Výsledky vyhledávání - "кальцификация"

  1. 1
  2. 2
  3. 3

    Zdroj: Complex Issues of Cardiovascular Diseases; Том 14, № 4 (2025); 77-89 ; Комплексные проблемы сердечно-сосудистых заболеваний; Том 14, № 4 (2025); 77-89 ; 2587-9537 ; 2306-1278

    Popis souboru: application/pdf

    Relation: https://www.nii-kpssz.com/jour/article/view/1666/1068; https://www.nii-kpssz.com/jour/article/downloadSuppFile/1666/2049; https://www.nii-kpssz.com/jour/article/downloadSuppFile/1666/2050; https://www.nii-kpssz.com/jour/article/downloadSuppFile/1666/2066; Aroz S.G., Spaggiari M., Jeon H., Oberholzer J., Benedetti E., Tzvetanov I. The use of bovine pericardial patch for vascular reconstruction in infected fields for transplant recipients // J Vasc Surg Cases Innov Tech. 2017 Mar 6;3(1):47-49. DOI:10.1016/j.jvscit.2016.10.006.; Ивченко А.О., Шведов А.Н., Ивченко О.А. Сосудистые протезы, используемые при реконструктивных операциях на магистральных артериях нижних конечностей. Бюллетень сибирской медицины. 2017; 16 (1): 132–139. DOI 10.20538/1682-0363-2017-1-132–139.; Kueri S., Kari F.A., Ayala Fuentes R., Sievers H.H., Beyersdorf F., Bothe W. The use of biological heart valves—types of prosthesis, durability and complications. Dtsch Arztebl Int 2019; 116: 423–30. DOI:10.3238/arz tebl.2019.0423; Iop L., Palmosi T., Dal Sasso E., Gerosa G. Bioengineered tissue solutions for repair, correction and reconstruction in cardiovascular surgery. J Thorac Dis. 2018 Jul;10(Suppl 20):S2390-S2411. DOI:10.21037/jtd.2018.04.27.; Кудрявцева Ю.А., Овчаренко Е.А., Клышников К.Ю., Антонова Л.В., Сенокосова Е.А., Понасенко А.В., Барбараш О.Л., Барбараш Л.С. Биологические протезы для сердечно-сосудистой хирургии – полувековая история и перспективы развития. Комплексные проблемы сердечно-сосудистых заболеваний. 2024;13(1):196-210. DOI:10.17802/2306-1278-2024-13-1-196-210; Рогулина Н.В., Горбунова Е.В., Кондюкова Н.В., Одаренко Ю.Н., Барбараш Л.С. Сравнительная оценка качества жизни реципиентов механических и биологических протезов при митральном пороке. Российский кардиологический журнал. 2015;(7):94-97. DOI:10.15829/1560-4071-2015-7-94-97; Singab H., Sami G. Mitral Valve Bioprosthesis Is Safer Than Mechanical Mitral Prosthesis in Young Women. The Heart Surgery Forum, 2020. 23(5), E677-E684. DOI:10.1532/hsf.3145; Барбараш Л.С., Журавлева И.Ю. Эволюция биопротезов клапанов сердца: достижения и проблемы двух десятилетий. Комплексные проблемы сердечно-сосудистых заболеваний. 2012;(1):4-11. DOI:10.17802/2306-1278-2012-1-4-11; Zvyagina A.I., Minaychev V.V., Kobyakova M.I., Lomovskaya Y.V., Senotov A.S., Pyatina K.V., Akatov V.S., Fadeev R.S., Fadeeva I.S. Soft Biomimetic Approach for the Development of Calcinosis-Resistant Glutaraldehyde-Fixed Biomaterials for Cardiovascular Surgery. Biomimetics (Basel) 2023 Aug 10;8(4):357. DOI:10.3390/biomimetics8040357.; Патент №2457867, Рос. Федерация: МКП A61L 2/16, A61L 27/00, А61К 31/498. Способ стерилизации и предимплантационного хранения биологических протезов из ксеногенной и аллогенной ткани для сердечнососудистой хирурги [Текст] / Костава В.Т., Бакулева Н.П., Лютова И.Г. и др.; патентообладатель: Учреждение Российской академии медицинских наук Научный центр сердечно-сосудистой хирургии им. А.Н. Бакулева РАМН (RU). №2011117782/15; заявл. 05.05.2011; опубл. 10.08.2012 г., бюл. №22; Патент № 2633062, Рос. Федерация: МКП A61F2/24. Способ предимплантационного хранения биологических протезов для сердечно-сосудистой хирургии [Текст] / Барбараш Л.С., Кудрявцева Ю.А. Патентообладатель: Барбараш Л.С., Кудрявцева Ю.А. №2016145488; заявл. 21.11.2016; 11.10.2017 Бюл. № 29.; Fumoto H., Chen J-F., Zhou O., Massiello A.L, Dessoffy R., Fukamachi K., Navia J.L Performance of Bioprosthetic Valves after Glycerol Dehydration, Ethylene Oxide Sterilization, and Rehydration. Innovations: Technology and Techniques in Cardiothoracic and Vascular Surgery. – 2011. – Vol. 6, № 1. – P. 32–36. DOI:10.1097/imi.0b013e31820a7cd6; Osinowo O, Monro J L, Ross J K. The use of glycerol-preserved homologous dura mater grafts in cardiac surgery: the Southampton experience. Ann Thorac Surg 1985 Apr;39(4):367-70. DOI:10.1016/s0003-4975(10)62635-5.; Jin L., He H., Yang F., Xu L., Guo G., WangY . Tough pNAGA hydrogel hybridized porcine pericardium for the pre-mounted TAVI valve with improved anti-tearing properties and hemocompatibility / Biomed Mater. 2020 Oct 3;15(6):065013. doi:10.1088/1748-605X/aba239; Fahner P.J., Legemate D.A., van der Wal A.C., van Marle J., Peters S.L.M., van Eck C.F., van Gulik T.M., Idu M.M. Comparison of Preserved Vascular Allografts Using Glycerol and University of Wisconsin Solution in a Goat Carotid Artery Transplantation Model. Eur Surg Res (2012) 48 (2): 64–72. DOI:10.1159/000334170; Патент № 2827028 «Способ предимплантационной обработки биологических протезов для сердечно-сосудистой хирургии». Кудрявцева Ю.А., Резвова М.А., Овчаренко Е.А., Барбараш Л.С. Опубликовано: 20.09.2024 Бюл. № 26. A61L 27/00; A61K 31/72; A01N 1/02; Бокерия Л.А., Милиевская Е.Б., Прянишников В.В., Орлов И.А. Сердечно-сосудистая хирургия – 2022. Болезни и врожденные аномалии системы кровообращения. М:НМИЦ ССХ им. А.Н. Бакулева Минздрава России; 2023. 344 с.; David T. How to decide between a bioprosthetic and mechanical valve, Canadian Journal of Cardiology (2020), doi: https://doi.org/10.1016/j.cjca.2020.09.011.; Глушкова Т.В., Овчаренко Е.А., Рогулина Н.В., Клышников К.Ю., Кудрявцева Ю.А., Барбараш Л.С. Дисфункции эпоксиобработанных биопротезов клапанов сердца. Кардиология. 2019;59(10):49–59. DOI:10.18087/cardio.2019.10.n327; Larsen K., Petrovski G., Boix-Lemonche G. Alternative cryoprotective agent for corneal stroma-derived mesenchymal stromal cells for clinical applications. Sci Rep. 2024 Jul 9;14(1):15788. DOI:10.1038/s41598-024-65469-4.; Best B.P. Correction to: Cryoprotectant Toxicity: Facts, Issues, and Questions. Rejuvenation Res 2015;18(5):422-436; DOI:10.1089/rej.2014.1656.; Almansoori, K. A., Prasad, V., Forbes, J. F., Law, G. K., McGann, L. E., Elliott, J. A. W., & Jomha, N. M. (2012). Cryoprotective agent toxicity interactions in human articular chondrocytes. Cryobiology, 64(3), 185–191. DOI:10.1016/j.cryobiol.2012.01.006; Землянских Н.Г., Бабийчук Л.А. Пространственно-конформационные модификации белков мембранно-цитоскелетного комплекса криоконсервированных эритроцитов. Биологические мембраны: Журнал мембранной и клеточной биологии. 2019, 36 (2):125-136. DOI:10.1134/S0233475519010055; Sadri V., Trusty P.M, Madukauwa-David I.D.a, Yoganathan A.P. Long-term durability of a new surgical aortic valve: A 1 billion cycle in vitro study. JTCVS 2021 Nov 4:9:59-69. DOI:10.1016/j.xjon.2021.10.056.; Raghav V., Okafor I., Quach M., Dang L., Marquez S., Yoganathan A.P. Long-Term Durability of Carpentier-Edwards Magna Ease Valve: A One Billion Cycle In Vitro Study.Ann Thorac Surg. 2016 May;101(5):1759-65. doi:10.1016/j.athoracsur.2015.10.069.

  4. 4

    Zdroj: Complex Issues of Cardiovascular Diseases; Том 13, № 4 (2024); 55-61 ; Комплексные проблемы сердечно-сосудистых заболеваний; Том 13, № 4 (2024); 55-61 ; 2587-9537 ; 2306-1278

    Popis souboru: application/pdf

    Relation: https://www.nii-kpssz.com/jour/article/view/1580/953; Linde D., Konings E.E., Slager M.A., Witsenburg M., Helbing W.A., Takkenberg J.J., Roos-Hesselink J.W. Birth prevalence of congenital heart disease worldwide: a systematic review and meta-analysis. JACC. 2011;58:2241-7. doi:10.1016/j.jacc.2011.08.025.; Soto B, Becker A.E., Moulaert A.J., Lie J.T., Anderson R.H. Classification of ventricular septal defects. Br Heart J. 1980;43:332–343. doi:10.1136/hrt.43.3.332.; Us M.H., Sungun M., Sanioglu S., Pocan S., Cebeci B.S., Ogus T., Ucak A., Guler A. A Retrospective Comparison of Bovine Pericardium and Polytetrafluoroethylene Patch for Closure of Ventricular Septal Defects. J Int Med Res. 2004; 32:218–221. doi:10.1177/147323000403200216.; Geiger A.W., Zarubin A.M., Deiwick M., Asfour B., Fahrenkamp A., Hertel M., von Bally G., Scheld H.H. Comparative analysis of glutaraldehyde preserved porcine xenografts and fresh or glutaraldehyde treated human aortic valves by holographic interferometry Cardiovasc. Surg. 1994; 2(6): 693–697.; Myers D.J., Gross J., Nakaya G. A comparison between glutaraldehyde and diepoxide fixed stentless porcine aortic valves, biochemical and mechanical characterization and resistance to mineralization. J. Heart Valve Dis. 1995; 4 (1): 98–101.; Liao K., Frater R.W., LaPietra A., Ciuffo G., Ilardi C.F., Seifter E. Time dependent effect of glutaraldehyde on the tendency to calcify of both autografts and xenografts. Ann. Thorac. Surg. 1995; 60 (2): 343–347, doi:10.1016/0003-4975(95)00286-t.; Vasudev S.C., Chandy T., Sharma C.P. Glutaraldehyde treated bovine pericardium: changes in calcification due to vitamins and platelet inhibitors. Artif Organs. 1997;21(9):1007-13. doi:10.1111/j.1525-1594.1997.tb00516.x.; Журавлева И.Ю., Барбараш Л.С., Глушкова Т.В. Способ антикальциевой обработки биологических протезов клапанов сердца. Пат. 2374843 РФ опубл. 10.12.2009 Бюл. № 34.; Neethling W.M., Strange G., Firth L., Smit F.E. Evaluation of a tissue-engineered bovine pericardial patch in paediatric patients with congenital cardiac anomalies: initial experience with the ADAPT-treated CardioCel(R) patch. Interact Cardiovasc Thorac Surg. 2013;17(4):698–702. doi:10.1093/icvts/ivt268.; Di Eusanio M., Schepens M.A. Left atrial thrombus on a Teflon patch for ASD closure. Eur J Cardiothorac Surg. 2002;21:542. doi:10.1016/s1010-7940(02)00012-x.; Li X., GuoY., Ziegler K., Model L., Eghbalieh S.D.D., Brenes R., Kim S.T., Shu C., Dardik A. Current usage and future directions for the bovine pericardial patch. Ann Vasc Surg. 2011; 25:561–568. doi:10.1016/j.avsg.2010.11.007.; Bennink G.B., Hitchcock F.J., Molenschot M., Hutter P., Sreeram N. Aneurysmal pericardial patch producing right ventricular inflow obstruction. Ann Thorac Surg. 2001;71:1346–7. doi:10.1016/s0003-4975(00)02270-0.; Матвеева В.Г., Головкин А.С., Григорьев Е.В., Понасенко А.В. Роль триггерного рецептора, экспрессируемого на миелоидных клетках, в активации врожденного иммунитета . Общая реаниматология. 2011;7(3):70. doi:10.15360/1813-9779-2011-3-70; Prabhudas M., Bowdish D., Drickamer K., Febbraio M., Herz J., Kobzik L., Krieger M., Loike J., Means T.K., Moestrup S.K., Post S., Sawamura T., Silverstein S., Wang X.Y., El Khoury J. Standardizing scavenger receptor nomenclature. J Immunol. 2014;192(5):1997-2006. doi:10.4049/jimmunol.1490003.; Ярилин А. А. Иммунология. М.: ГЭОТАР-Медиа; 2010. 752 p.; Fujiwara K., Murata I., Yagisawa S., Tanabe T., Yabuuchi M., Sakakibara R., Tsuru D. Glutaraldehyde (GA)-hapten adducts, but without a carrier protein, for use in a specificity study on an antibody against a GA-conjugated hapten compound: histamine monoclonal antibody (AHA-2) as a model. J Biochem. 1999;126(6):1170-4. doi:10.1093/oxfordjournals.jbchem.a022563.; Понасенко А. В., Хуторная М. В., Кутихин А. Г., Южалин А. Е., Хрячкова О. Н., Головкин А. С. (2015). Связь полиморфизма гена Toll-подобного рецептора 2 с риском развития митральных пороков сердца. Медицина в Кузбассе. 2015; 14(2).:24-32.; Понасенко А. В., Кутихин А. Г., Хуторная М. В., Рутковская Н. В., Кондюкова Н. В., Одаренко Ю. Н., Казачек Я.В., Цепокина А.В., Южалин А.Е., Барбараш Л.С., Барбараш, О. Л. Влияние полиморфизмов генов иммунного ответа, фосфорнокальциевого и липидного обмена на риск развития инфекционного эндокардита. Инфекция и иммунитет. 2017;7 (2): 130–140. doi:10.15789/2220-7619-2017-2-130-140; Рахманин Ю. А., Федосеева В. Н., Маковецкая А. К., Федоскова Т. Г. Неаллергическая гиперчувствительность к факторам окружающей среды. Гигиена и санитария. 2013; 92 (3): 4-7.; Кувачева Н.В., Моргун А.В., Хилажева Е.Д., Малиновская Н.А., Горина Я.В., Фролова О.В., Труфанова Л.В., Мартынова Г.П., Салмина А.Б. Формирование инфламмасом: новые механизмы регуляции межклеточных взаимодействий и секреторной активности клеток. Сибирское медицинское обозрение. 2013; 5:3-10.; Потапнев, М. П. Иммунные механизмы стерильного воспаления. Иммунология. 2015; 36(5): 312-318; Цепокина, А. В., Хуторная, М. В., Шабалдин, А. В., Понасенко, А. В. Особенности распределения генотипов полиморфных вариантов rs2234246 и rs4711668 TREM-1 у детей с дуктус-зависимыми врожденными пороками сердца. Трансляционная медицина. 2019; 6(4): 5-12. doi:10.18705/2311-4495-2019-6-4-5-12

