процессы самоорганизации митохондрий при росте экспериментальных опухолей в условиях хронической нейрогенной боли. Известия высших учебных заведений. Северо-Кавказский регион. Серия: Естественные науки. 2019;2(202):97–105. https://doi.org/10.23683/0321-3005-2019-2-97-105; Ramachandran A, Madesh M, Balasubramanian KA. Apoptosis in the intestinal epithelium: its relevance in normal and pathophysiological conditions. J Gastroenterol Hepatol. 2000 Feb;15(2):109–120. https://doi.org/10.1046/j.1440-1746.2000.02059.x; Bock FJ, Tait SWG. Mitochondria as multifaceted regulators of cell death. Nat Rev Mol Cell Biol. 2020;21(2):85–100. https://doi.org/10.1038/s41580-019-0173-8; Егорова М. В., Афанасьев С. А. Выделение митохондрий из клеток и тканей животных и человека: современные методические приемы. Сибирский медицинский журнал. 2011;26(1–1):22–28.; Гуреев А. П., Кокина А. В., Сыромятникова М. Ю., Попов В. Н. Оптимизация методов выделения митохондрий из разных тканей мыши. Вестник ВГУ, серия: химия, биология, фармация. 2015;4:61–65.; Carew JS, Huang P. Mitochondrial defects in cancer. Mol Cancer. 2002;1:9. https://doi.org/10.1186/1476-4598-1-9; Lagadinou ED, Sach A, Callahan K, Rossi RM, Nearing SJ, Minhajuddin M, et al. BCL-2 inhibition targets oxidative phosphorylation and selectively kills quiescent human leukemia stem cells. Cell Stem Cells. 2013;12(3):329–341. https://doi.org/10.1016/j.stem.2012.12.013; Panov A, Orynbayeva Z. Bioenergetic and antiapoptotic properties of mitochondria from cultured human prostate cancer cell lines PC-3, DU145 and LNCaP. PLoS One. 2013;8(8):e72078. https://doi.org/10.1371/journal.pone.0072078; Zhang BB, Wang DG, Guo FF, Xuan C. Mitochondrial membrane potential and reactive oxygen species in cancer stem cells. Fam Cancer. 2015;14(1):19–23. https://doi.org/10.1007/s10689-014-9757-9; Sullivan LB, Chandel NS. Mitochondrial reactive oxygen species and cancer. Metabol Cancer. 2014;2:17. https://doi.org/10.1186/2049-3002-2-17; Corbet C, Pinto A, Martherus R, Santiago de Jesus JP, Polet F, Feron O. Acidosis drives the reprogramming of fatty acid metabolism in cancer cells through changes in mitochondrial and histone acetylation. Cell Metab. 2016;24(2):311–323. https://doi.org/10.1016/j.cmet.2016.07.003; Moon DO. The role of calcium in orchestrating apoptosis in cancer: a mitochondrial perspective. Int J Mol Sci. 2023;24(10):8982. https://doi.org/10.3390/ijms24108982; Pinton P, Giorgi C, Siviero R, Zecchini E, Rizzuto R. Calcium and apoptosis: ER-mitochondria Ca2+ transfer in the control of apoptosis. Oncogene. 2008 Oct 27;27(50):6407–6418. https://doi.org/10.1038/onc.2008.308; Patergnani S, Danese A, Bouhamida E, Aguiari G, Previati M, Pinton P, Giorgi C. Various Aspects of Calcium Signaling in the Regulation of Apoptosis, Autophagy, Cell Proliferation, and Cancer. Int J Mol Sci. 2020 Nov 6;21(21):8323. https://doi.org/10.3390/ijms21218323; Eckenrode EF, Yang J, Velmurugan GV, Foskett JK, White C. Apoptosis protection by Mcl-1 and Bcl-2 modulation of inositol 1,4,5-tri sphosphate receptor-dependent Ca2+ signaling. J Biol Chem. 2010 Apr 30;285(18):13678–13684. https://doi.org/10.1074/jbc.M109.096040; Chang MJ, Zhong F, Lavik AR, Parys JB, Berridge MJ, Distelhorst CW. Feedback regulation mediated by Bcl-2 and DARPP-32 regulates inositol 1,4,5-trisphosphate receptor phosphorylation and promotes cell survival. Proc Natl Acad Sci USA. 2014 Jan 21;111(3):1186– 1191. https://doi.org/10.1073/pnas.1323098111; Vervloessem T, Kerkhofs M, La Rovere RM, Sneyers F, Parys JB, Bultynck G. Bcl-2 inhibitors as anti-cancer therapeutics: The impact of and on calcium signaling. Cell Calcium. 2018 Mar;70:102–116. https://doi.org/016/j.ceca.2017.05.014; Andreu-Fernandez V, Sancho M, Genoves A, Lucendo E, Todt F, Lauterwasser J, et al. The Bax transmembrane domain interacts with Bcl-2 pro-survival proteins in biological membranes. Proc Natl Acad Sci USA. 2017;114(2):310–315. https://doi.org/1073/pnas.1612322114; Ramesh P, Medema JP. BCL-2 family deregulation in colorectal cancer: potential for BH3 mimetics in therapy. Apoptosis. 2020;25(5 6):305–320. https://doi.org/10.1007/s10495-020-01601-9; Cui J, Placzek WJ. Post-Transcriptional regulation of anti-apoptotic BCL2 family members. Int J Mol Sci. 2018;19(1):308. https://doi.org/10.3390/ijms19010308; Lindner AU, Salvucci M, Morgan C, Monsefi N, Resler AJ, Cremona M, et al. BCL-2 system analysis identifies high-risk colorectal cancer patients. Gut. 2017;66(12):2141–2148. https://doi.org/10.1136/gutjnl-2016-312287; Xu L, Xie Q, Qi L, Wang C, Xu N, Liu W, et al. Bcl-2 overexpression reduces cisplatin cytotoxicity by decreasing ER-mitochondrial Ca2+ signaling in SKOV3 cells. Oncol Rep. 2018;39(3):985–992. https://doi.org/10.3892/or.2017.6164; Singh R, Letai A, Sarosiek K. Regulation of apoptosis in health and disease: the balancing effect of BCL-2 family proteins. Nat Rev Mol Cell Biology. 2019;20(1):175–193. https://doi.org/10.1038/s41580-018-0089-8; Rana R, Huirem RS, Kant R, Chauhan K, Sharma S, Yashavarddhan MH, et al. Cytochrome C as a potential clinical marker for diagnosis and treatment of glioma. Front Oncol. 2022;12:960787. https://doi.org/10.3389/fonc.2022.960787; Morse PT, Arroum T, Wan J, Pham L, Vaishnav A, Bell J, et al. Phosphorylations and Acetylations of Cytochrome c Control Mito chondrial Respiration, Mitochondrial Membrane Potential, Energy, ROS, and Apoptosis. Cells. 2024;13(6):493. https://doi.org/10.3390/cells13060493; Culpage HA, Wang J, Morse PT, Zurek MP, Turner AA, Khobeir A, et al. Cytochrome c phosphorylation: control of electron flow in the mitochondrial electron transport chain and apoptosis. Int. J. Biochem. Cell Biol. 2020;121:105704. https://doi.org/10.1016/j.biocel.2020.105704; Cheng TS, Hong K, Eiki YW, Yuan S, Eiki KW. Near-atomic structure of the active human apoptosome. eLife. 