  5. 5

    Zdroj: Complex Issues of Cardiovascular Diseases; Том 13, № 4 (2024); 25-34 ; Комплексные проблемы сердечно-сосудистых заболеваний; Том 13, № 4 (2024); 25-34 ; 2587-9537 ; 2306-1278

    Popis souboru: application/pdf

    Relation: https://www.nii-kpssz.com/jour/article/view/1397/950; https://www.nii-kpssz.com/jour/article/downloadSuppFile/1397/1467; https://www.nii-kpssz.com/jour/article/downloadSuppFile/1397/1468; https://www.nii-kpssz.com/jour/article/downloadSuppFile/1397/1469; https://www.nii-kpssz.com/jour/article/downloadSuppFile/1397/1470; https://www.nii-kpssz.com/jour/article/downloadSuppFile/1397/1480; https://www.nii-kpssz.com/jour/article/downloadSuppFile/1397/1481; Homann M., Haehnel J.C., Mendler N., Paek S.U., Holper K., Meisner H., Lange R. Reconstruction of the RVOT with valved biological conduits: 25 years experience with allografts and xenografts. Eur J Cardiothorac Surg 2000;17(6):624-30. doi:10.1016/s1010-7940(00)00414-0.; Urso S., Rega F., Meuris B., Gewillig M., Eyskens B., Daenen W., Heying R., Meyns B. The Contegra conduit in the right ventricular outflow tract is an independent risk factor for graft replacement. Eur J Cardiothorac Surg 2011;40(3):603-9. .doi:10.1016/j.ejcts.2010.11.081.; Lee C., Park C.S., Lee C.H., Kwak J.G., Kim S.J., Shim W.S., Song J.Y., Choi E.Y., Lee S.Y. Durability of bioprosthetic valves in the pulmonary position: long-term follow-up of 181 implants in patients with congenital heart disease. J Thorac Cardiovasc Surg 2011;142(2):351-8. doi:10.1016/j.jtcvs.2010.12.020.; Ong K., Boone R., Gao M., Carere R., Webb J., Kiess M., Grewal J. Right ventricle to pulmonary artery conduit reoperations in patients with tetralogy of fallot or pulmonary atresia associated with ventricular septal defect. Am J Cardiol. 2013;111(11):1638-43. doi:10.1016/j.amjcard.2013.01.337.; Dave H., Mueggler O., Comber M., Enodien B., Nikolaou G., Bauersfeld U., Jenni R., Bettex D., Prêtre R. Risk factor analysis of 170 single-institutional contegra implantations in pulmonary position. Ann Thorac Surg. 2011;91(1):195-302. doi:10.1016/j.athoracsur.2010.07.058.; Mery C.M., Guzmán-Pruneda F.A., De León L.E., Zhang W., Terwelp M.D., Bocchini C.E., Adachi I., Heinle J.S., McKenzie E.D., Fraser C.D.Jr. Risk factors for development of endocarditis and reintervention in patients undergoing right ventricle to pulmonary artery valved conduit placement. J Thorac Cardiovasc Surg. 2016;151(2):432-9, 441.e1-2. doi:10.1016/j.jtcvs.2015.10.069.; Alfieris G.M., Swartz M.F., Lehoux J., Bove E.L. Long-term survival and freedom from reoperation after placement of a pulmonary xenograft valved conduit. Ann Thorac Surg. 2016;102(2):602-7. doi:10.1016/j.athoracsur.2016.02.045.; Flameng W., Jashari R., De Visscher G., Mesure L., Meuris B. Calcification of allograft and stentless xenograft valves for right ventricular outflow tract reconstruction: an experimental study in adolescent sheep. J Thorac Cardiovasc Surg. 2011;141(6):1513-21. doi:10.1016/j.jtcvs.2010.08.082.; Soor G.S., Leong S.W., Butany J., Shapero J.L., Williams W.G. Pulmonary site bioprostheses: morphologic findings in 40 cases. Arch Pathol Lab Med. 2009;133(5):797-802. doi:10.1043/1543-2165-133.5.797.; Piazza N., Onuma Y., de Jaegere P., Serruys P.W. Guidelines for reporting mortality and morbidity after cardiac valve interventions - need for a reappraisal? Ann Thorac Surg. 2009;87(2):357-8; discussion 359-60. doi:10.1016/j.athoracsur.2008.11.054.; Warnes C.A., Williams R.G., Bashore T.M., Child J.S., Connolly H.M., Dearani J.A., Del Nido P., Fasules J.W., Graham T.P.Jr, Hijazi Z.M. et al. ACC/AHA 2008 Guidelines for the Management of Adults with Congenital Heart Disease: Executive Summary: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (writing committee to develop guidelines for the management of adults with congenital heart disease). Circulation. 2008;118(23):2395-451. doi:10.1161/CIRCULATIONAHA.108.190811.; Baumgartner H., Bonhoeffer P., De Groot N.M., de Haan F., Deanfield J.E., Galie N., Gatzoulis M.A., Gohlke-Baerwolf C., Kaemmerer H., Kilner P. et al.; Task Force on the Management of Grown-up Congenital Heart Disease of the European Society of Cardiology (ESC); Association for European Paediatric Cardiology (AEPC); ESC Committee for Practice Guidelines (CPG). ESC Guidelines for the management of grown-up congenital heart disease (new version 2010). Eur Heart J. 2010;31(23):2915-57. doi:10.1093/eurheartj/ehq249.; Sarris G.E., Balmer C., Bonou P., Comas J.V., da Cruz E., Di Chiara L., Di Donato R.M., Fragata J., Jokinen T.E., Kirvassilis G., Lytrivi I., Milojevic M., Sharland G., Siepe M., Stein J., Büchel E.V., Vouhé P.R. Clinical guidelines for the management of patients with transposition of the great arteries with intact ventricular septum. Cardiol Young. 2017;27(3):530-69. DOI:10.1017/S1047951117000014.; Romeo J.L.R., Mokhles M.M., van de Woestijne P., de Jong P., van den Bosch A., van Beynum I.M., Takkenberg J.J.M., Bogers A.J.J.C. Long-term clinical outcome and echocardiographic function of homografts in the right ventricular outflow tract†. Eur J Cardiothorac Surg. 2019;55:518-26. doi:10.1093/ejcts/ezy265.; Moroi M.K., Bacha E.A., Kalfa D.M. The Ross procedure in children: a systematic review. Ann Cardiothorac Surg. 2021;10:420-32. doi:10.21037/acs-2020-rp-23.; Huyan Y., Chang Y., Song J. Application of Homograft Valved Conduit in Cardiac Surgery. Front Cardiovasc Med. 2021;8:740871. doi:10.3389/fcvm.2021.740871.; Sandica E., Boethig D., Blanz U., Goerg R., Haas N.A., Laser K.T., Kececioglu D., Bertram H., Sarikouch S., Westhoff-Bleck M., Beerbaum P., Horke A. Bovine jugular veins versus homografts in the pulmonary position: an analysis across two centers and 711 patients-conventional comparisons and time status graphs as a new approach. Thorac Cardiovasc Surg. 2016;64(1):25-35. doi:10.1055/s-0035-1554962.; Holmes A.A., Co S., Human D.G., Leblanc J.G., Campbell A.I. The Contegra conduit: Late outcomes in right ventricular outflow tract reconstruction. Ann Pediatr Cardiol. 2012;5(1):27-33. doi:10.4103/0974-2069.93706.; Zhuravleva I.Y., Nichay N.R., Kulyabin Y.Y., Timchenko T.P., Korobeinikov A.A., Polienko Y.F., Shatskaya S.S., Kuznetsova E.V., Voitov A.V., Bogachev-Prokophiev A.V., Karaskov A.M. In search of the best xenogeneic material for a paediatric conduit: an experimental study. Interact Cardiovasc Thorac Surg. 2018;26(5):738-44. doi:10.1093/icvts/ivx445.; Schoenhoff F.S., Loup O., Gahl B., Banz Y., Pavlovic M., Pfammatter J.P., Carrel T.P., Kadner A. The Contegra bovine jugular vein graft versus the Shelhigh pulmonic porcine graft for reconstruction of the right ventricular outflow tract: a comparative study. J Thorac Cardiovasc Surg. 2011;141(3):654-61. doi:10.1016/j.jtcvs.2010.06.068.; Meyns B., Van Garsse L., Boshoff D., Eyskens B., Mertens L., Gewillig M., Fieuws S., Verbeken E., Daenen W. The Contegra conduit in the right ventricular outflow tract induces supravalvular stenosis. J Thorac Cardiovasc Surg. 2004;128(6):834-40. doi:10.1016/j.jtcvs.2004.08.015.; Журавлева И. Ю., Ничай Н. Р., Докучаева А. А., Сойнов И. А., Иванцов С. М., Кейль И. М., Омельченко А. Ю., Горбатых Ю. Н., Горбатых А. В. Клинико-морфологический анализ дисфункции кондуита Contegra у пациентов первого года жизни. Патология кровообращения и кардиохирургия. 2016;20(1):56-61. doi:10.21688/1681-3472-2016-1-56-61.; Журавлева И.Ю., Карпова Е.В., Кузнецова Е.В., Юношев А.С., Коробейников А.А., Тимченко Т.П., Ничай Н.Р., Сойнов И.А., Горбатых А.В. Клапаносодержаций ксеновенозный кондуит: terra incognita или tabula rasa? Сибирский научный медицинский журнал. 2016;36(2):90-101.