2016;5:e17755. https://doi.org/10.7554/eLife.17755; Kalkavan H, Chen MJ, Crawford JC, Quarato G, Fitzgerald P, Tait SWG, Goding CR, Green DR. Sublethal cytochrome c release gen erates drug-tolerant persister cells. Cell. 2022 Sep 1;185(18):3356-3374.e22. https://doi.org/1016/j.cell.2022.07.025; González-Arzola C, Díaz-Quintana A, Bernardo-García N, Martínez-Fábregas J, Rivero-Rodríguez F, Casado-Combreras MA, et al. Nuclear-translocated mitochondrial cytochrome c releases the nucleophosmin-sequestered tumor suppressor ARF by altering nucleolar fluid-phase partitioning. Nat Struct Mol Biol. 2022 Oct;29(10):1024–1036. https://doi.org/10.1038/s41594-022-00842; Kalpage HA, Bazylianska V, Recanati MA, Fite A, Liu J, Wan J, et al. Tissue-specific regulation of cytochrome c by post-translational modifications: respiration, the mitochondrial membrane potential, ROS, and apoptosis. FASEB J. 2019;33(2):1540–1553. https://doi.org/10.1096/fj.201801417R; Novo N, Romero-Tamayo S, Marcuello C, Boneta S, Blasco-Machin I, Velazquez-Campoy A, et al. A platform protein for degrado some assembly: apoptosis-inducing factor as an efficient nuclease involved in chromatinolysis. PNAS Nexus. 2022;2(2):pgac312. https://doi.org/10.1093/pnasnexus/pgac312; Norberg E, Orrenius S, Zhivotovsky B. Mitochondrial regulation of cell death: processing of apoptosis-inducing factor (AIF). Bio chem Biophys Res Commun. 2010;396(1):95–100. https://doi.org/10.1016/j.bbrc.2010.02.163; Sorrentino L, Calogero AM, Pandini V, Vanoni MA, Sevrioukova IF, Aliverti A. Key role of the adenylate moiety and integrity of the adenylate-binding site for the NAD(+)/H binding to mitochondrial apoptosis-inducing factor. Biochemistry. 2015;54(47):6996–7009. https://doi.org/10.1021/acs.biochem.5b00898; Sorrentino L, Cossu F, Milani M, Aliverti A, Mastrangelo E. Structural bases of the altered catalytic properties of a pathogenic variant of apoptosis inducing factor. Biochem Biophys Res Commun. 2017;490(3):1011–1017. https://doi.org/10.1016/j.bbrc.2017.06.156; Brosey CA, Ho C, Long WZ, Singh S, Burnett K, Hura GL, et al. Defining NADH-Driven allostery regulating apoptosis-inducing factor. Structure. 2016;24(12):2067–2079. https://doi.org/10.1016/j.str.2016.09.012; Novo N, Ferreira P, Medina M. The apoptosis-inducing factor family: Moonlighting proteins in the crosstalk between mitochondria and nuclei. IUBMB Life. 2021;73(3):568–581. https://doi.org/10.1002/iub.2390; Dixon-Murray E, Nedara K, Mojtahedi N, Tokatlidis K. The Mia40/CHCHD4 oxidative folding system: regulation of redox processes and signaling in the mitochondrial intermembrane space. Antioxidants (Basel). 2021;10(4):592. https://doi.org/10.3390/antiox10040592; Bano D, Prehn JHM. Apoptosis-Inducing Factor (AIF) in Physiology and Disease: The Tale of a Repented Natural Born Killer. EBioMedicine. 2018 Apr;30:29–37. https://doi.org/10.1016/j.ebiom.2018.03.016; Wischhof L, Scifo E, Ehninger D, Bano D. AIFM1 beyond cell death: An overview of this OXPHOS-inducing factor in mitochondrial diseases. EBioMedicine. 2022 Sep;83:104231. 10.1016/j.ebiom.2022.104231. https://doi.org/10.1016/j.ebiom.2022.104231; https://www.rpmj.ru/rpmj/article/view/1061
-
7
Autoren: et al.
Quelle: Surgery and Oncology; Том 15, № 1 (2025); 42-48 ; Хирургия и онкология; Том 15, № 1 (2025); 42-48 ; 2949-5857
Schlagwörter: рак желудка, adnexectomy, panhysterectomy, chemotherapy, metastasectomy, survival, combined treatment, Krukenberg tumor, colorectal cancer, gastric cancer, аднексэктомия, пангистерэктомия, химиотерапия, метастазэктомия, выживаемость, комбинированное лечение, опухоль Крукенберга, колоректальный рак
Dateibeschreibung: application/pdf
Relation: https://www.onco-surgery.info/jour/article/view/780/493; Yada-Hashimoto N., Yamamoto T., Kamiura S. et al. Metastatic ovarian tumors: a review of 64 cases. Gynecol Oncol 2013;89(2):314–7. PMID: 12713997; Lee S.J., Bae J.H., Lee A.W. et al. Clinical characteristics of metastatic tumors to the ovaries. J Korean Med Sci 2009;24(1):114–9. DOI:10.3346/jkms.2009.24.1.114; Al-Agha O.M., Nicastri A.D. An in-depth look at Krukenberg tumor: an overview. Arch Pathol Lab Med 2006;130(11):1725–30. DOI:10.5858/2006-130-1725-AILAKT; Kondi-Pafiti A., Kairi-Vasilatou E., Iavazzo C. et al. Metastatic neoplasms of the ovaries: a clinicopathological study of 97 cases. Arch Gynecol Obstet 2011;284(5):1283–8. DOI:10.1007/s00404-011-1847-4; Ayhan A., Guvenal T., Salman M.C. et al. The role of cytoreductive surgery in nongenital cancers metastatic to the ovaries. Gynecol Oncol 2005;98(2):235–41. DOI:10.1016/j.ygyno.2005.05.028; Ojo J., De Silva S., Han E. et al. Krukenberg tumors from colorectal cancer: presentation, treatment and outcomes. Am Surg 2011;77(10):1381–5.; Sokalska A., Timmerman D., Testa A.C. et al. Diagnostic accuracy of transvaginal ultrasound examination for assigning a specific diagnosis to adnexal masses. Ultrasound Obstet Gynecol 2009;34(4):462–70. DOI:10.1002/uog.6444; Кочоян Т.М. Эндохирургия в диагностике и лечении больных с опухолями органов грудной клетки, брюшной полости и забрюшинного пространства: дис. … д-ра мед. наук. М., 2011.; Guerriero S., Alcazar J.L., Pascual M.A. et al. Preoperative diagnosis of metastatic ovarian cancer is related to origin of primary tumor. Ultrasound Obstet Gynecol 2012;39(5):581–6. DOI:10.1002/uog.10120; Erroi F., Scarpa M., Angriman I. et al. Ovarian metastasis from colorectal cancer: prognostic value of radical oophorectomy. J Surg Oncol 2007;96(2):113–7. DOI:10.1002/jso.20803; Sekine K., Hamaguchi T., Shoji H. et al. Retrospective analyses of systemic chemotherapy and cytoreductive surgery for patients with ovarian metastases from colorectal cancer: a single-center experience. Oncology 2018;95(4):220–8. DOI:10.1159/000489665; Goéré D., Daveau C., Elias D. et al. The differential response to chemotherapy of ovarian metastases from colorectal carcinoma. Eur J Surg Oncol 2008;34(12):1335–9. DOI:10.1016/j.ejso.2008.03.010; Hamasaki