  6. 6
  7. 7

    Zdroj: Russian Journal of Transplantology and Artificial Organs; Том 26, № 4 (2024); 201-211 ; Вестник трансплантологии и искусственных органов; Том 26, № 4 (2024); 201-211 ; 1995-1191

    Popis souboru: application/pdf

    Relation: https://journal.transpl.ru/vtio/article/view/1801/1690; https://journal.transpl.ru/vtio/article/downloadSuppFile/1801/1638; https://journal.transpl.ru/vtio/article/downloadSuppFile/1801/1639; https://journal.transpl.ru/vtio/article/downloadSuppFile/1801/1640; https://journal.transpl.ru/vtio/article/downloadSuppFile/1801/1641; https://journal.transpl.ru/vtio/article/downloadSuppFile/1801/1642; https://journal.transpl.ru/vtio/article/downloadSuppFile/1801/1643; https://journal.transpl.ru/vtio/article/downloadSuppFile/1801/1644; https://journal.transpl.ru/vtio/article/downloadSuppFile/1801/1645; Бокерия ЛА, Милиевская ЕБ, Кудзоева ЗФ, Прянишников ВВ, Скопин АИ, Юрлов ИА. Сердечно-сосудистая хирургия – 2018. Болезни и врожденные аномалии системы кровообращения. 1st ed. Москва: ФГБУ «НМИЦССХ им. А.Н. Бакулева» МЗ РФ; 2018. 270 p.; Bonow RO, O’Gara PT, Adams DH, Badhwar V, Bavaria JE, Elmariah S, et al. 2020 Focused Update of the 2017 ACC Expert Consensus Decision Pathway on the Management of Mitral Regurgitation: A Report of the American College of Cardiology Solution Set Oversight Committee. J Am Coll Cardiol [Internet]. 2020 May 5 [cited 2023 May 26];75(17):2236–70. Available from: https://pubmed.ncbi.nlm.nih.gov/32068084/; Marom G, Einav S. New insights into valve hemodynamics. Rambam Maimonides Med J. 2020;11(2). DOI:10.5041/RMMJ.10400; Velho TR, Pereira RM, Fernandes F, Guerra NC, Ferreira R, Nobre Â. Bioprosthetic Aortic Valve Degeneration: a Review from a Basic Science Perspective. Brazilian J Cardiovasc Surg. 2022;37(2):239–50. DOI:10.21470/1678-9741-2020-0635; Brockbank KGM, Song YC. Mechanisms of bioprosthetic heart valve calcification. Transplantation. 2003;75(8):1133–5. DOI:10.1097/01.TP.0000062864.54455.E5; Scott Rapoport H, Connolly JM, Fulmer J, Dai N, Murti BH, Gorman RC, et al. Mechanisms of the in vivo inhibition of calcification of bioprosthetic porcine aortic valve cusps and aortic wall with triglycidylamine/mercapto bisphosphonate. Biomaterials. 2007;28(4):690–9. DOI:10.1016/j.biomaterials.2006.09.029; Wen S, Zhou Y, Yim WY, Wang S, Xu L, Shi J, et al. Mechanisms and Drug Therapies of Bioprosthetic Heart Valve Calcification. Front Pharmacol. 2022;13. DOI:10.3389/fphar.2022.909801; Timchenko TP. Bisphosphonates as Potential Inhibitors of Calcification in Bioprosthetic Heart Valves (Review). Sovrem Tehnol v Med. 2022;14(2):68–79. DOI:10.17691/stm2022.14.2.07; Alwan L, Bernhard B, Brugger N, de Marchi SF, Praz F, Windecker S, et al. Imaging of Bioprosthetic Valve Dysfunction after Transcatheter Aortic Valve Implantation. Diagnostics. 2023;13(11). DOI:10.3390/diagnostics13111908; Piérard S, Seldrum S, Muller T, Gerber BL. Evaluation of aortic bioprosthesis stenosis by multidetector ct. J Cardiovasc Comput Tomogr. 2012;6(1):62–5. DOI:10.1016/j.jcct.2011.11.005; Cartlidge TRG, Doris MK, Sellers SL, Pawade TA, White AC, Pessotto R, et al. Detection and Prediction of Bioprosthetic Aortic Valve Degeneration. J Am Coll Cardiol. 2019;73(10):1107–19. DOI:10.1016/j.jacc.2018.12.056; Lepidi H, Casalta JP, Fournier PE, Habib G, Collart F, Raoult D. Quantitative histological examination of mechanical heart valves. Clin Infect Dis. 2005;40(5):655–61. DOI:10.1086/427504; Sellers SL, Turner CT, Sathananthan J, Cartlidge TRG, Sin F, Bouchareb R, et al. Transcatheter Aortic Heart Valves: Histological Analysis Providing Insight to Leaflet Thickening and Structural Valve Degeneration. JACC Cardiovasc Imaging. 2019;12(1):135–45. DOI:10.1016/j.jcmg.2018.06.028; Lepidi H, Casalta JP, Fournier PE, Habib G, Collart F, Raoult D. Quantitative histological examination of bioprosthetic heart valves. Clin Infect Dis. 2006;42(5):590–6. DOI:10.1086/500135; Прокудина ЕС, Сенокосова ЕА, Антонова ЛВ, Мухамадияров РА, Кошелев ВА, Кривкина ЕО, et al. Морфологические особенности ремоделирования биологических и тканеинженерных сосудистых заплат: результаты испытаний на модели овцы. Сибирский журнал клинической и экспериментальной медицины. 2023;38(4):250–9. DOI:10.29001/2073-8552-2023-38-4-250-259; Богданов ЛА, Великанова ЕА, Шишкова ДК, Шабаев АР, Кутихин АГ. Neointimal remodeling in carotid atherosclerosis: roles of matrix metalloproteinases-2 and -9 and different phenotypes of vascular smooth muscle cells. Zhurnal «Patologicheskaia Fiziol i Eksp Ter. 2020;(4):20–30. DOI:10.25557/0031-2991.2020.04.20-30; Human P, Bezuidenhout D, Aikawa E, Zilla P. Residual Bioprosthetic Valve Immunogenicity: Forgotten, Not Lost. Front Cardiovasc Med. 2021;8. DOI:10.3389/fcvm.2021.760635; Marro M, Kossar AP, Xue Y, Frasca A, Levy RJ, Ferrari G. Noncalcific mechanisms of bioprosthetic structural valve degeneration. J Am Heart Assoc. 2021;10(3):1–13. DOI:10.1161/JAHA.120.018921; Shishkova DK, Glushkova TV, Efimova OS, Popova AN, Malysheva VY, Kolmykov RP, et al. Morphological and Chemical Properties of Spherical and Needle Calcium Phosphate Bions. Complex Issues Cardiovasc Dis. 2019;8(1):59–69. DOI:10.17802/2306-1278-2019-8-1-59-69; Abramov A, Xue Y, Zakharchenko A, Kurade M, Soni RK, Levy RJ, et al. Bioprosthetic heart valve structural degeneration associated with metabolic syndrome: Mitigation with polyoxazoline modification. Proc Natl Acad Sci U S A. 2023;120(1). DOI:10.1073/pnas.2219054120; Smart I, Goecke T, Ramm R, Petersen B, Lenz D, Haverich A, et al. Dot blots of solubilized extracellular matrix allow quantification of human antibodies bound to epitopes present in decellularized porcine pulmonary heart valves. Xenotransplantation. 2021;28(1). DOI:10.1111/xen.12646; Asanov MA, Kazachek Y V., Evtushenko A V., Teplova YE, Ponasenko A V. Comparison of Microflora Isolated From Peripheral Blood and Valvular Structures of the Heart in Patients With Infective Endocarditis. Acta Biomed Sci. 2022;7(2):91–8. DOI:10.29413/ABS.2022-7.2.10; Mohammadi MM, Bavi O. DNA sequencing: an overview of solid-state and biological nanopore-based methods. Biophys Rev. 2022;14(1):99–110. DOI:10.1007/s12551-021-00857-y; Rovery C, Greub G, Lepidi H, Casalta JP, Habib G, Collart F, et al. PCR detection of bacteria on cardiac valves of patients with treated bacterial endocarditis. J Clin Microbiol. 2005;43(1):163–7. DOI:10.1128/JCM.43.1.163-167.2005; Mukhamadiyarov RA, Bogdanov LA, Glushkova T V., Shishkova DK, Kostyunin AE, Koshelev VA, et al. Embedding and backscattered scanning electron microscopy: A detailed protocol for the whole-specimen, high-resolution analysis of cardiovascular tissues. Front Cardiovasc Med. 2021;8. DOI:10.3389/fcvm.2021.739549; Keklikoglou K, Arvanitidis C, Chatzigeorgiou G, Chatzinikolaou E, Karagiannidis E, Koletsa T, et al. Micro‐ct for biological and biomedical studies: A comparison of imaging techniques. J Imaging. 2021;7(9). DOI:10.3390/jimaging7090172; Hamid MS, Sabbah HN, Stein PD. Vibrational analysis of bioprosthetic heart valve leaflets using numerical models: Effects of leaflet stiffening, calcification, and perforation. Circ Res. 1987;61(5):687–94. DOI:10.1161/01.RES.61.5.687; Claiborne TE, Sheriff J, Kuetting M, Steinseifer U, Slepian MJ, Bluestein D. In vitro evaluation of a novel hemodynamically optimized trileaflet polymeric prosthetic heart valve. J Biomech Eng. 2013;135(2). DOI:10.1115/1.4023235; Claiborne TE, Xenos M, Sheriff J, Chiu WC, Soares J, Alemu Y, et al. Toward optimization of a novel trileaflet polymeric prosthetic heart valve via device thrombogenicity emulation. ASAIO J. 2013;59(3):275–83. DOI:10.1097/MAT.0b013e31828e4d80; Xuan Y, Dvir D, Wang Z, Mizoguchi T, Ye J, Guccione JM, et al. Stent and leaflet stresses in 26-mm, third-generation, balloon-expandable transcatheter aortic valve. J Thorac Cardiovasc Surg. 2019;157(2):528–36. DOI:10.1016/j.jtcvs.2018.04.115; Qin T, Caballero A, Mao W, Barrett B, Kamioka N, Lerakis S, et al. The role of stress concentration in calcified bicuspid aortic valve. J R Soc Interface. 2020;17(167). DOI:10.1098/rsif.2019.0893; Kazik HB, Kandail HS, LaDisa JF, Lincoln J. Molecular and Mechanical Mechanisms of Calcification Pathology Induced by Bicuspid Aortic Valve Abnormalities. Front Cardiovasc Med. 2021;8. DOI:10.3389/fcvm.2021.677977; Sturla F, Ronzoni M, Vitali M, Dimasi A, Vismara R, Preston-Maher G, et al. Impact of different aortic valve calcification patterns on the outcome of transcatheter aortic valve implantation: A finite element study. J Biomech. 2016;49(12):2520–30. DOI:10.1016/j.jbiomech.2016.03.036; Weinberg EJ, Schoen FJ, Mofrad MRK. A computational model of aging and calcification in the aortic heart valve. PLoS One. 2009;4(6). DOI:10.1371/journal.pone.0005960; Thubrikar MJ, Deck JD, Aouad J, Nolan SP. Role of mechanical stress in calcification of aortic bioprosthetic valves. J Thorac Cardiovasc Surg. 1983;86(1):115–25. DOI:10.1016/s0022-5223(19)39217-7; van der Valk DC, Fomina A, Uiterwijk M, Hooijmans CR, Akiva A, Kluin J, et al. Calcification in Pulmonary Heart Valve Tissue Engineering: A Systematic Review and Meta-Analysis of Large-Animal Studies. JACC Basic to Transl Sci. 2023;8(5):572–91. DOI:10.1016/j.jacbts.2022.09.009; Schoen FJ, Tsao JW, Levy RJ. Calcification of bovine pericardium used in cardiac valve bioprostheses. Am J Pathol. 1986;123:134–45.; Sakaue T, Koyama T, Nakamura Y, Okamoto K, Kawashima T, Umeno T, et al. Bioprosthetic Valve Deterioration: Accumulation of Circulating Proteins and Macrophages in the Valve Interstitium. JACC Basic to Transl Sci. 2023;8(7):862–80. DOI:10.1016/j.jacbts.2023.01.003; Khalivopulo IK, Evtushenko A V., Shabaldin A V., Troshkinev NM, Stasev AN, Kokorin SG, et al. Comparison of Propensity Scores for Surgical Treatment of Bioprosthetic Mitral Valve Dysfunction Using Traditional and “Valve-in-Valve” Methods. Complex Issues Cardiovasc Dis. 2023;12(2):57–69. DOI:10.17802/2306-1278-2023-12-2-57-69; Федоров СА, Чигинев ВА, Журко СА, Гамзаев АБ, Медведев АП. Клинические и гемодинамические результаты использования различных моделей биологических протезов для коррекции сенильных пороков аортального клапана. Современные технологии в медицине. 2016;8(4):292–6.; Pestiaux C, Pyka G, Quirynen L, De Azevedo D, Vanoverschelde JL, Lengelé B, et al. 3D histopathology of stenotic aortic valve cusps using ex vivo microfocus computed tomography. Front Cardiovasc Med. 2023;10. DOI:10.3389/fcvm.2023.1129990; ExxonMobil. Datasheet. 2022 [cited 2023 Jul 19]. p. 2 ExxonMobilTM PP1014H1 Polypropylene Homopolymer. Available from: https://exxonmobilchemical.ulprospector.com/datasheet.aspx; Finotello A, Gorla R, Brambilla N, Bedogni F, Auricchio F, Morganti S. Finite element analysis of transcatheter aortic valve implantation: Insights on the modelling of self-expandable devices. J Mech Behav Biomed Mater. 2021;123. DOI:10.1016/j.jmbbm.2021.104772; Capelli C, Bosi GM, Cerri E, Nordmeyer J, Odenwald T, Bonhoeffer P, et al. Patient-specific simulations of transcatheter aortic valve stent implantation. Med Biol Eng Comput [Internet]. 2012 Feb [cited 2022 Mar 16];50(2):183–92. Available from: https://pubmed.ncbi.nlm.nih.gov/22286953/; Onishchenko P, Glushkova T, Kostyunin A, Rezvova M, Akentyeva T, Barbarash L. Computer models of biomaterials used for manufacture of flap apparatus of prosthetic heart valves. Mater Sci. 2023;0(7):30–9. DOI:10.31044/1684-579x-2023-0-7-30-39; Guo S, Shi Y, Zhang H, Meng Q, Su R, Zhang J, et al. Design and fabrication of a Nb/NiTi superelastic composite with high critical stress for inducing martensitic transformation and large recoverable strain for biomedical applications. Mater Sci Eng C. 2020;112. DOI:10.1016/j.msec.2020.110894; https://journal.transpl.ru/vtio/article/view/1801

  8. 8

    Zdroj: Rossiyskiy Vestnik Perinatologii i Pediatrii (Russian Bulletin of Perinatology and Pediatrics); Том 69, № 3 (2024); 29-36 ; Российский вестник перинатологии и педиатрии; Том 69, № 3 (2024); 29-36 ; 2500-2228 ; 1027-4065