S., Fukunaga Y., Nagayama S. et al. Decision-making in postoperative chemotherapy for ovarian metastasis from colorectal cancer: a retrospective single-center study. World J Surg Oncol 2022;20(1):28. DOI:10.1186/s12957-022-02498-1; Yan D., Du Y., Dai G. et al. Management of synchronous krukenberg tumors from gastric cancer: a single-center experience. J Cancer 2018;9(22):4197–203. DOI:10.7150/jca.25593; Ma F., Li Y., Li W. et al. Metastasectomy improves the survival of gastric cancer patients with krukenberg tumors: a retrospective analysis of 182 patients. Cancer Manag Res 2019;11:10573–80. DOI:10.2147/CMAR.S227684; Cho J.H., Lim J.Y., Choi A.R. et al. Comparison of surgery plus chemotherapy and palliative chemotherapy alone for advanced gastric cancer with krukenberg tumor. Cancer Res Treat 2015;47(4):697–705. DOI:10.4143/crt.2013.175; Namikawa T., Marui A., Yokota K. et al. Frequency and therapeutic strategy for patients with ovarian metastasis from gastric cancer. Langenbecks Arch Surg 2022;407:2301–8. DOI:10.1007/s00423-022-02543-3; Chung T.S., Chang H.J., Jung K.H. et al. Role of surgery in the treatment of ovarian metastases from colorectal cancer. J Surg Oncol 2009;100(7):570–4. DOI:10.1002/jso.21382; Lee S.J., Lee J., Lim H.Y. et al. Survival benefit from ovarian metastatectomy in colorectal cancer patients with ovarian metastasis: a retrospective analysis. Cancer Chemother Pharmacol 2010;66(2):229–35. DOI:10.1007/s00280-009-1150-2; Kagawa H., Kinugasa Y., Yamaguchi T. et al. Impact of resection for ovarian metastases from colorectal cancer and clinicopathologic analysis: A multicenter retrospective study in Japan. Ann Gastroenterol Surg 2023;8(2):273–83. DOI:10.1002/ags3.12740; Jiang R., Tang J., Cheng X., Zang R.Y. Surgical treatment for patients with different origins of Krukenberg tumors: outcomes and prognostic factors. Eur J Surg Oncol 2009;35(1):92–7. DOI:10.1016/j.ejso.2008.05.006; McCormick C.C., Giuntoli R.L. 2nd, Gardner G.J. et al. The role of cytoreductive surgery for colon cancer metastatic to the ovary. Gynecol Oncol 2007;105(3):791–5. DOI:10.1016/j.ygyno.2007.02.025; Kim W.Y., Kim T.J., Kim S.E. et al. The role of cytoreductive surgery for non-genital tract metastatic tumors to the ovaries. Eur J Obstet Gynecol Reprod Biol 2010;149(1):97–101. DOI:10.1016/j.ejogrb.2009.11.011; Zhang J.J., Cao D.Y., Yang J.X., Shen K. Ovarian metastasis from nongynecologic primary sites: a retrospective analysis of 177 cases and 13-year experience. J Ovarian Res 2020;13(1):128. DOI:10.1186/s13048-020-00714-8; Yasufuku I., Tsuchiya H., Fujibayashi S. et al. Oligometastasis of gastric cancer: a review. Cancers 2024;16:673. DOI:10.3390/cancers16030673; Cheong J.H., Hyung W.J., Chen J. et al. Survival benefit of metastasectomy for krukenberg tumors from gastric cancer. Gynecol Oncol 2004;94(2):477–82. DOI:10.1016/j.ygyno.2004.05.007; Zhang C., Hou W., Huang J. et al. Effects of metastasectomy and other factors on survival of patients with ovarian metastases from gastric cancer: a systematic review and meta-analysis. J Cell Biochem 2019;120(9):14486–98. DOI:10.1002/jcb.28708
-
8
Quelle: Наука и здравоохранение. :182-190
-
9
Генотипирование мутаций в генах KRAS, NRAS и BRAF при колоректальном раке методом масс-спектрометрии
-
10
Quelle: University Therapeutic Journal, Vol 6, Iss 2 (2024)
-
11
Quelle: Наука и здравоохранение. :253-261
-
12
Autoren:
Quelle: Медицина в Кузбассе, Vol 23, Iss 1, Pp 22-27 (2024)
Schlagwörter: толстая кишка, эпителиальные неоплазии, гендерные отличия, колоректальный рак, Medicine
Dateibeschreibung: electronic resource
-
13
Autoren: et al.
Quelle: Žurnal Grodnenskogo Gosudarstvennogo Medicinskogo Universiteta, Vol 21, Iss 4, Pp 337-341 (2023)
Schlagwörter: колоректальный рак, микрофлора кишечника, токсин, фактор риска, Medicine
Dateibeschreibung: electronic resource
-
14
Quelle: Медицина в Кузбассе, Vol 23, Iss 1, Pp 22-27 (2024)
Schlagwörter: колоректальный рак, толстая кишка, гендерные отличия, Medicine, эпителиальные неоплазии
-
15
Autoren: et al.
Weitere Verfasser: et al.
Quelle: Advances in Molecular Oncology; Vol 11, No 2 (2024); 97-105 ; Успехи молекулярной онкологии; Vol 11, No 2 (2024); 97-105 ; 2413-3787 ; 2313-805X
Schlagwörter: lung cancer, colorectal cancer, Notch signaling pathway, tumor progression, metastasis, cancer stem cells, рак легкого, колоректальный рак, сигнальный путь Notch, опухолевая прогрессия, метастазирование, опухолевые стволовые клетки
Dateibeschreibung: application/pdf
Relation: https://umo.abvpress.ru/jour/article/view/680/356; https://umo.abvpress.ru/jour/article/view/680
-
16
Autoren:
Quelle: Medicine in Kuzbass; Том 23, № 1 (2024): март; 22-27 ; Медицина в Кузбассе; Том 23, № 1 (2024): март; 22-27 ; 2588-0411 ; 1819-0901
Schlagwörter: colon, epithelial neoplasia, gender differences, colorectal cancer, толстая кишка, эпителиальные неоплазии, гендерные отличия, колоректальный рак
Dateibeschreibung: application/pdf; text/html
Relation: http://mednauki.ru/index.php/MK/article/view/1017/1804; http://mednauki.ru/index.php/MK/article/view/1017/1835; http://mednauki.ru/index.php/MK/article/downloadSuppFile/1017/1604; http://mednauki.ru/index.php/MK/article/downloadSuppFile/1017/1605; http://mednauki.ru/index.php/MK/article/downloadSuppFile/1017/1606; http://mednauki.ru/index.php/MK/article/downloadSuppFile/1017/1607; http://mednauki.ru/index.php/MK/article/downloadSuppFile/1017/1608; http://mednauki.ru/index.php/MK/article/downloadSuppFile/1017/1609; http://mednauki.ru/index.php/MK/article/downloadSuppFile/1017/1610; http://mednauki.ru/index.php/MK/article/downloadSuppFile/1017/1611; http://mednauki.ru/index.php/MK/article/downloadSuppFile/1017/1612; http://mednauki.ru/index.php/MK/article/downloadSuppFile/1017/1613; http://mednauki.ru/index.php/MK/article/view/1017
Verfügbarkeit: http://mednauki.ru/index.php/MK/article/view/1017
-
17
Autoren: et al.
Quelle: Russian Journal of Transplantology and Artificial Organs; Том 26, № 2 (2024); 28-33 ; Вестник трансплантологии и искусственных органов; Том 26, № 2 (2024); 28-33 ; 1995-1191
Schlagwörter: эндоскопическая полностенная резекция, cancer morbidity, colorectal cancer, endoscopic full-thickness resection, онкологическая заболеваемость, колоректальный рак
Dateibeschreibung: application/pdf
Relation: https://journal.transpl.ru/vtio/article/view/1768/1603; https://journal.transpl.ru/vtio/article/view/1768/1645; Трансплантология и искусственные органы. Под ред. С.В. Готье. М.: Лаборатория знаний, 2018; 319.; https://www.irodat.org [Internet]. International Registry In Organ Donation And Transplantation. Available from: https://www.irodat.org.; Готье СВ, Хомяков СМ. Донорство и трансплантация органов в Российской Федерации в 2022 году. XV сообщение регистра Российского трансплантологического общества. Вестник трансплантологии и искусственных органов. 2023; 25 (3): 8–30. https://doi.org/10.15825/1995-1191-20233-8-30.; Buell JF, Gross TG, Woodle ES. Malignancy after transplantation. Transplantation. 2005; 80 (2S): S254–S264. doi:10.1097/01.tp.0000186382.81130.ba.; Penn I. Post-transplant malignancy: the role of immunosuppression. Drug safety. 2000; 23 (2): 101–113. doi:10.2165/00002018-200023020-00002.; Safaeian M, Robbins HA, Berndt SI, Lynch CF, Fraumeni JF Jr, Engels EA. Risk of Colorectal Cancer After Solid Organ Transplantation in the United States. Am J Transplant. 2016 Mar; 16 (3): 960–967. doi:10.1111/ajt.13549.; Meyer KC, Francois ML, Thomas HK, Radford KL, Hawes DS, Mack TL et al. Colon cancer in lung transplant recipients with CF: increased risk and results of screening. J Cyst Fibros. 2011 Sep; 10 (5): 366–369. doi:10.1016/j.jcf.2011.05.003.; Merchea A, Shahjehan F, Croome KP, Cochuyt JJ, Li Z, Colibaseanu DT, Kasi PM. Colorectal Cancer Characteristics and Outcomes after Solid Organ Transplantation. J Oncol. 2019 Feb 28; 2019: 5796108. doi:10.1155/2019/5796108.; Park JM, Choi MG, Kim SW, Chung IS, Yang CW, Kim YS et al. Increased incidence of colorectal malignancies in renal transplant recipients: a case control study. Am J Transplant. 2010 Sep; 10 (9): 2043–2050. doi:10.1111/j.1600-6143.2010.03231.x.; Singh S, Edakkanambeth Varayil J, Loftus EV Jr, Talwalkar JA. Incidence of colorectal cancer after liver transplantation for primary sclerosing cholangitis: a systematic review and meta-analysis. Liver Transpl. 2013 Dec; 19 (12): 1361–1369. doi:10.1002/lt.23741.; Silva MA, Jambulingam PS, Mirza DF. Colorectal cancer after orthotopic liver transplantation. Crit Rev Oncol Hematol. 2005 Oct; 56 (1): 147–153. doi:10.1016/j.critrevonc.2004.12.013.; Sagastagoitia-Fornie M, Morán-Fernández L, BlázquezBermejo Z, Díaz-Molina B, Gómez-Bueno M, AlmenarBonet L et al. Incidence and Prognosis of Colorectal Cancer After Heart Transplantation: Data From the Spanish Post-Heart Transplant Tumor Registry. Transpl Int. 2023 May 19; 36: 11042. doi:10.3389/ti.2023.11042.; Федянин МЮ, Ачкасов СИ, Болотина ЛВ, Гладков ОА, Глебовская ВВ, Гордеев СС и др. Практические рекомендации по лекарственному лечению рака ободочной кишки и ректосигмоидного соединения. Злокачественные опухоли. 2021; 11 (3s2-1): 330–372. doi:10.18027/2224-5057-2021-11-3s2-22.; Andrisani G, Soriani P, Manno M, Pizzicannella M, Pugliese F, Mutignani M et al. Colo-rectal endoscopic full-thickness resection (EFTR) with the over-the-scope device (FTRD®): A multicenter Italian experience. Dig Liver Dis. 2019 Mar; 51 (3): 375–381. doi:10.1016/j.dld.2018.09.030.; Aepli P, Criblez D, Baumeler S, Borovicka J, Frei R. Endoscopic full thickness resection (EFTR) of colorectal neoplasms with the Full Thickness Resection Device (FTRD): Clinical experience from two tertiary referral centers in Switzerland. United European Gastroenterol J. 2018 Apr; 6 (3): 463–470. doi:10.1177/2050640617728001.; https://journal.transpl.ru/vtio/article/view/1768
-
18
Autoren: et al.
Quelle: Russian Journal of Transplantology and Artificial Organs; Том 26, № 4 (2024); 69-76 ; Вестник трансплантологии и искусственных органов; Том 26, № 4 (2024); 69-76 ; 1995-1191
Schlagwörter: метастазы печени, transplant hepatectomy, cirrhosis, colorectal cancer, liver metastasis, резекция трансплантата печени, цирроз печени, колоректальный рак
Dateibeschreibung: application/pdf
Relation: https://journal.transpl.ru/vtio/article/view/1781/1703; https://journal.transpl.ru/vtio/article/downloadSuppFile/1781/1566; https://journal.transpl.ru/vtio/article/downloadSuppFile/1781/1567; https://journal.transpl.ru/vtio/article/downloadSuppFile/1781/1568; https://journal.transpl.ru/vtio/article/downloadSuppFile/1781/1569; https://journal.transpl.ru/vtio/article/downloadSuppFile/1781/1570; Готье СВ, Хомяков СМ. Донорство и трансплантация органов в Российской Федерации в 2022 году. XV сообщение регистра Российского трансплантологического общества. Вестник трансплантологии и искусственных органов. 2023; 25 (3): 8–30.; D’Arcy M, Coghill A, Lynch C, Koch L, Li J, Pawlish K et al. Survival after a cancer diagnosis among solid organ transplant recipients in the United States. Cancer. 2019 Mar 15; 125 (6): 933–942. doi:10.1002/cncr.31782.; Lapointe М, Kerbaul F, Meckert F, Cognard N, Mathelin C, Lodi M. Breast cancer and organ transplantation: Systematic review and meta-analysis. Gynecol Obstet Fertil Senol. 2023 Jan; 51 (1): 60–72. doi:10.1016/j.gofs.2022.11.002.; Бабкина АВ, Хубутия МШ. Развитие онкологических заболеваний после трансплантации органов. Трансплантология. 2022; 14 (4): 476–487.; Engels EA, Pfeiffer RM, Fraumeni JF Jr, Kasiske BL, Israni AK, Snyder JJ et al. Spectrum of cancer risk among US solid organ transplant recipients. JAMA. 2011; 306 (17): 1891–1901. doi:10.1001/jama.2011.1592.; Collett D, Mumford L, Banner NR, Neuberger J, Watson C. Comparison of the incidence of malignancy in recipients of different types of organ: A UK Registry audit. Am J Transplant. 