    Popis souboru: application/pdf

    Relation: https://www.ped-perinatology.ru/jour/article/view/1999/1491; OMIM. https://www.omim.org/entry/208000?search=Arterial%20calcification%20generalized% 20of%20infancy&highlight=%28generalised%7Cgeneralized%29%20arterial%20calcification%20infancy%20of. / Активна на 11.11.2023; https://www.omim.org/entry/614473?search=Arterial%20calcification%20generalized%20of%20infancy&highlight=%28generalised%7Cgeneralized%29%20arterial%20 calcification%20infancy%20of. / Активна на 11.12.2023; ORPHA. https://www.orpha.net/consor/cgi-bin/Disease_Classif_Simple.php?lng=EN / Активна на 11.11.2023; Ferreira C.R., Kintzinger K., Hackbarth M.E., Botschen U., Nitschke Y., Mughal M.Z. et al. Ectopic Calcification and Hypophosphatemic Rickets: Natural History of ENPP1 and ABCC6 Deficiencies. J Bone Miner Res 2021; 36(11): 2193– 2202. DOI:10.1002/jbmr.4418; Zimmerman K., Liu X., von Kroge S., Stabach P., Lester E.R., Chu E.Y. et al. Catalysis-Independent ENPP1 Protein Signaling Regulates Mammalian Bone Mass. J Bone Miner Res 2022;37(9):1733–1749. DOI:10.1002/jbmr.4640; Shimada B.K., Pomozi V., Zoll J., Kuo S., Martin L., Le Saux O. ABCC6, Pyrophosphate and Ectopic Calcification: Therapeutic Solutions. Int J Mol Sci 2021; 22(9): 4555. DOI:10.3390/ijms22094555; Boyce A.M., Gafni R.I., Ferreira C.R. Generalized Arterial Calcification of Infancy: New Insights, Controversies, and Approach to Management. Curr Osteoporos Rep 2020; 18(3): 232–241. DOI:10.1007/s11914-020-00577-4; Pu L., Dai X., Liu H., Li L., Zhao F., Chen J. Prenatal diagnosis of generalized arterial calcification of infancy in the second trimester. Prenat Diagn 2022; 42(12): 1538–1544. DOI:10.1002/pd.6245; Hailu S.S., Derbew H.M., Hailemeriam T. Generalized arterial calcification of infancy in a neonate with acute kidney injury: A rare case report. Radiol Case Rep 2023; 18(10): 3376–3379. DOI:10.1016/j.radcr.2023.07.019; Rutsch F., Böyer P., Nitschke Y., Ruf N., Lorenz-Depierieux B., Wittkampf T. et al. GACI Study Group. Hypophosphatemia, hyperphosphaturia, and bisphosphonate treatment are associated with survival beyond infancy in generalized arterial calcification of infancy. Circulation: Cardiovasc Genet 2008; 1(2): 133–140. DOI:10.1161/CIRCGENETICS.108.797704; Lorenz-Depiereux B., Schnabel D., Tiosano D., Häusler G., Strom T.M. Loss-of-function ENPP1 mutations cause both generalized arterial calcification of infancy and autosomal-recessive hypophosphatemic rickets. Am J Hum Genet 2010; 12;86(2) :267–272. DOI:10.1016/j.ajhg.2010.01.006; Lu P., Chen J., Chen M., Wang L., Xiang D., Yin J. et al. Case report: A rare homozygous variation in the ENPP1 gene, presenting with generalized arterial calcification of infancy in a Chinese infant. Front Cardiovasc Med 2023; 10: 1105381. DOI:10.3389/fcvm.2023.1105381; Grosyeux C., Jourdan L., Jellimann J.M., Grandmougin A., Bronner M., Lambert L. et al. ENPP1 homozygous stop-loss variant causing generalized arterial calcifications of infancy: About a severe neonatal clinical case. Eur J Med Genet 2023; 66(8): 104803. DOI:10.1016/j.ejmg.2023.104803; Mercurio S.A., Chunn L.M., Khursigara G., Nester C., Wray K., Botschen U. et al. ENPP1 deficiency: A clinical update on the relevance of individual variants using a locusspecific patient database. Hum Mutat 2022; 43(12): 1673– 1705. DOI:10.1002/humu.24477; Chunn L.M., Bissonnette J., Heinrich S.V., Mercurio S.A., Kiel M.J., Rutsch F. et al. Estimation of ENPP1 deficiency genetic prevalence using a comprehensive literature review and population databases. Orphanet J Rare Dis 2022; 17(1): 421. DOI:10.1186/s13023-022-02577-2; Nitschke Y., Baujat G., Botschen U., Wittkampf T., du Moulin M., Stella J. et al. Generalized arterial calcification of infancy and pseudoxanthoma elasticumcanbe caused by mutations in either ENPP1 or ABCC6.Am J Hum Genet 2012; 90(1): 25–39. DOI:10.1016/j.ajhg.2011.11.020; Fãgãrãşan A., Liliana Gozar L., Ghiragosian S-E., Murariu M. , Pop M., Crauciuc A. et al. Severe early-onset manifestations of generalized arterial calcification of infancy (mimicking severe coarctation of the aorta) with ABCC6 gene variant — Case report and literature review. Front Cardiovasc Med 2022; 9: 1032519. DOI:10.3389/fcvm.2022.1032519; Springman A., Forde B., Tolusso L, DeFranco E., Swarr D.T. Twin-twin transfusion syndrome recipient with arterial calcification and heterozygous variant in ABCC6: Evidence of a gene-environment interaction? Prenat Diagn 2023; 43(8): 1092–1095. DOI:10.1002/pd.6396.; Ramjan K.A., Roscioli T., Rutsch F., Sillence D., Munns C.F. Generalized arterial calcification of infancy: treatment with bisphosphonates. Nature clinical practice. Nat Clin Pract Endocrinol Metab 2009; 5(3): 167–172. DOI:10.1038/ncpendmet1067; Ferreira C.R., Ziegler S.G., Gupta A., Groden C., Hsu K.S., Gahl W.A. Treatment of hypophosphatemic rickets in generalized arterial calcification of infancy (GACI) without worsening of vascular calcification. Am J Med Genet A 2016; 170A(5): 1308–1311. DOI:10.1002/ajmg.a.37574; Akhtar Ali S., NgC., Votava-Smith J.K., RandolphL.M., Pitukcheewanont P. Bisphosphonate therapy in an infant with generalized arterial calcification with an ABCC6 mutation Osteoporos Int 2018; 29(11): 2575–2579. DOI:10.1007/s00198–018–4639-x; Савенкова Н.Д., Аничкова И.В., Левиашвили Ж.Г., Осипова О.С., Карпова Т.В., Имаева Л.Р. и др. Генерализованная артериальная кальцификация у младенцев: клиническое наблюдение. Нефрология 2016; 20(3): 96–107.; Khan T., Sinkevicius K.W., Vong S., Avakian A., Leavitt M.C., Malanson H. et al. ENPP1 enzyme replacement therapy improves blood pressure and cardiovascular function in a mouse model of generalized arterial calcification of infancy. Dis Model Mech 2018; 8: 11(10): dmm035691. DOI:10.1242/dmm.035691; Cheng Z., O’Brien K., Howe J., Sullivan C., Schrier D., Lynch A. et al. INZ-701 Prevents Ectopic Tissue Calcification and Restores Bone Architecture and Growth in ENPP1- Deficient Mice. J Bone Miner Res 2021; 36(8): 1594–1604. DOI:10.1002/jbmr.4315; Kawai K., Sato Y., Kawakami R., Sakamoto A., Cornelissen A., Mori M. et al. Generalized Arterial Calcification of Infancy (GACI): Optimizing Care with a Multidisciplinary Approach. J Multidiscip Healthc 2022; 1(15): 1261–1276. DOI:10.2147/JMDH.S251861

  9. 9

    Zdroj: Complex Issues of Cardiovascular Diseases; Том 13, № 4S (2024); 138-149 ; Комплексные проблемы сердечно-сосудистых заболеваний; Том 13, № 4S (2024); 138-149 ; 2587-9537 ; 2306-1278

    Popis souboru: application/pdf

    Relation: https://www.nii-kpssz.com/jour/article/view/1558/980; https://www.nii-kpssz.com/jour/article/downloadSuppFile/1558/1832; https://www.nii-kpssz.com/jour/article/downloadSuppFile/1558/1833; https://www.nii-kpssz.com/jour/article/downloadSuppFile/1558/1834; https://www.nii-kpssz.com/jour/article/downloadSuppFile/1558/1835; https://www.nii-kpssz.com/jour/article/downloadSuppFile/1558/1842; https://www.nii-kpssz.com/jour/article/downloadSuppFile/1558/1843; https://www.nii-kpssz.com/jour/article/downloadSuppFile/1558/1845; https://www.nii-kpssz.com/jour/article/downloadSuppFile/1558/1909; Guhathakurta S., Galla S. Progress in cardiovascular biomaterials. Asian Cardiovasc Thorac Ann. 2019;27(9):744-750. doi:10.1177/0218492319880424.; Ghanaati S., Orth C., Unger R.E., Barbeck M., Webber M.J., Motta A., Migliaresi C., James Kirkpatrick C. Fine-tuning scaffolds for tissue regeneration: effects of formic acid processing on tissue reaction to silk fibroin. J Tissue Eng Regen Med. 2010;4(6):464-72. doi:10.1002/term.257.; Toong D.W.Y., Toh H.W., Ng J.C.K., Wong P.E.H., Leo H.L., Venkatraman S., Tan L.P., Ang H.Y., Huang Y. Bioresorbable Polymeric Scaffold in Cardiovascular Applications. Int J Mol Sci. 2020;21(10):3444. doi:10.3390/ijms21103444.; Резвова М. А., Овчаренко Е. А., Глушкова Т. В., Кудрявцева Ю.A., Барбараш Л.С. Оценка резистентности к кальцификации ксеноперикарда, обработанного полигидроксисоединениями. Вестник трансплантологии и искусственных органов. 2021;23(1):75-83. doi:10.15825/1995-1191-2021-1-75-83.; Кудрявцева Ю. А., Каноныкина А. Ю., Ефремова Н. А., Кошелев В. А. Биосовместимость и особенности деградации полимерных противоспаечных мембран с антибактериальной активностью. Фундаментальная и клиническая медицина. 2023;8(4):54-64. doi:10.23946/2500-0764-2023-8-4-54-64; Khan G.M.A., Yilmaz N.D., Yilmaz К. Recent developments in biocomposites of Bombyx mori silk fibroin. In: editors V.K. Thakur, M.K. Thakur, M.R. Kessler Handbook of Composites from Renewable Materials. Scrivener Publishing LLC, 2017. P. 377-410.; Moreno-Tortolero R.O., Luo Y., Parmeggiani F., Skaer N., Walker R., Serpell L.C., Holland C., Davis S.A. Molecular organization of fibroin heavy chain and mechanism of fibre formation in Bombyx mori. Commun Biol. 2024;7(1):786. doi:10.1038/s42003-024-06474-1.; Li S., Yu D., Ji H., Zhao B., Ji L., Leng X. In vivo degradation and neovascularization of silk fibroin implants monitored by multiple modes ultrasound for surgical applications. Biomed Eng Online. 2018;17(1):87. doi:10.1186/s12938-018-0478-4.; Park S.H., Gil E.S., Kim H.J., Lee K., Kaplan D.L. Relationships between degradability of silk scaffolds and osteogenesis. Biomaterials. 2010;31(24):6162-6172. doi:10.1016/j.biomaterials.2010.04.028.; Horan R.L., Bramono D.S., Stanley J.R., Simmons Q., Chen J., Boepple H.E., Altman G.H. Biological and biomechanical assessment of a long-term bioresorbable silk-derived surgical mesh in an abdominal body wall defect model. Hernia. 2009;13(2):189-199. doi:10.1007/s10029-008-0459-9.; Антонова Л. В., Великанова Е. А., Сенокосова Е. А., Мухамадияров Р.А., Кривкина Е.О., Кошелев В.А., Миронов А.В., Шабаев А.Р., Сардин Е.С., Прокудина Е.С., Ханова М.Ю., Барбараш Л.С. Особенности ремоделирования матриксов из полиуретана в экспериментах на модели овцы. Комплексные проблемы сердечно-сосудистых заболеваний. 2023;12(S4):110-119. doi:10.17802/2306-1278-2023-12-4S-110-119.; Kiritani S., Kaneko J., Ito D., Morito M., Ishizawa T., Akamatsu N., Tanaka M., Iida T., Tanaka T., Tanaka R., Asakura T., Arita J., Hasegawa K. Silk fibroin vascular graft: a promising tissue-engineered scaffold material for abdominal venous system replacement. Sci Rep. 2020;10(1):21041. doi:10.1038/s41598-020-78020-y.; Lu X., Zou H., Liao X., Xiong Y., Hu X., Cao J., Pan J., Li C., Zheng Y. Construction of PCL-collagen@PCL@PCL-gelatin three-layer small diameter artificial vascular grafts by electrospinning. Biomed Mater. 2022;18(1):015008. doi:10.1088/1748-605X/aca269.; Yang L., Wang X., Xiong M., Liu X., Luo S., Luo J., Wang Y. Electrospun silk fibroin/fibrin vascular scaffold with superior mechanical properties and biocompatibility for applications in tissue engineering. Sci Rep. 2024;14(1):3942. doi:10.1038/s41598-024-54638-0.; Шацкий А. И. Гидролитическая деградация модифицированных полимерных матриксов медико-биологического назначения. Успехи в химии и химической технологии. 2011;25(3(119)):55-59.; Cai L., Gao N., Sun T., Bi K., Chen X., Zhao X. Application of an ultrasound semi-quantitative assessment in the degradation of silk fibroin scaffolds in vivo. Biomed Eng Online. 2021;20(1):48. doi:10.1186/s12938-021-00887-3.; Botes L., Laker L., Dohmen P.M., van den Heever J.J., Jordaan C.J., Lewies A., Smit F.E. Advantages of decellularized bovine pericardial scaffolds compared to glutaraldehyde fixed bovine pericardial patches demonstrated in a 180-day implant ovine study. Cell Tissue Bank. 2022;23(4):791-805. doi:10.1007/s10561-021-09988-8.; Deutsch O., Bruehl F., Cleuziou J., Prinzing A., Schlitter A.M., Krane M., Lange R. Histological examination of explanted tissue-engineered bovine pericardium following heart valve repair. Interact Cardiovasc Thorac Surg. 2020;30(1):64-73. doi:10.1093/icvts/ivz234.; Zhuravleva I.Y., Karpova E.V., Dokuchaeva A.A., Titov A.T., Timchenko T.P., Vasilieva M.B. Calcification of various bioprosthetic materials in rats: is it really different? Int J Mol Sci. 2023;24(8):7274. doi:10.3390/ijms24087274.; Hernandez J.L., Park J., Yao S., Blakney A.K., Nguyen H.V., Katz B.H., Jensen J.T., Woodrow K.A. Effect of tissue microenvironment on fibrous capsule formation to biomaterial-coated implants. Biomaterials. 2021;273:120806. doi:10.1016/j.biomaterials.2021.120806.; Lv J., Wang J., Zeng Y., Tian S., Wang F., Zhai Y., Zhou Q., Luo X., Zhang X., Liu B., Zhou C. In vitro chemical treatment of silk increases the expression of pro-inflammatory factors and facilitates degradation in rats. J Appl Biomater Funct Mater. 2024;22:1-10. doi:10.1177/22808000231222704.; Колотов К.А., Распутин П.Г. Моноцитарный хемотаксический протеин 1 в физиологии и медицине. Пермский медицинский журнал. 2018;35(3):99-105. doi:10.17816/pmj35399%105; Sevastianov V.I., Rosanova I.B., Vasin S.L., Nemets E.A., Vasilets V.N. Protein adsorption as bridge between the short-term and long-term blood compatibility of biomaterials. In: eds. Park K.D., Know I.C., Yui N., Park S.Y., Park K Biomaterials and drug delivery toward new millennium. Seoul, Korea: Yan Rim Won Publ. Co., 2000. P. 497-515.; Прокудина Е. С., Сенокосова Е. А., Антонова Л. В., Кривкина Е.О., Великанова Е.А., Акентьева Т.Н., Глушкова Т.В., Матвеева В.Г., Кочергин Н.А. Новый тканеинженерный сосудистый матрикс на основе регенерированного фиброина шелка: исследование in vitro. Современные технологии в медицине. 2023;15(4):41-49. doi:10.17691/stm2023.15.4.04