2010; 10: 1889–1896. doi:10.1111/j.1600-6143.2010.03181.x.; Vajdic CM, van Leeuwen MT. Cancer incidence and risk factors after solid organ transplantation. Int J Cancer. 2009; 125: 1747–1754. doi:10.1002/ijc.24439.; Dameworth JL, Colburn L, Corrigan D, Driessen R, Chapple K, Gagliano RA et al. Colorectal Cancer Prevention in Lung Transplant Recipients: The Need for an Enhanced Surveillance Protocol. J Am Coll Surg. 2021 May; 232 (5): 717–725. doi:10.1016/j.jamcollsurg.2020.12.053.; Nasser-Ghodsi N, Mara K, Watt KD. De novo Colorectal and Pancreatic Cancer in Liver-Transplant Recipients: Identifying the Higher-Risk Populations. Hepatology. 2021 Aug; 74 (2): 1003–1013. doi:10.1002/hep.31731. Epub 2021 Jun 21.; Kim M, Kim CW, Hwang S, Kim YH, Lee JL, Yoon YS et al. Characteristics and Prognosis of Colorectal Cancer after Liver or Kidney Transplantation. World J Surg. 2021 Oct; 45 (10): 3206–3213. doi:10.1007/s00268021-06219-9.; Villegas Herrera MT, Becerra Massare A, Muffak Granero K. Liver metastasis from colorectal cancer 12 years after liver transplantation. Rev Esp Enferm Dig. 2017 Mar; 109 (3): 236. doi:10.17235/reed.2017.4507/2016.; Altieri M, Sérée O, Lobbedez T, Segol P, Abergel A, Blaizot X et al. Risk factors of de novo malignancies after liver transplantation: a French national study on 11004 adult patients. Clin Res Hepatol Gastroenterol. 2021 Jul; 45 (4): 101514. doi:10.1016/j.clinre.2020.07.019. Epub 2021 Mar 11.; Nicolaas JS, De Jonge V, Steyerberg EW, Kuipers EJ, Van Leerdam ME, Veldhuyzen-van Zanten SJO. Risk of colorectal carcinoma in post-liver transplant patients: a systematic review and meta-analysis. Am J Transplant. 2010 Apr; 10 (4): 868–876. doi:10.1111/j.16006143.2010.03049.x. PMID: 20420641.; Taborelli M, Piselli P, Ettorre GM, Baccarani U, Burra P, Lauro A et al. Survival after the diagnosis of de novo malignancy in liver transplant recipients. Int J Cancer. 2019 Jan 15; 144 (2): 232–239. doi:10.1002/ijc.31782. Epub 2018 Oct 26.; Colmenero J, Tabrizian P, Bhangui P, Pinato DJ, Rodríguez-Perálvarez ML, Sapisochin G et al. De novo Malignancy After Liver Transplantation: Risk Assessment, Prevention, and Management-Guidelines From the ILTS-SETH Consensus Conference. Transplantation. 2022 Jan 1; 106 (1): e30–e45. doi:10.1097/TP.0000000000003998. PMID: 34905760.; Каприн АД, Старинский ВВ, Петрова ГВ. Злокачественные новообразования в России в 2022 году (заболеваемость и смертность). М.: МНИОИ им. П.А. Герцена – филиал ФГБУ «НМИЦ радиологии» Минздрава России, 2023.; Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, Bray F. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021 May; 71 (3): 209–249. https://doi.org/10.3322/caac.21660. Epub 2021 Feb 4.; Федянин МЮ, Ачкасов СИ, Болотина ЛВ, Гладков ОА, Глебовская ВВ, Гордеев СС и др. Практические рекомендации по лекарственному лечению рака ободочной кишки и ректосигмоидного соединения. Злокачественные опухоли. 2021; 11 (3s2-1): 330–372.; Argilés G, Tabernero J, Labianca R, Hochhauser D, Salazar R, Iveson T et al. ESMO Guidelines Committee. Electronic address: clinicalguidelines@esmo.org. Localised colon cancer: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol. 2020 Oct; 31 (10): 1291–1305. doi:10.1016/j.annonc.2020.06.022.; Grothey A, Sobrero AF, Shields AF, Yoshino T, Paul J, Taieb J et al. Duration of Adjuvant Chemotherapy for Stage III Colon Cancer. N Engl J Med. 2018 Mar 29; 378 (13): 1177–1188. doi:10.1056/NEJMoa1713709.; Gray R, Barnwell J, McConkey C, Hills RK, Williams NS, Kerr DJ; Quasar Collaborative Group. Adjuvant chemotherapy versus observation in patients with colorectal cancer: a randomised study. Lancet. 2007 Dec 15; 370 (9604): 2020–2029. doi:10.1016/S01406736(07)61866-2.; Chen J, Zhang C, Wu Y. Does adjuvant chemotherapy improve outcomes in elderly patients with colorectal cancer? A systematic review and meta-analysis of real-world studies. Expert Rev Gastroenterol Hepatol. 2022 Apr; 16 (4): 383–391. doi:10.1080/17474124.2022.2056014.; Lin HS, Wan RH, Gao LH, Li JF, Shan RF, Shi J. Adjuvant chemotherapy after liver transplantation for hepatocellular carcinoma: a systematic review and a metaanalysis. Hepatobiliary Pancreat Dis Int. 2015 Jun; 14 (3): 236–245. doi:10.1016/s1499-3872(15)60373-3.; Wang SH, Song L, Tang JY, Sun WP, Li Z. Safety and long-term prognosis of simultaneous versus staged resection in synchronous colorectal cancer with liver metastasis: a systematic review and meta-analysis. Eur J Med Res. 2022 Dec 19; 27 (1): 297. doi:10.1186/s40001-02200937-z.; Cervantes A, Adam R, Roselló S, Arnold D, Normanno N, Taïeb J et al. ESMO Guidelines Committee. Electronic address: clinicalguidelines@esmo.org. Metastatic colorectal cancer: ESMO Clinical Practice Guideline for diagnosis, treatment and follow-up. Ann Oncol. 2023 Jan; 34 (1): 10–32. doi:10.1016/j.annonc.2022.10.003.; Bridgewater JA, Pugh SA, Maishman T, Eminton Z, Mellor J, Whitehead A et al. New EPOC investigators. Systemic chemotherapy with or without cetuximab in patients with resectable colorectal liver metastasis (New EPOC): long-term results of a multicentre, randomised, controlled, phase 3 trial. Lancet Oncol. 2020 Mar; 21 (3): 398–411. doi:10.1016/S1470-2045(19)30798-3. Epub 2020 Jan 31. PMID: 32014119; PMCID: PMC7052737.; Morris VK, Kennedy EB, Baxter NN, Benson AB 3rd, Cercek A, Cho M et al. Treatment of Metastatic Colorectal Cancer: ASCO Guideline. J Clin Oncol. 2023 Jan 20; 41 (3): 678–700. doi:10.1200/JCO.22.01690.; https://journal.transpl.ru/vtio/article/view/1781
-
19
Autoren: et al.
Weitere Verfasser: et al.
Quelle: Advances in Molecular Oncology; Том 11, № 2 (2024); 85-96 ; Успехи молекулярной онкологии; Том 11, № 2 (2024); 85-96 ; 2413-3787 ; 2313-805X
Schlagwörter: анализ плавления ДНК, liquid biopsy, colorectal cancer, HIST1H4F, LINE-1, DNA melting analysis, жидкостная биопсия, колоректальный рак
Dateibeschreibung: application/pdf
Relation: https://umo.abvpress.ru/jour/article/view/679/350; Costello J.F., Fruhwald M.C., Smiraglia D.J. et al. Aberrant CpG-island methylation has non-random and tumour-type-specific patterns. Nat Genet 2000;24(2):132–8. DOI:10.1038/72785; Chalitchagorn K., Shuangshoti S., Hourpai N. et al. Distinctive pattern of LINE-1 methylation level in normal tissues and the association with carcinogenesis. Oncogene 2004;23(54):8841–6. DOI:10.1038/sj.onc.1208137; Лихтенштейн А.В., Киселева Н.П. Метилирование ДНК и канцерогенез. Биохимия 2001;66(3):235–55. DOI:10.1023/a:1010249510906; Залетаев Д.В., Немцова М.В., Бочков Н.П. Метилирование ДНК как этиологический фактор канцерогенеза. Вестник Российской академии медицинских наук 2002;6–11.; Robertson K.D. DNA methylation and human disease. Nat Rev Genet 2005;6(8):597–610. DOI:10.1038/nrg1655; Ross J.P., Rand K.N., Molloy P.L. Hypomethylation of repeated DNA sequences in cancer. Epigenomics 2010;2(2):245–69. DOI:10.2217/epi.10.2; Немцова М.В., Михайленко Д.С., Кузнецова Е.Б. и др. Инактивация эпигенетических регуляторов вследствие мутаций в солидных опухолях. Биохимия 2020;85(7):735–48. DOI:10.1134/S0006297920070020; Estecio M.R., Gharibyan V., Shen L. et al. LINE-1 hypomethylation in cancer is highly variable and inversely correlated with microsatellite instability. PLoS One 2007;2(5):e399. DOI:10.1371/journal.pone.0000399; Ohno S. So much “junk” DNA in our genome. Brookhaven Symp Biol 1972;23:366–70.; Fedoroff N.V. Transposable elements, epigenetics, and genome evolution. Science 2012;338(6108):758–67. DOI:10.1126/science.338.6108.758; Ponomaryova A.A., Rykova E.Y., Gervas P.A. et al. Aberrant methylation of LINE-1 transposable elements: a search for cancer biomarkers. Cells 2020;9(9):2017. DOI:10.3390/cells9092017; Cajuso T., Sulo P., Tanskanen T. et al. Retrotransposon insertions can initiate colorectal cancer and are associated with poor survival. Nat Commun 2019;10:4022. DOI:10.1038/s41467-019-11770-0; Rodriguez-Martin B., Alvarez E.G., Baez-Ortega A. et al. Pancancer analysis of whole genomes identifies driver rearrangements promoted by LINE-1 retrotransposition. Nat Genet 2020;52(3):306–19. DOI:10.1038/s41588-019-0562-0; Bouras E., Karakioulaki M., Bougioukas K.I. et al. Gene promoter methylation and cancer: an umbrella review. Gene 2019;710:333–40. DOI:10.1016/j.gene.2019.06.023; Markou A., Londra D., Tserpeli V. et al. DNA methylation analysis of tumor suppressor genes in liquid biopsy components of early stage NSCLC: a promising tool for early detection. Clin Epigenetics 2022;14(1):61. DOI:10.1186/s13148-022-01283-x; Yang J., Wang Q., Zhang Z.Y. et al. DNA methylation-based epigenetic signatures predict somatic genomic alterations in gliomas. Nat Commun 2022;13:4410. DOI:10.1038/s41467-022-31827-x; Yang X., Wen X., Guo Q. et al. Predicting disease-free survival in colorectal cancer by circulating tumor DNA methylation markers. Clin Epigenetics 2022;14:160. DOI:10.1186/s13148-022-01383-8; Weisenberger D.J., Campan M., Long T.I. et al. Analysis of repetitive element DNA methylation by MethyLight. Nucleic Acids Res 2005;33(21):6823–36. DOI:10.1093/nar/gki987; Piskareva O., Lackington W., Lemass D. et al. The human L1 element: a potential biomarker in cancer prognosis, current status and future directions. Curr Mol Med 2011;11(4):286–303. DOI:10.2174/156652411795677954; Kitkumthorn N., Mutirangura A. Long interspersed nuclear element-1 hypomethylation in cancer: biology and clinical applications. Clin Epigenetics 2011;2(2):315–30. DOI:10.1007/s13148-011-0032-8; Nagai Y., Sunami E., Yamamoto Y. et al. LINE-1 hypomethylation status of circulating cell-free DNA in plasma as a biomarker for colorectal cancer. Oncotarget 2017;8(7):11906–16. DOI:10.18632/oncotarget.14439; Gainetdinov I.V., Kapitskaya K.Y., Rykova E.Y. et al. Hypomethylation of human-specific family of LINE-1 retrotransposons in circulating DNA of lung cancer patients. Lung Cancer 2016;99:127–30. DOI:10.1016/j.lungcan.2016.07.005; Liu Z.J., Huang Y., Wei L. et al. Combination of LINE-1 hypomethylation and RASSF1A promoter hypermethylation in serum DNA is a non-invasion prognostic biomarker for early recurrence of hepatocellular carcinoma after curative resection. Neoplasma 2017;64(5):795–802. DOI:10.4149/neo_2017_519; Serrano M.J., Garrido-Navas M.C., Diaz Mochon J.J. et al. Precision prevention and cancer interception: the new challenges of liquid biopsy. Cancer Discov 2020;10(11):1635. DOI:10.1158/2159-8290.CD-20-0466; Cescon D.W., Bratman S.V., Chan S.M. et al. Circulating tumor DNA and liquid biopsy in oncology. Nat Cancer 2020;1(3):276–90. DOI:10.1038/s43018-020-0043-5; Nassar F.J., Msheik Z.S., Nasr R.R. et al. Methylated circulating tumor DNA as a biomarker for colorectal cancer diagnosis, prognosis, and prediction. Clin Epigenetics 2021;13(1):111. DOI:10.1186/s13148-021-01095-5; Ponomaryova A.A., Rykova E.Y., Azhikina T.L. et al. Long interspersed nuclear element-1 methylation status in the circulating DNA from blood of patients with malignant and chronic inflammatory lung diseases. Eur J Cancer Prevent 2021;30(2):127–31. DOI:10.1097/CEJ.0000000000000601; Quillien V., Lavenu A., Karayan-Tapon L. et al. Comparative assessment of 5 methods (methylation-specific polymerase chain reaction, MethyLight, pyrosequencing, methylation-sensitive high-resolution melting, and immunohistochemistry) to analyze O6-methylguanine-DNA-methyltranferase in a series of 100 glioblastoma patients. Cancer 2012;118(17):4201–11. DOI:10.1002/cncr.27392; Livak K.J., Schmittgen T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2–ΔΔCT method. Methods 2001;25(4):402–8. DOI:10.1006/meth.2001.1262; de Vos L., Gevensleben H., Schrock A. et al. Comparison of quantification algorithms for circulating cell-free DNA methylation biomarkers in blood plasma from cancer patients. Clin Epigenetics 2017;9:125. DOI:10.1186/s13148-017-0425-4; Dietrich D., Hasinger O., Liebenberg V. et al. DNA methylation of the homeobox genes PITX2 and SHOX2 predicts outcome in non-small-cell lung cancer patients. Diagn Mol Pathol 2012;21(2):93–104. DOI:10.1097/PDM.0b013e318240503b; Dietrich D., Hasinger O., Banez L.L. et al. Development and clinical validation of a real-time PCR assay