  10. 10

    Zdroj: Complex Issues of Cardiovascular Diseases; Том 13, № 3 (2024); 63-72 ; Комплексные проблемы сердечно-сосудистых заболеваний; Том 13, № 3 (2024); 63-72 ; 2587-9537 ; 2306-1278

    Popis souboru: application/pdf

    Relation: https://www.nii-kpssz.com/jour/article/view/1389/919; https://www.nii-kpssz.com/jour/article/downloadSuppFile/1389/1446; https://www.nii-kpssz.com/jour/article/downloadSuppFile/1389/1447; https://www.nii-kpssz.com/jour/article/downloadSuppFile/1389/1448; https://www.nii-kpssz.com/jour/article/downloadSuppFile/1389/1449; https://www.nii-kpssz.com/jour/article/downloadSuppFile/1389/1450; https://www.nii-kpssz.com/jour/article/downloadSuppFile/1389/1451; Бокерия Л.А., Милиевская Е.Б., Кудзоева З.Ф., Прянишников В.В., Скопин А.И., Юрлов И.А. Сердечно-сосудистая хирургия – 2018. Болезни и врожденные аномалии системы кровообращения. Москва: ФГБУ «НМИЦССХ им. А.Н. Бакулева» МЗ РФ; 2019. 270 p.; Li K.Y.C. Bioprosthetic Heart Valves: Upgrading a 50-Year Old Technology. Frontiers in Cardiovascular Medicine. 2019; 6. doi:10.3389/fcvm.2019.00047; Foroutan F., Guyatt G.H., O’Brien K., Bain E., Stein M., Bhagra S., Sit D., Kamran R., Chang Y., Devji T., Mir H., Manja V., Schofield T., Siemieniuk R.A., Agoritsas T., Bagur R., Otto C.M., Vandvik P.O. Prognosis after surgical replacement with a bioprosthetic aortic valve in patients with severe symptomatic aortic stenosis: systematic review of observational studies. BMJ (Clinical research ed.). 2016; 354: i5065. doi:10.1136/bmj.i5065; Одаренко Ю.Н., Рутковская Н.В., Рогулина Н.В., Стасев А.Н., Кокорин С.Г., Каган Е.С., Барбараш Л.С. Анализ 23-летнего опыта использования ксеноаортальных эпоксиобработанных биопротезов в хирургии митральных пороков сердца. Исследование факторов реципиента с позиций влияния на развитие кальциевой дегенерации. Комплексные проблемы сердечно-сосудистых заболеваний. 2015; (4): 17–25. doi:10.17802/2306-1278-2015-4-17-25; Рогулина Н.В., Одаренко Ю.Н., Журавлева И.Ю., Барбараш Л.С. Отдаленные результаты применения механических и биологических протезов у пациентов различных возрастов. Медицина и образование в Сибири. 2014; (3): 47.; Федоров С.А., Чигинев В.А., Журко С.А., Гамзаев А.Б., Медведев А.П. Клинические и гемодинамические результаты использования различных моделей биологических протезов для коррекции сенильных пороков аортального клапана. Современные технологии в медицине. 2016; 8(4): 292–296.; Dangas G.D., Weitz J.I., Giustino G., Makkar R., Mehran R. Prosthetic Heart Valve Thrombosis. Journal of the American College of Cardiology. United States; 2016; 68(24): 2670–2689. doi:10.1016/j.jacc.2016.09.958; Костюнин А.Е., Овчаренко Е.А., Клышников К.Ю. Современное понимание механизмов структурной дегенерации биопротезов клапанов сердца. Российский кардиологический журнал. 2018;(11):145-152. doi:10.15829/1560-4071-2018-11-145-152; Zhuravleva I.Y., Karpova E. V., Oparina L.A., Poveschenko O. V., Surovtseva M.A., Titov A.T., Ksenofontov A.L., Vasilieva M.B., Kuznetsova E. V., Bogachev-Prokophiev A. V., Trofimov B.A. Cross-linking method using pentaepoxide for improving bovine and porcine bioprosthetic pericardia: A multiparametric assessment study. Materials Science and Engineering: C. 2021; 118: 111473. doi:10.1016/j.msec.2020.111473; Danilov V. V., Klyshnikov K.Y., Gerget O.M., Skirnevsky I.P., Kutikhin A.G., Shilov A.A., Ganyukov V.I., Ovcharenko E.A. Aortography Keypoint Tracking for Transcatheter Aortic Valve Implantation Based on Multi-Task Learning. Frontiers in Cardiovascular Medicine. 2021; 8: 699. doi:10.3389/fcvm.2021.697737; VeDepo M.C., Detamore M.S., Hopkins R.A., Converse G.L. Recellularization of decellularized heart valves: Progress toward the tissue-engineered heart valve. Journal of Tissue Engineering. 2017; 8: 204173141772632. doi:10.1177/2041731417726327; Miclăuş T., Valla V., Koukoura A., Nielsen A.A., Dahlerup B., Tsianos G.-I., Vassiliadis E. Impact of Design on Medical Device Safety. Therapeutic Innovation & Regulatory Science. 2020; 54(4): 839–849. doi:10.1007/s43441-019-00022-4; Joung Y.-H. Development of Implantable Medical Devices: From an Engineering Perspective. International Neurourology Journal. 2013; 17(3): 98. doi:10.5213/inj.2013.17.3.98; Gellis L., Baird C.W., Emani S., Borisuk M., Gauvreau K., Padera R.F., Sanders S.P. Morphologic and histologic findings in bioprosthetic valves explanted from the mitral position in children younger than 5 years of age. The Journal of Thoracic and Cardiovascular Surgery. 2018; 155(2): 746–752. doi:10.1016/j.jtcvs.2017.09.091; Lepidi H., Casalta J.-P., Fournier P.-E., Habib G., Collart F., Raoult D. Quantitative Histological Examination of Bioprosthetic Heart Valves. Clinical Infectious Diseases. 2006; 42(5): 590–596. doi:10.1086/500135; Uchasova E., Barbarash O., Rutkovskaya N., Hryachkova O., Gruzdeva O., Ponasenko A., Kondyukova N., Odarenko Y., Barbarash L. Impact of recipient-related factors on structural dysfunction of xenoaortic bioprosthetic heart valves. Patient Preference and Adherence. 2015; 9: 389. doi:10.2147/PPA.S76001; Hamdi S.E., Delisée C., Malvestio J., Da Silva N., Le Duc A., Beaugrand J. X-ray computed microtomography and 2D image analysis for morphological characterization of short lignocellulosic fibers raw materials: A benchmark survey. Composites Part A: Applied Science and Manufacturing. 2015; 76: 1–9. doi:10.1016/j.compositesa.2015.04.019; Markl D., Zeitler J.A., Rasch C., Michaelsen M.H., Müllertz A., Rantanen J., Rades T., Bøtker J. Analysis of 3D Prints by X-ray Computed Microtomography and Terahertz Pulsed Imaging. Pharmaceutical Research. 2017; 34(5): 1037–1052. doi:10.1007/s11095-016-2083-1; Орловский П.И., Гриценко В.В., Юхнев А.Д., Евдокимов С.В., Гавриленко В.И. Искусственные клапаны сердца. СПб.: ЗАО «Олма-медиа групп»; 2007. 448с.; Gondim Teixeira P.A., Villani N., Ait Idir M., Germain E., Lombard C., Gillet R., Blum A. Ultra-high resolution computed tomography of joints: practical recommendations for acquisition protocol optimization. Quantitative Imaging in Medicine and Surgery. 2021; 11(10): 4287–4298. doi:10.21037/qims-21-217; Lin E., Alessio A. What are the basic concepts of temporal, contrast, and spatial resolution in cardiac CT? Journal of Cardiovascular Computed Tomography. 2009; 3(6): 403–408. doi:10.1016/j.jcct.2009.07.003; Барбараш Л.С., Рогулина Н.В., Рутковская Н.В., Овчаренко Е.А. Механизмы развития дисфункций биологических протезов клапанов сердца. Комплексные проблемы сердечно-сосудистых заболеваний. 2018; 7(2): 10–24. doi:10.17802/2306-1278-2018-7-2-10-24; Барбараш Л.С., Борисов В.В., Рутковская Н.В., Бураго А.Ю., Одаренко Ю.Н., Стасев А.Н., Кокорин С.Г., Журавлева И.Ю. Клинико-морфологическое исследование причин дисфункций эпоксиобработанных ксеноаортальных биопротезов в митральной позиции. Кардиология и сердечно-сосудистая хирургия. 2014; 7(4): 84–86.

  11. 11

    Zdroj: Complex Issues of Cardiovascular Diseases; Том 13, № 3 (2024); 54-62 ; Комплексные проблемы сердечно-сосудистых заболеваний; Том 13, № 3 (2024); 54-62 ; 2587-9537 ; 2306-1278

    Popis souboru: application/pdf

    Relation: https://www.nii-kpssz.com/jour/article/view/1407/918; https://www.nii-kpssz.com/jour/article/downloadSuppFile/1407/1496; https://www.nii-kpssz.com/jour/article/downloadSuppFile/1407/1497; https://www.nii-kpssz.com/jour/article/downloadSuppFile/1407/1498; https://www.nii-kpssz.com/jour/article/downloadSuppFile/1407/1499; https://www.nii-kpssz.com/jour/article/downloadSuppFile/1407/1500; https://www.nii-kpssz.com/jour/article/downloadSuppFile/1407/1501; Velho T.R., Pereira R.M., Fernandes F., Guerra N.C., Ferreira R., Nobre Â. Bioprosthetic aortic valve degeneration: a review from a basic science perspective. Brazilian Journal of Cardiovascular Surgery. 2022; 37(2):239-250. doi:10.21470/1678-9741-2020-0635; Bax J.J., Delgado V. Bioprosthetic heart valves, thrombosis, anticoagulation, and imaging surveillance. JACC: Cardiovascular Interventions. 2017; 10(4):388-390. doi:10.1016/j.jcin.2017.01.017; Otto C.M., Nishimura R.A., Bonow R.O., Carabello B.A., Erwin J.P., Gentile F., Jneid H., Krieger E.V. et al. 2020 ACC/AHA guideline for the management of patients with valvular heart disease: a report of the American College of Cardiology/American Heart Association Joint Committee on clinical practice guidelines. Circulation. 2021; 143(5):e72-e227. doi:10.1161/CIR.0000000000000923; Pibarot P., Dumesnil J.G. Prosthetic heart valves: selection of the optimal prosthesis and long-term management. Circulation. 2009; 119(7):1034-1048. doi:10.1161/CIRCULATIONAHA.108.778886; Tillquist M.N., Maddox T.M. Cardiac crossroads: deciding between mechanical or bioprosthetic heart valve replacement. Patient Preference and Adherence. 2011; 17(5):91-99. doi:10.2147/PPA.S16420; Dvir D., Bourguignon T., Otto C.M., Hahn R.T., Rosenhek R., Webb J.G., Treede H., Sarano M.E. et al. Standardized definition of structural valve degeneration for surgical and transcatheter bioprosthetic aortic valves. Circulation. 2018; 137(4):388-399. doi:10.1161/CIRCULATIONAHA.117.030729; Kostyunin A.E., Yuzhalin A.E., Rezvova M.A., Ovcharenko E.A., Glushkova T.V., Kutikhin A.G. Degeneration of bioprosthetic heart valves: update 2020. Journal of the American Heart Association. 2020; 9(19):e018506. doi:10.1161/JAHA.120.018506; Shetty R., Pibarot P., Audet A., Janvier R., Dagenais F., Perron J., Couture C., Voisine P., Després J.P., Mathieu P. Lipid-mediated inflammation and degeneration of bioprosthetic heart valves. European Journal of Clinical Investigation. 2009; 39(6):471-480. doi:10.1111/j.1365-2362.2009.02132.x; Simionescu A., Simionescu D.T., Deac R.F. Matrix metalloproteinases in the pathology of natural and bioprosthetic cardiac valves. Cardiovascular Pathology. 1996; 5(6):323-332. doi:10.1016/s1054-8807(96)00043-9; Ding K., Zheng C., Huang X., Zhang S., Li M., Lei Y., Wang Y. A PEGylation method of fabricating bioprosthetic heart valves based on glutaraldehyde and 2-amino-4-pentenoic acid co-cross linking with improved antithrombogenicity and cytocompatibility. Acta Biomaterialia. 2022; 144:279-291. doi:10.1016/j.actbio.2022.03.026; Костюнин А.Е., Резвова М.А., Глушкова Т.В., Шишкова Д.К., Кутихин А.Г., Акентьева Т.Н., Овчаренко Е.А.Модификация поливиниловым спиртом эпоксиобработанного ксеноперикарда повышает его резистентность к кальцификации in vitro. Трансплантология 2023; 15(1):34-45. doi:10.23873/2074-0506-2023-15-1-34-45.; Stieglmeier F., Grab M., König F., Büch J., Hagl C., Thierfelder N. Mapping of bovine pericardium to enable a standardized acquirement of material for medical implants. Journal of the Mechanical Behavior of Biomedical Materials. 2021; 118:104432. doi:10.1016/j.jmbbm.2021.104432; Dalgliesh A.J., Parvizi M., Noble C., Griffiths L.G. Effect of cyclic deformation on xenogeneic heart valve biomaterials. PLoS One. 2019; 14(6):e0214656. doi:10.1371/journal.pone.0214656; Soares J.S., Feaver K.R., Zhang W., Kamensky D., Aggarwal A., Sacks M.S. Biomechanical behavior of bioprosthetic heart valve heterograft tissues: characterization, simulation, and performance. Cardiovasc Eng Technol. 2016; 7(4):309-351. doi:10.1007/s13239-016-0276-8; Shen M., Marie P., Farge D., Carpentier S., De Pollak C., Hott M., Chen L., Martinet B., Carpentier A. Osteopontin is associated with bioprosthetic heart valve calcification in humans. Comptes Rendus de l'Académie des Sciences - Series III. 1997; 320(1):49-57. doi:10.1016/s0764-4469(99)80086-9; Nkhwa S., Kemal E., Gurav N., Deb S. Dual polymer networks: a new strategy in expanding the repertoire of hydrogels for biomedical applications. Journal of Materials Science: Materials in Medicine.2019; 30:114. doi:10.1007/s10856-019-6316-9; Pazos V., Mongrain R., Tardif J.C. Polyvinyl alcohol cryogel: optimizing the parameters of cryogenic treatment using hyperelastic models. Journal of the Mechanical Behavior of Biomedical Materials. 2009; 2(5):542-549. doi:10.1016/j.jmbbm.2009.01.003; Tong X., Zheng J., Lu Y., Zhang Z., Cheng H. Swelling and mechanical behaviors of carbon nanotube/poly(vinyl alcohol) hybrid hydrogels. Materials Letters. 2007; 61(8-9):1704-1706. doi:10.1016/j.matlet.2006.07.115; Zheng Q., Javadi A., Sabo R., Cai Z., Gong S. Polyvinyl alcohol (PVA)–cellulose nanofibril (CNF)–multiwalled carbon nanotube (MWCNT) hybrid organic aerogels with superior mechanical properties. RSC Advances. 2013; 3(43):20816 doi:10.1039/c3ra42321b

  12. 12

    Přispěvatelé: A. E. Kostyunin T. V. Glushkova A. N. Stasev a další

    Zdroj: Transplantologiya. The Russian Journal of Transplantation; Том 15, № 4 (2023); 515-528 ; Трансплантология; Том 15, № 4 (2023); 515-528 ; 2542-0909 ; 2074-0506