for PITX2 DNA methylation to predict prostate-specific antigen recurrence in prostate cancer patients following radical prostatectomy. J Mol Diagn 2013;15(2):270–9. DOI:10.1016/j.jmoldx.2012.11.002; Dietrich D., Jung M., Puetzer S. et al. Diagnostic and prognostic value of SHOX2 and SEPT9 DNA methylation and cytology in benign, paramalignant and malignant pleural effusions. PLoS One 2013;8(12):e84225. DOI:10.1371/journal.pone.0084225; Grutzmann R., Molnar B., Pilarsky C. et al. Sensitive detection of colorectal cancer in peripheral blood by septin 9 DNA methylation assay. PLoS One 2008;3(11):e3759. DOI:10.1371/journal.pone.0003759; Warnecke P.M., Stirzaker C., Melki J.R. et al. Detection and measurement of PCR bias in quantitative methylation analysis of bisulphite-treated DNA. Nucleic Acids Res 1997;25(21):4422–6. DOI:10.1093/nar/25.21.4422; Korshunova Y., Maloney R.K., Lakey N. et al. Massively parallel bisulphite pyrosequencing reveals the molecular complexity of breast cancer-associated cytosine-methylation patterns obtained from tissue and serum DNA. Genome Res 2008;18(1):19–29. DOI:10.1101/gr.6883307; Egger G., Wielscher M., Pulverer W. et al. DNA methylation testing and marker validation using PCR: diagnostic applications. Exp Rev Mol Diagn 2012;12(1):75–92. DOI:10.1586/erm.11.90; Pharo H.D., Andresen K., Berg K.C.G. et al. A robust internal control for high-precision DNA methylation analyses by droplet digital PCR. Clin Epigenetics 2018;10:24. DOI:10.1186/s13148-018-0456-5; Botezatu I.V., Kondratova V.N., Shelepov V.P. et al. Asymmetric mutant-enriched polymerase chain reaction and quantitative DNA melting analysis of KRAS mutation in colorectal cancer. Anal Biochem 2020;590:1–9. DOI:10.1016/j.ab.2019.113517; Kondratova V.N., Botezatu I.V., Shelepov V.P. et al. SLAM-MS: mutation scanning of stem-loop amplicons with TaqMan probes by quantitative DNA melting analysis. Sci Rep 2020;10(1):5476. DOI:10.1038/s41598-020-62173-x; Bustin S.A., Benes V., Garson J.A. et al. The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments. Clin Chem 2009;55(4):611–22. DOI:10.1373/clinchem.2008.112797; Ботезату И.В., Кондратова В.Н., Строганова А.М. и др. Жидкостная биопсия колоректального рака: новый подход к оценке аберрантного метилирования гена SEPT9. Успехи молекулярной онкологии 2021;8(4):53–60. URL: https://umo.abvpress.ru/jour/article/view/389; Botezatu I.V., Kondratova V.N., Stroganova A.M. et al. Aberrant methylation scanning by quantitative DNA melting analysis with hybridization probes as exemplified by liquid biopsy of SEPT9 and HIST1H4F in colorectal cancer. Clinica Chimica Acta 2023;551:117591. DOI:10.1016/j.cca.2023.117591; Dong S.H., Li W., Wang L. et al. Histone-related genes are hypermethylated in lung cancer and hypermethylated HIST1H4F could serve as a pan-cancer biomarker. Cancer Res 2019;79(24):6101–12. DOI:10.1158/0008-5472.CAN-19-1019; Mazzara S., Rossi R.L., Grifantini R. et al. CombiROC: an interactive web tool for selecting accurate marker combinations of omics data. Sci Rep 2017;7:45477. DOI:10.1038/srep45477; Budczies J., Klauschen F., Sinn B.V. et al. Cutoff finder: a comprehensive and straightforward web application enabling rapid biomarker cutoff optimization. PLoS One 2012;7(12):e51862. DOI:10.1371/journal.pone.0051862; Huang Q., Liu Z., Liao Y. et al. Multiplex fluorescence melting curve analysis for mutation detection with dual-labeled, self-quenched probes. PLoS One 2011;6(4):e19206. DOI:10.1371/journal.pone.0019206; Wittwer C.T. High-resolution DNA melting analysis: advancements and limitations. Hum Mutat 2009;30(6):857–9. DOI:10.1002/humu.20951; Erali M., Wittwer C.T. High resolution melting analysis for gene scanning. Methods 2010;50(4):250–61. DOI:10.1016/j.ymeth.2010.01.013; Tse M.Y., Ashbury J.E., Zwingerman N. et al. A refined, rapid and reproducible high resolution melt (HRM)-based method suitable for quantification of global LINE-1 repetitive element methylation. BMC Res Notes 2011;4:565. DOI:10.1186/1756-0500-4-565; Stanzer S., Balic M., Strutz J. et al. Rapid and reliable detection of LINE-1 hypomethylation using high-resolution melting analysis. Clin Biochem 2010;43(18):1443–8. DOI:10.1016/j.clinbiochem.2010.09.013; Armbruster D.A., Pry T. Limit of blank, limit of detection and limit of quantitation. Clin Biochem Rev 2008;29(Suppl. 1):S49–52.; Antelo M., Balaguer F., Shia J. et al. A high degree of LINE-1 hypomethylation is a unique feature of early-onset colorectal cancer. PLoS One 2012;7(9):e45357. DOI:10.1371/journal.pone.0045357; Akimoto N., Zhao M., Ugai T. et al. Tumor long interspersed nucleotide element-1 (LINE-1) hypomethylation in relation to age of colorectal cancer diagnosis and prognosis. Cancers 2021;13(9):2016. DOI:10.3390/cancers13092016; Debernardi C., Libera L., Berrino E. et al. Evaluation of global and intragenic hypomethylation in colorectal adenomas improves patient stratification and colorectal cancer risk prediction. Clin Epigenetics 2021;13(1):154. DOI:10.1186/s13148-021-01135-0; Iacopetta B., Grieu F.F., Phillips M.F. et al. Methylation levels of LINE-1 repeats and CpG island loci are inversely related in normal colonic mucosa. Cancer Sci 2007;98(9):1454–60. DOI:10.1111/j.1349-7006.2007.00548.x; Ren J., Cui J.P., Luo M. et al. The prevalence and persistence of aberrant promoter DNA methylation in benzene-exposed Chinese workers. PLoS One 2019;14(8):e0220500. DOI:10.1371/journal.pone.0220500; Sahnane N., Magnoli F., Bernasconi B. et al. Aberrant DNA methylation profiles of inherited and sporadic colorectal cancer. Clin Epigenetics 2015;7:131. DOI:10.1186/s13148-015-0165-2; Stefanoli M., La R.S., Sahnane N. et al. Prognostic relevance of aberrant DNA methylation in g1 and g2 pancreatic neuroendocrine tumors. Neuroendocrinology 2014;100(1)26–34. DOI:10.1159/000365449; Ogino S., Kawasaki T., Nosho K. et al. LINE-1 hypomethylation is inversely associated with microsatellite instability and CpG island methylator phenotype in colorectal cancer. Int J Cancer 2008;122(12):2767–73. DOI:10.1002/ijc.23470; Yang A.S., Estécio M.R.H., Doshi K. et al. A simple method for estimating global DNA methylation using bisulfite PCR of repetitive DNA elements. Nucleic Acids Res 2004;32(3):e38-8. DOI:10.1093/nar/gnh032; Barchitta M., Quattrocchi A., Maugeri A. et al. LINE-1 hypomethylation in blood and tissue samples as an epigenetic marker for cancer risk: A systematic review and meta-analysis. PLoS One 2014;9(10):e109478. DOI:10.1371/journal.pone.0109478; https://umo.abvpress.ru/jour/article/view/679
-
20
Autoren: et al.