    Popis souboru: application/pdf

    Relation: https://www.jtransplantologiya.ru/jour/article/view/829/823; https://www.jtransplantologiya.ru/jour/article/view/829/830; Otto CM, Nishimura RA, Bonow RO, Carabello BA, Erwin JP, Gentile F, et al. 2020 ACC/AHA guideline for the management of patients with valvular heart disease: a report of the American College of Cardiology/American Heart Association Joint Committee on clinical practice guidelines. Circulation. 2021;143(5):e72– e227. PMID: 33332149 https://doi.org/10.1161/CIR.0000000000000923; Pibarot P, Dumesnil JG. Prosthetic heart valves: selection of the optimal prosthesis and long-term management. Circulation. 2009;119(7):1034–1048. PMID: 19237674 https://doi.org/10.1161/CIRCULATIONAHA.108.778886; Marro M, Kossar AP, Xue Y, Frasca A, Levy RJ, Ferrari G. Noncalcific mechanisms of bioprosthetic structural valve degeneration. J Am Heart Assoc. 2021;10(3):e018921. PMID: 33494616 https://doi.org/10.1161/JAHA.120.018921; Barbarash LS, Rogulina NV, Rutkovskaya NV, Ovcharenko EA. Mechanisms underlying bioprosthetic heart valve dysfunctions. Complex Issues of Cardiovascular Diseases. 2018;7(2):10–24. (In Russ.). https://doi.org/10.17802/2306-1278-2018-7-2-10-24; Резвова М.А., Кудрявцева Ю.А. Современные подходы к химической модификации белков в биологических тканях, последствия и применение. Биоорганическая химия. 2017;44(1):1–16. https://doi.org/10.7868/S0132342318010025; Carpentier A, Lemaigre G, Robert L, Carpentier S, Dubost C. Biological factors affecting long-term results of valvular heterografts. J Thorac Cardiovasc Surg. 1969;58(4):467–483. PMID: 5344189 https://doi.org/10.1016/S0022-5223(19)42561-0; Carpentier A, Deloche A, Relland J, Fabiani JN, Forman J, Camilleri JP, et al. Six-year follow-up of glutaraldehydepreserved heterografts. With particular reference to the treatment of congenital valve malformations. J Thorac Cardiovasc Surg. 1974;68(5):771–782. PMID: 4214526 https://doi.org/10.1016/S00225223(19)41639-5; Барбараш Л.С., Журавлева И.Ю. Эволюция биопротезов клапанов сердца: достижения и проблемы двух десятилетий. Комплексные проблемы сердечно-сосудистых заболеваний. 2012;(1):4–11. https://doi.org/10.17802/2306-1278-2012-1-4-11; Tod TJ, Dove JS. The association of bound aldehyde content with bioprosthetic tissue calcification. J Mater Sci Mater Med. 2016;27(1):8. PMID: 26610931 https://doi.org/10.1007/s10856-0155623-z; Дедух Н.В. Организация и функционирование костной ткани. В кн: Корж Н.А., Поворознюк В.В., Дедух Н.В., Зупанц И.А. (ред.) Остеопороз: эпидемиология, клиника, диагностика, профилактика и лечение. Харьков: Золотые страницы; 2002. с. 10–29.; Bailey MT, Pillarisetti S, Xiao H, Vyavahare NR. Role of elastin in pathologic calcification of xenograft heart valves. J Biomed Mater Res A. 2003;66(1):93–102. PMID: 12833435 https://doi.org/10.1002/jbm.a.10543; Kim KM, Herrera GA, Battarbee HD. Role of glutaraldehyde in calcification of porcine aortic valve fibroblasts. Am J Pathol. 1999;154(3):843–852. PMID: 10079262 https://doi.org/10.1016/S0002-9440(10)65331-X; Kim KM. Cells, rather than extracellular matrix, nucleate apatite in glutaraldehyde-treated vascular tissue. J Biomed Mater Res. 2002;59(4):639–645. PMID: 11774325 https://doi.org/10.1002/jbm.10038; Барбараш Л.С., Караськов А.М., Семеновский М.Л., Журавлева И.Ю., Одаренко Ю.Н., Вавилов П.А. и др. Биопротезы клапанов сердца в России: опыт трех клиник. Патология кровообращения и кардиохирургия. 2011;2:21–26.; Levy RJ, Zenker JA, Bernhard WF. Porcine bioprosthetic valve calcification in bovine left ventricle-aorta shunts: studies of the deposition of vitamin K-dependent proteins. Ann Thorac Surg. 1983;36(2):187–192. PMID: 6603825 https://doi.org/10.1016/s0003-4975(10)60454-7; Shen M, Marie P, Farge D, Carpentier S, De Pollak C, Hott M, et al. Osteopontin is associated with bioprosthetic heart valve calcification in humans. C R Acad Sci III. 1997;320(1):49–57. PMID: 9099263 https://doi.org/10.1016/s07644469(99)80086-9; Srivatsa SS, Harrity PJ, Maercklein PB, Kleppe L, Veinot J, Edwards WD, et al. Increased cellular expression of matrix proteins that regulate mineralization is associated with calcification of native human and porcine xenograft bioprosthetic heart valves. J Clin Invest. 1997;99(5):996–1009. PMID: 9062358 https://doi.org/10.1172/JCI119265; Lu F, Wu H, Bai Y, Gong D, Xia C, Li Q, et al. Evidence of osteogenic regulation in calcific porcine aortic valves. Heart Surg Forum. 2018;21(5):E375– E381. PMID: 30311888 https://doi.org/10.1532/hsf.2033; Fujisawa R, Tamura M. Acidic bone matrix proteins and their roles in calcification. Front Biosci (Landmark Ed). 2012;17(5):1891–1903. PMID: 22201843 https://doi.org/10.2741/4026; Carvalho MS, Cabral JMS, da Silva CL, Vashishth D. Bone matrix non-collagenous proteins in tissue engineering: creating new bone by mimicking the extracellular matrix. Polymers (Basel). 2021;13(7):1095. PMID: 33808184 https://doi.org/10.3390/polym13071095; Kostyunin AE, Glushkova TV, Lobov AA, Ovcharenko EA, Zainullina BR, Bogdanov LA, et al. Proteolytic degradation is a major contributor to bioprosthetic heart valve failure. J Am Heart Assoc. 2023;12(1):e028215. PMID: 36565196 https://doi.org/10.1161/JAHA.122.028215; Мухамадияров Р.А., Рутковская Н.В., Кокорин С.Г., Одаренко Ю.Н., Мильто И.В., Барбараш Л.С. Типирование клеток биопротезов клапанов сердца, эксплантированных вследствие развития кальций-ассоциированных дисфункций. Бюллетень сибирской медицины. 2018;17(4):94–102. https://doi.org/10.20538/1682-03632018-4-94-102; Sakaue T, Nakaoka H, Shikata F, Aono J, Kurata M, Uetani, T, et al. Biochemical and histological evidence of deteriorated bioprosthetic valve leaflets: the accumulation of fibrinogen and plasminogen. Biol Open. 2018;7(8):pii:bio034009. PMID: 30089611 https://doi.org/10.1242/bio.034009; Shetty R, Pibarot P, Audet A, Janvier R, Dagenais F, Perron J, et al. Lipidmediated inflammation and degeneration of bioprosthetic heart valves. Eur J Clin Invest. 2009;39(6):471–480. PMID: 19490057 https://doi.org/10.1111/j.13652362.2009.02132.x; Andrault PM, Panwar P, Mackenzie NCW, Brömme D. Elastolytic activity of cysteine cathepsins K, S, and V promotes vascular calcification. Sci Rep. 2019;9(1):9682. PMID: 31273243 https://doi.org/10.1038/s41598-019-45918-1; Vyavahare N, Jones PL, Tallapragada S, Levy RJ. Inhibition of matrix metalloproteinase activity attenuates tenascin-C production and calcification of implanted purified elastin in rats. Am J Pathol. 2000;157(3):885–893. PMID: 10980128 https://doi.org/10.1016/S00029440(10)64602-0; Stein PD, Wang CH, Riddle JM, Magilligan DJ Jr. Leukocytes, platelets, and surface microstructure of spontaneously degenerated porcine bioprosthetic valves. J Card Surg. 1988;3(3):253–261. PMID: 2980025 https://doi.org/10.1111/j.1540-8191.1988.tb00246.x; Butany J, Collins MJ, Nair V, Leask RL, Scully HE, Williams WG, et al. Morphological findings in explanted Toronto stentless porcine valves. Cardiovasc Pathol. 2006;15(1):41–48. PMID: 16414456 https://doi.org/10.1016/j.carpath.2005.08.010; Курапеев Д.И., Лаврешин А.В., Анисимов С.В. Тканевая инженерия клапанов сердца: децеллюляризация аллои ксенографтов. Клеточная имплантология и тканевая инженерия. 2012;7(1):34–39.; Soares JS, Feaver KR, Zhang W, Kamensky D, Aggarwal A, Sacks MS. Biomechanical behavior of bioprosthetic heart valve heterograft tissues: characterization, simulation, and performance. Cardiovasc Eng Technol. 2016;7(4):309–351. PMID: 27507280 https://doi.org/10.1007/s13239-016-0276-8; Thubrikar MJ, Deck JD, Aouad J, Nolan SP. Role of mechanical stress in calcification of aortic bioprosthetic valves. J Thorac Cardiovasc Surg. 1983;86(1):115–125. PMID: 6865456; Sabbah HN, Hamid MS, Stein PD. Mechanical stresses on closed cusps of porcine bioprosthetic valves: correlation with sites of calcification. Ann Thorac Surg. 1986;42(1):93–96. PMID: 3729623 https://doi.org/10.1016/s00034975(10)61845-0; Kiesendahl N, Schmitz C, Menne M, Schmitz-Rode T, Steinseifer U. In vitro calcification of bioprosthetic heart valves: test fluid validation on prosthetic material samples. Ann Biomed Eng. 2021;49(2):885–899. PMID: 32989592 https://doi.org/10.1007/s10439-02002618-6; Nitsche C, Kammerlander AA, Knechtelsdorfer K, Kraiger JA, Goliasch G, Dona C, et al. Determinants of bioprosthetic aortic valve degeneration. JACC Cardiovasc Imaging. 2020;13(2Pt1):345–353. PMID: 30878425 https://doi.org/10.1016/j.jcmg.2019.01.027; Liao KK, Li X, John R, Amatya DM, Joyce LD, Park SJ, et al. Mechani cal stress: an independent determinant of early bioprosthetic calcification in humans. Ann Thorac Surg. 2008;86(2):491–495. PMID: 18640322 https://doi.org/10.1016/j.athoracsur.2008.03.061; Sellaro TL, Hildebrand D, Lu Q, Vyavahare N, Scott M, Sacks MS. Effects of collagen fiber orientation on the response of biologically derived soft tissue biomaterials to cyclic loading. J Biomed Mater Res A. 2007;80(1):194–205. PMID: 17041913 https://doi.org/10.1002/jbm.a.30871; Margueratt SD, Lee JM. Stress state during fixation determines susceptibility to fatigue-linked biodegradation in bioprosthetic heart valve materials. Biomed Sci Instrum. 2002;38:145–150. PMID: 12085592; Golomb G, Schoen FJ, Smith MS, Linden J, Dixon M, Levy RJ. The role of glutaraldehyde-induced cross-links in calcification of bovine pericardium used in cardiac valve bioprostheses. Am J Pathol. 1987;127(1):122–130. PMID:3105321; Everaerts F, Torrianni M, van Luyn M, van Wachem P, Feijen J, Hendriks M. Reduced calcification of bioprostheses, cross-linked via an improved carbodiimide based method. Biomaterials. 2004;25(24):5523–5530. PMID: 15142734 https://doi.org/10.1016/j.biomaterials.2003.12.054; Guo G, Jin L, Jin W, Chen L, Lei Y, Wang Y. Radical polymerization-crosslinking method for improving extracellular matrix stability in bioprosthetic heart valves with reduced potential for calcification and inflammatory response. Acta Biomater. 2018;82:44–55. PMID: 30326277 https://doi.org/10.1016/j.actbio.2018.10.017; Jin W, Guo G, Chen L, Lei Y, Wang Y. Elastin stabilization through polyphe nol and ferric chloride combined treatment for the enhancement of bioprosthetic heart valve anticalcification. Artif Organs. 2018;42(11):1062–1069. PMID: 30058211 https://doi.org/10.1111/aor.13151; Lim HG, Kim SH, Choi SY, Kim YJ. Anticalcification effects of decellularization, solvent, and detoxification treatment for genipin and glutaraldehyde fixation of bovine pericardium. Eur J Cardiothorac Surg. 2012;41(2):383–390. PMID: 21683607 https://doi.org/10.1016/j.ejcts.2011.05.016; Tam H, Zhang W, Infante D, Parchment N, Sacks M, Vyavahare N. Fixation of bovine pericardium-based tissue biomaterial with irreversible chemistry improves biochemical and biomechanical properties. J Cardiovasc Transl Res. 2017;10(2):194–205. PMID: 28213846 https://doi.org/10.1007/s12265-0179733-5; Барбараш Л.С., Борисов В.В., Рутковская Н.В., Бураго А.Ю., Одарен ко Ю.Н., Стасев А.Н. и др. Клинико-морфологическое исследование причин дисфункций эпоксиобработанных ксеноаортальных биопротезов в митральной позиции. Кардиология и сердечнососудистая хирургия. 2014;7(4):84–86.; Barbarash L, Rutkovskaya N, Barbarash O, Odarenko Y, Stasev A, Uchasova E. Prosthetic heart valve selection in women of childbearing age with acquired heart disease: a case report. J Med Case Rep. 2016;10:51. PMID: 26956734 https://doi.org/10.1186/s13256-016-0821-y; Karaskov A, Sharifulin R, Zheleznev S, Demin I, Lenko E, BogachevProkophiev A. Results of the Ross procedure in adults: a single-centre experience of 741 operations. Eur J Cardiothorac Surg. 2016;49(5):e97–e104. PMID: 27130952 https://doi.org/10.1093/ejcts/ezw047; Shang H, Claessens SM, Tian B, Wright GA. Aldehyde reduction in a novel pericardial tissue reduces calcification using rabbit intramuscular model. J Mater Sci Mater Med. 2017;28(1):16. PMID: 28000112 https://doi.org/10.1007/s10856-016-5829-8; Яблонский П.П., Чеботарь С., Тудорахе И., Хаверих А. Тканевые матрицы клапанов сердца: состояние проблемы и перспективы. Вестник Санкт-Петербургского университета. 2016;11(2):51– 61. https://doi.org/10.21638/11701/spbu11.2016.206; Collatusso C, Roderjan JG, de Noronha L, Klosowski A, Suss PH, Guarita-Souza LC, et al. Decellularization as a method to reduce calcification in bovine pericardium bioprosthetic valves. Interact Cardiovasc Thorac Surg. 2019;29(2):302–311ivz041. PMID: 30848795 https://doi.org/10.1093/icvts/ivz041; Collatusso C, Roderjan JG, Vieira ED, Myague NI, de Noronha L, Costa FD. Decellularization as an anticalcification method in stentless bovine pericardium valve prosthesis: a study in sheep. Rev Bras Cir Cardiovasc. 2011;26(3):419–426. PMID: 22086579 https://doi.org/10.5935/1678-9741.20110017; Human P, Bezuidenhout D, Aikawa E, Zilla P. Residual bioprosthetic valve immunogenicity: forgotten, not lost. Front Cardiovasc Med. 2022;8:760635. PMID: 35059444 https://doi.org/10.3389/fcvm.2021.760635; Manji RA, Ekser B, Menkis AH, Cooper DKC. Bioprosthetic heart valves of the future. Xenotransplantation. 2014; 21(1):1–10. PMID: 24444036 https://doi.org/10.1111/xen.12080; Lee W, Long C, Ramsoondar J, Ayares D, Cooper DK, Manji RA, et al. Human antibody recognition of xenogeneic antigens (NeuGc and Gal) on porcine heart valves: could genetically modified pig heart valves reduce structural valve deterioration? Xenotransplantation. 2016;23(5):370–380. PMID: 27511593 https://doi.org/10.1111/xen.12254; Zhang R, Wang Y, Chen L, Wang R, Li C, Li X, et al. Reducing immunoreactivity of porcine bioprosthetic heart valves by genetically-deleting three major gly can antigens, GGTA1/β4GalNT2/CMAH. Acta Biomater. 2018;72:196–205. PMID: 29631050 https://doi.org/10.1016/j.actbio.2018.03.055; McGregor CG, Kogelberg H, Vlasin M, Byrne GW. Gal-knockout bioprostheses exhibit less immune stimulation compared to standard biological heart valves. J Heart Valve Dis. 2013;22(3):383– 390. PMID: 24151765; Kim MS, Lim HG, Kim YJ. Calcification of decellularized and alphagalactosidase-treated bovine pericardial tissue in an alpha-Gal knock-out mouse implantation model: comparison with primate pericardial tissue. Eur J Cardiothorac Surg. 2016;49(3):894–900. PMID: 25994817 https://doi.org/10.1093/ejcts/ezv189; Rahmani B, McGregor C, Byrne G, Burriesci G. A durable porcine pericardial surgical bioprosthetic heart valve: a proof of concept. J Cardiovasc Transl Res. 2019;12(4):331–337. PMID: 30756359 https://doi.org/10.1007/s12265-01909868-3; McGregor C, Salmonsmith J, Burriesci G, Byrne G. Biological equivalence of GGTA-1 glycosyltransferase knockout and standard porcine pericardial tissue using 90-day mitral valve implantation in adolescent sheep. Cardiovasc Eng Technol. 2022;13(3):363–372. PMID: 34820778 https://doi.org/10.1007/s13239-02100585-0; Ding K, Zheng C, Huang X, Zhang S, Li M, Lei Y, et al. A PEGylation method of fabricating bioprosthetic heart valves based on glutaraldehyde and 2-amino-4-pentenoic acid co-crosslinking with improved antithrombogenicity and cytocompatibility. Acta Biomater. 2022;144:279–291. PMID: 35365404 https://doi.org/10.1016/j.actbio.2022.03.026; Костюнин А., Резвова М.А., Глушкова Т.В., Шишкова Д.К., Кутихин А.Г., Акентьева Т.Н. и др. Модификация поливиниловым спиртом эпоксиобработанного ксеноперикарда повышает его резистентность к кальцификации in vitro. Трансплантология. 2023;15(1):34–45. https://doi.org/10.23873/2074-05062023-15-1-34-45; https://www.jtransplantologiya.ru/jour/article/view/829

  13. 13

    Přispěvatelé: A. E. Kostyunin M. A. Rezvova T. V. Glushkova a další

    Zdroj: Transplantologiya. The Russian Journal of Transplantation; Том 15, № 1 (2023); 34-45 ; Трансплантология; Том 15, № 1 (2023); 34-45 ; 2542-0909 ; 2074-0506 ; undefined

    Popis souboru: application/pdf

    Relation: https://www.jtransplantologiya.ru/jour/article/view/743/752; https://www.jtransplantologiya.ru/jour/article/view/743/770; Coffey S, Roberts-Thomson R, Brown A, Carapetis J, Chen M, EnriquezSarano M, et al. Global epidemiology of valvular heart disease. Nat Rev Cardiol. 2021;18(12):853–864. PMID: 34172950 https://doi.org/10.1038/s41569-021-00570-z; Otto CM, Nishimura RA, Bonow RO, Carabello BA, Erwin JP, Gentile F, et al. 2020 ACC/AHA guideline for the management of patients with valvular heart disease: a report of the American College of Cardiology/American Heart Association Joint Committee on clinical practice guidelines. Circulation. 2021;143(5):e72–e227. PMID: 33332149 https://doi.org/10.1161/CIR.0000000000000923; Head SJ, Çelik M, Kappetein AP. Mechanical versus bioprosthetic aortic valve replacement. Eur Heart J. 2017;38(28):2183–2191. PMID: 28444168 https://doi.org/10.1093/eurheartj/ehx141; Dvir D, Bourguignon T, Otto CM, Hahn RT, Rosenhek R, Webb JG, et al. Standardized definition of structural valve degeneration for surgical and transcatheter bioprosthetic aortic valves. Circulation. 2018;137(4):388–399. PMID: 29358344 https://doi.org/10.1161/CIRCULATIONAHA.117.030729; Pibarot P, Dumesnil JG. Prosthetic heart valves: selection of the optimal prosthesis and long-term management. Circulation. 2009;119(7):1034–1048. PMID: 19237674 https://doi.org/10.1161/CIRCULATIONAHA.108.778886; Marro M, Kossar AP, Xue Y, Frasca A, Levy RJ, Ferrari G. Noncalcific mechanisms of bioprosthetic structural valve degeneration. J Am Heart Assoc. 2021;10(3):e018921. PMID: 33494616 https://doi.org/10.1161/JAHA.120.018921; Ding K, Zheng C, Huang X, Zhang S, Li M, Lei Y, et al. A PEGylation method of fabricating bioprosthetic heart valves based on glutaraldehyde and 2-amino-4-pentenoic acid co-crosslinking with improved antithrombogenicity and cytocompatibility. Acta Biomater. 2022;144:279–291. PMID: 35365404 https://doi.org/10.1016/j.actbio.2022.03.026; Barbarash L, Rutkovskaya N, Barbarash O, Odarenko Y, Stasev A, Uchasova E. Prosthetic heart valve selection in women of childbearing age with acquired heart disease: a case report. J Med Case Rep. 2016;10:51. PMID: 26956734 https://doi.org/10.1186/s13256-016-0821-y; Barrett DA, Hartshome MS, Hussain MA, Shaw PN, Davies MC. Resistance to nonspecific protein adsorption by poly (vinyl alcohol) thin films adsorbed to a poly(styrene) support matrix studied using surface plasmon resonance. Anal Chem. 2001;73(21):5232–5239. PMID: 11721924 https://doi.org/10.1021/ac010368u; Jiang S, Liu S, Feng W. PVA hydrogel properties for biomedical application. J Mech Behav Biomed Mater. 2011;4(7):1228–1233. PMID: 21783131 https://doi.org/10.1016/j.jmbbm.2011.04.005; Hassan CM, Peppas NA. Structure and applications of poly(vinyl alcohol) hydrogels produced by conventional crosslinking or by freezing/thawing methods. Adv Polym Sci. 2000;153:37-65. https://doi.org/10.1007/3-540-46414-X_2; Kostyunin AE, Yuzhalin AE, Rezvova MA, Ovcharenko EA, Glushkova TV, Kutikhin AG. Degeneration of bioprosthetic heart valves: update 2020. J Am Heart Assoc. 2020;9(19):e018506. PMID: 32954917 https://doi.org/10.1161/JAHA.120.018506; Shetty R, Pibarot P, Audet A, Janvier R, Dagenais F, Perron J, et al. Lipidmediated inflammation and degeneration of bioprosthetic heart valves. Eur J Clin Invest. 2009;39(6):471-480. PMID: 19490057 https://doi.org/10.1111/j.1365-2362.2009.02132.x; Simionescu A, Simionescu DT, Deac RF. Matrix metalloproteinases in the pathology of natural and bioprosthetic cardiac valves. Cardiovasc Pathol. 1996;5(6):323–332. PMID: 25851789 https://doi.org/10.1016/s1054-8807(96)00043-9; Srivatsa SS, Harrity PJ, Maercklein PB, Kleppe L, Veinot J, Edwards WD, et al. Increased cellular expression of matrix proteins that regulate mineralization is associated with calcification of native human and porcine xenograft bioprosthetic heart valves. J Clin Invest. 1997;99(5):996–1009. PMID: 9062358 https://doi.org/10.1172/JCI119265; https://www.jtransplantologiya.ru/jour/article/view/743