Quelle: Diagnostic radiology and radiotherapy; Том 15, № 2 (2024); 85-96 ; Лучевая диагностика и терапия; Том 15, № 2 (2024); 85-96 ; 2079-5343
Schlagwörter: бесшлаковая диета, colorectal carcinoma, colorectal polyps, bowel preparation, low-fiber diet, колоректальный рак, колоректальные полипы, подготовка толстой кишки
Dateibeschreibung: application/pdf
Relation: https://radiag.bmoc-spb.ru/jour/article/view/1008/649; Kadari M., Suban M., Parel N.S. et al. CT Colonography and Colorectal Carcinoma: Current Trends and Emerging Developments // Cureus. 2022. Vol. 14. e24916. https://doi.org/10.7759/cureus.24916.; Davidson K.W., Barry M.J., Mangione C.M., et al. Screening for Colorectal Cancer: US Preventive Services Task Force Recommendation Statement // JAMA. 325 (2021) 1965–1977. https://doi.org/10.1001/jama.2021.6238.; Spada C., Hassan C., Bellini D. et al. Imaging alternatives to colonoscopy: CT colonography and colon capsule. European Society of Gastrointestinal Endoscopy (ESGE) and European Society of Gastrointestinal and Abdominal Radiology (ESGAR) Guideline — Update 2020 // Endoscopy. 2020. Vol. 52. Р. 1127–1141. https://doi.org/10.1055/a-1258-4819.; Moreno C., Kim D.H., Bartel T.B. et al. ACR Appropriateness Criteria ® Colorectal Cancer Screening // J. Am. Coll. Radiol. 2018. Vol. 15. Р. S56–S68. https://doi.org/10.1016/j.jacr.2018.03.014.; Bénard F., Barkun A.N., Martel M., von Renteln D. Systematic review of colorectal cancer screening guidelines for average-risk adults: Summarizing the current global recommendations // World J. Gastroenterol. 2018. Vol. 24. Р. 124–138. https://doi.org/10.3748/wjg.v24.i1.124.; ESGAR CT Colonography Working Group, Neri E., Halligan S., Hellström M., Lefere P., Mang T., Regge D., Stoker J., Taylor S., Laghi A. The second ESGAR consensus statement on CT colonography // Eur. Radiol. 2013. Vol. 23. Р. 720–729. https://doi.org/10.1007/s00330-012-2632-x.; Bellini D., Panvini N., Vicini S., et al. Low-volume reduced bowel preparation regimen for CT colonography: a randomized noninferiority trial // Abdom. Radiol. N. Y. 2021. Vol. 46. Р. 4556–4566. https://doi.org/10.1007/s00261-021-03176-8.; Sali L., Ventura L., Grazzini G., et al. Patients’ experience of screening CT colonography with reduced and full bowel preparation in a randomised trial // Eur. Radiol. 2019. Vol. 29. Р. 2457–2464. https://doi.org/10.1007/s00330-018-5808-1.; Harewood G.C., Wiersema M.J., Melton L.J. A prospective, controlled assessment of factors influencing acceptance of screening colonoscopy // Am. J. Gastroenterol. 2002. Vol. 97. Р. 3186–3194. https://doi.org/10.1111/j.1572-0241.2002.07129.x.; Beebe T.J., Johnson C.D., Stoner S.M., Anderson K.J., Limburg P.J. Assessing Attitudes Toward Laxative Preparation in Colorectal Cancer Screening and Effects on Future Testing: Potential Receptivity to Computed Tomographic Colonography // Mayo Clin. Proc. 2007. Vol. 82. Р. 666–671. https://doi.org/10.4065/82.6.666.; Bellini D., De Santis D., Caruso D., Rengo M., Ferrari R., Biondi T., Laghi A. Bowel preparation in CT colonography: Is diet restriction necessary? A randomised trial (DIETSAN) // Eur. Radiol. 2018. Vol. 28. Р. 382–389. https://doi.org/10.1007/s00330-017-4997-3.; Bartram C.I. Bowel preparation-principles and practice // Clin. Radiol. 1994. Vol. 49. Р. 365–367. https://doi.org/10.1016/s0009-9260(05)81818-5.; Liedenbaum M.H., Denters M.J., de Vries A.H., et al. Low-fiber diet in limited bowel preparation for CT colonography: Influence on image quality and patient acceptance // AJR Am. J. Roentgenol. 2010. Vol. 195. W31–37. https://doi.org/10.2214/AJR.09.3572.; Морозов С.П., Владзимирский А.В., Ветшева Н.Н., Трофименко И.А., Кузьмина Е.С. Систематический обзор методов подготовки кишечника к лучевым исследованиям // Вестник рентгенологии и радиологии. 2019. Т. 100. С. 40–57. https://doi.org/10.20862/0042-4676-2019-100-1-40-57.; Neri E., Lefere P., Gryspeerdt S., Bemi P., Mantarro A., Bartolozzi C. Bowel preparation for CT colonography // Eur. J. Radiol. 2013. Vol. 82. Р. 1137–1143. https://doi.org/10.1016/j.ejrad.2012.11.006.; Hassan C., East J., Radaelli F., et al. Bowel preparation for colonoscopy: European Society of Gastrointestinal Endoscopy (ESGE) Guideline — Update 2019 // Endoscopy. 2019. Vol. 51. Р. 775–794. https://doi.org/10.1055/a-0959-0505.; Gimeno-García A.Z., de la Barreda Heuser R., Reygosa C., et al. Impact of a 1-day versus 3-day low-residue diet on bowel cleansing quality before colonoscopy: a randomized controlled trial // Endoscopy. 2019. Vol. 51. Р. 628–636. https://doi.org/10.1055/a-0864–1942.; Avalos D.J., Sussman D.A., Lara L.F., Sarkis F.S., Castro F.J. Effect of Diet Liberalization on Bowel Preparation // South. Med. J. 2017. Vol. 110. Р. 399–407. https://doi.org/10.14423/SMJ.0000000000000662.; Nguyen D.L., Jamal M.M., Nguyen E.T., Puli S.R., Bechtold M.L. Low-residue versus clear liquid diet before colonoscopy: a meta-analysis of randomized, controlled trials // Gastrointest. Endosc. 2016. Vol. 83. Р. 499–507. e1. https://doi.org/10.1016/j.gie.2015.09.045.; Галяев А.В., Суровегин Е.С., Ликутов А.А., Сушков О.И., Ваганов Ю.Е., Восканян А.С., Меркулова Е.С. Роль режима питания при подготовке толстой кишки к колоноскопии. Проспективное обсервационное исследование // Колопроктология. 2023. Т. 22. С. 57–63. https://doi.org/10.33878/2073-7556-2023-22-2-57-63.; Meric K., Bakal N., Şenateş E., et al. Comparison of a 4-Day versus 2-Day Low Fiber Diet Regimen in Barium Tagging CT Colonography in Incomplete Colonoscopy Patients // Gastroenterol. Res. Pract. Vol. 2015. 2015. Р. 1–7. https://doi.org/10.1155/2015/609150.; Rengo M., Tiberia F., Vicini S. et al. CT colonography: can we achieve an adequate bowel preparation without diet restriction? // Eur. Radiol. 2023. https://doi.org/10.1007/s00330-023-09471-w.; Мещеряков А.И., Гурова Н.Ю., Пугачева О.Г., Барыков М.Р., Срегеев В.А., Морозов С.П. Сравнение слабительных препаратов для подготовки к КТ-колонографии при использовании схемы с полным очищением толстой кишки // Медицинская визуализация. 2021. Т. 25. С. 54–72. https://doi.org/10.24835/1607-0763-979.; Song G.-M., Tian X., Ma L., Yi L.-J., Shuai T., Zeng Z., Zeng X.-T. Regime for Bowel Preparation in Patients Scheduled to Colonoscopy: Low-Residue Diet or Clear Liquid Diet? Evidence From Systematic Review With Power Analysis // Medicine (Baltimore). 2016. Vol. 95. e2432. https://doi.org/10.1097/MD.0000000000002432.
Nájsť tento článok vo Web of Science