  14. 14

    Zdroj: Russian Journal of Transplantology and Artificial Organs; Том 24, № 2 (2022); 134-145 ; Вестник трансплантологии и искусственных органов; Том 24, № 2 (2022); 134-145 ; 1995-1191

    Popis souboru: application/pdf

    Relation: https://journal.transpl.ru/vtio/article/view/1462/1319; https://journal.transpl.ru/vtio/article/view/1462/1380; https://journal.transpl.ru/vtio/article/downloadSuppFile/1462/999; https://journal.transpl.ru/vtio/article/downloadSuppFile/1462/1000; https://journal.transpl.ru/vtio/article/downloadSuppFile/1462/1001; https://journal.transpl.ru/vtio/article/downloadSuppFile/1462/1002; https://journal.transpl.ru/vtio/article/downloadSuppFile/1462/1003; https://journal.transpl.ru/vtio/article/downloadSuppFile/1462/1004; Готье СВ, Хомяков СМ. Донорство и трансплантация органов в Российской Федерации в 2020 году. XIII сообщение регистра Российского трансплантологического общества. Вестник трансплантологии и искусственных органов. 2021; 3: 8–34. doi:10.15825/1995-1191-2021-3-8-34.; Андрусев АМ, Томилина НА, Перегудова НГ, Шинкарев МБ. Заместительная почечная терапия хронической болезни почек 5-й стадии в Российской Федерации 2015–2019 гг. Отчет по данным Общероссийского регистра заместительной почечной терапии Российского диализного общества. Нефрология и диализ. 2021; 23 (3): 255–329. doi:10.28996/2618-9801-2021-3-255-329.; Boenink R, Astley ME, Huijben JA, Stel VS, Kerschbaum J, Rosenberg-Ots M et al. The ERA Registry Annual Report 2019: summary and age comparisons. Clin Kidney J. 2021 Dec 15; 15 (3): 452–472. doi:10.1093/ckj/sfab273.; Rangaswami J, Mathew RO, Parasuraman R, Tantisattamo E, Lubetzky M, Rao S et al. Cardiovascular disease in the kidney transplant recipient: epidemiology, diagnosis and management strategies. Nephrol Dial Transplant. 2019; 34: 760–773. doi:10.1093/ndt/gfz053.; Ying T, Shi B, Kelly PJ, Pilmore H, Clayton PA, Chadban SJ. Death after kidney transplantation: an analysis by era and time post-transplant. J Am Soc Nephrol. 2020; 31 (12): 2887–2899. doi:10.1681/ASN.2020050566.; Reutersberg B, Salvermoser M, Trenner M, Geisbűsch S, Zimmermann A, Eckstein H-H, Kuehnl A. Hospital incidence and in-hospital mortality of surgically and interventionally treated aortic dissections: Secondary data analysis of the Nationwide German Diagnosis-Related Group Statistics from 2006 to 2014. J Am Heart Assoc. 2019; 8: e011402. doi:10.1161/JAHA.118.011402.; Malaisrie C, Szeto WY, Halas M, Girardi LN, Coselli JS, Sundt TM 3rd et al. AATS Clinical Practice Standards Committee: Adult Cardiac Surgery. 2021 The American Association for Thoracic Surgery expert consensus document: Surgical treatment of acute type A aortic dissection. J Thorac Cardiovasc Surg. 2021; 162 (3): 735–758. doi:10.1016/j.jtcvs.2021.04.053.; Takeda K, Harada A, Okuda S, Fujimi S, Oh Y, Hattori F et al. Sudden death in chronic dialysis patients. Nephrol Dial Transplant. 1997; 12 (5): 952–955. doi:10.1093/ndt/12.5.952.; Ogami T, Zimmermann E, Zhu RC, Zhao Y, Ning Y, Kurlansky P et al. Proximal aortic repair in dialysis patients: A national database analysis. J Thorac Cardiovasc Surg. 2021; 1–9. doi:10.1016/j.jtcvs.2021.02.086.; Englum BR, He X, Gulack BC, Ganapathi AM, Mathew JP, Brennan JM et al. Hypothermia and cerebral protection strategies in aortic arch surgery: a comparative effectiveness analysis from the STS Adult Cardiac Surgery Database. Eur J Cardiothorac Surg. 2017; 52(3): 492–498. doi:10.1093/ejcts/ezx133.; Hemli JM, Scheinerman SJ, Lesser ML, Ahn S, Mihelis EA, Jahn LA et al. Transfusion in elective aortic root replacement: analysis of the STS Adult Cardiac Surgery Database. Ann Thorac Surg. 2020; 110 (4): 1225–1233. doi:10.1016/j.athoracsur.2020.01.035.; Lee TC, Kon Z, Cheema FH, Grau-Sepulveda MV, Englum B, Kim S et al. Contemporary management and outcomes of acute type A aortic dissection: an analysis of the STS adult cardiac surgery database. J Card Surg. 2018; 33: 7–18. doi:10.1111/jocs.13511.; Evangelista A, Isselbacher EM, Bossone E, Gleason TG, Eusanio MD, Sechtem U et al. IRAD Investigators. Insights from the International Registry of Acute Aortic Dissection: a 20-year experience of collaborative clinical research. Circulation. 2018; 137 (17): 1846–1860. doi:10.1161/CIRCULATIONAHA.117.031264.; Fang M, Yu C, Chen S, Xiong W, Li X, Zeng R et al. Identification of novel clinically relevant variants in 70 southern chinese patients with thoracic aortic aneurysm and dissection by next-generation sequencing. Scientific Reports. 2017; 7 (1): 10035. doi:10.1038/s41598-017-09785-y.; Li J, Yang L, Diao Y, Zhou L Xin Y, Jiang L et al. Genetic testing and clinical relevance of patients with thoracic aortic aneurysm and dissection in northwestern China. Mol Genet Genomic Med. 2021 Oct; 9 (10): e1800. doi:10.1002/mgg3.1800.; Podestà MA, Cucchiari D, Ciceri P, Messa P, Torregrosa J-V, Cozzolino M. Cardiovascular calcifications in kidney transplant recipients. Nephrol Dial Transplant. 2021 Feb 23; gfab053. doi:10.1093/ndt/gfab053.; Hernández D, Alonso-Titos J, Armas-Padrón AM, Lopez V, Cabello M, Sola E et al. Waiting list and kidney transplant vascular risk: An ongoing unmet concern. Kidney Blood Press Res. 2020; 45: 1–27. doi:10.1159/000504546.; Liu ZH, Yu XQ, Yang JW, Jiang AL, Liu BC, Xing CY et al. China Dialysis Calcification Study Group. Prevalence and risk factors for vascular calcification in Chinese patients receiving dialysis: baseline results from a prospective cohort study. Curr Med Res Opin. 2018; 34(8): 1491–1500. doi:10.1080/03007995.2018.1467886.; Reiss AB, Miyawaki N, Moon J, Kasselman LJ, Voloshyna I, D’Avino R Jr, De Leon J. CKD, arterial calcification, atherosclerosis and bone health: Interrelationships and controversies. Atherosclerosis. 2018; 278: 49–59. doi:10.1016/j.atherosclerosis.2018.08.046.; Ejaz AA, Nakagawa T, Kanbay M, Kuwabara M, Kumar A, Arroyo FEG et al. Hyperuricemia in kidney disease: A major risk factor for cardiovascular events, vascular calcification, and renal damage. Semin Nephrol. 2020; 40 (6): 574–585. doi:10.1016/j.semnephrol.2020.12.004.; Alappan HR, Vasanth P, Manzoor S, O’Neill WC. Vascular calcification slows but does not regress after kidney transplantation. Kidney Int Rep. 2020; 5 (12): 2212–2217. doi:10.1016/j.ekir.2020.09.039.; Garnier AS, Duveau A, Planchais M, Subra JF, Sayegh J, Augusto JF. Serum magnesium after kidney transplantation: a systematic review. Nutrients. 2018; 10 (6): 729. doi:10.3390/nu10060729.; Massimetti C, Cardello P, Brescia F, Imperato G, Feriozzi S. Association between low serum magnesium levels and the extent of abdominal aortic calcification in renal transplant recipients. G Ital Nefrol. 2020 Feb 12; 37 (1). (In Ital., English abstract).; Temimović R, Rašić S, Džubur A. Cardiovascular remodeling in patients with pre-dialysis chronic kidney disease and renal transplant recipients. Med Glas (Zenica). 2019 Aug 1; 16 (2): 216–223. doi:10.17392/1009-19.; Maréchal C, Coche E, Goffin E, Dragean A, Schlieper G, Nguyen P et al. Progression of coronary artery calcification and thoracic aorta calcification in kidney transplant recipients. Am J Kidney Dis. 2012; 59 (2): 258–269. doi:10.1053/j.ajkd.2011.07.019.; Cozzolino М, Ciceri P, Galassi A, Mangano M, Carugo S, Capelli I, Giuseppe Cianciolo G. The key role of phosphate on vascular calcification. Toxins. 2019; 11 (4):213. doi:10.3390/toxins11040213.; Surman TL, Abrahams JM, Manavis J, Finnie J, O’Rourke D, Reynolds KJ et al. Histological regional analysis of the aortic root and thoracic ascending aorta: a complete analysis of aneurysms from root to arch. J Cardiothorac Surg. 2021; 16: 255–264. doi:10.1186/s13019-021-01641-5.; David TE, Feindel CM. An aortic valve-sparing operation for patients with aortic incompetence and aneurysm of the ascending aorta. J Thorac Cardiovasc Surg. 1992; 103 (4): 617–621. doi:10.5152/akd.2012.019.; David TE, Armstrong S, Manlhiot C, McCrindle BW, Feindel CM. Long-termresults of aortic root repair using the reimplantation technique. J Thorac Cardiovasc Surg. 2013; 145: S22–S25. doi:10.1016/j.jtcvs.2012.11.075.; Wallen T, Habertheuer A, Bavaria JE, Hughes GC, Badhwar V, Jacobs JP et al. Elective Aortic Root Replacement in North America: Analysis of STS Adult Cardiac Surgery Database. Ann Thorac Surg. 2019; 107 (5): 1307–1312. doi:10.1016/j.athoracsur.2018.12.039.; Pan E, Kytö V, Savunen T, Gunn J. Early and late outcomes after open ascending aortic surgery: 47-year experience in a single center. Heart Vessels. 2018; 33 (4): 427–433. doi:10.1007/s00380-017-1075-3.; Beckmann E, Martens A, Krűger H, Korte W, Kaufeld T, Stettinger A et al. Aortic valve-sparing root replacement with Tirone E. David’s reimplantation technique: single-centre 25-year experience. Eur J Cardiothorac Surg. 2021 Sep 11; 60 (3): 642–648. doi:10.1093/ejcts/ezab136.; https://journal.transpl.ru/vtio/article/view/1462

  15. 15
  16. 16
  17. 17
  18. 18

    Zdroj: Russian Journal of Transplantology and Artificial Organs; Том 23, № 1 (2021); 75-83 ; Вестник трансплантологии и искусственных органов; Том 23, № 1 (2021); 75-83 ; 1995-1191

    Popis souboru: application/pdf

    Relation: https://journal.transpl.ru/vtio/article/view/1317/1086; https://journal.transpl.ru/vtio/article/view/1317/1185; Hoerstrup SP, Weber B. Biological heart valves. Eur Heart J. 2015; 36: 325-332. doi:10.1093/eurheartj/ehu483.; Chambers J. Prosthetic heart valves. Int J Clin Pract. 2014; 68: 1227-1230. doi:10.1111/ijcp.12309.; Li KYC. Bioprosthetic Heart Valves: Upgrading a 50Year Old Technology. Front Cardiovasc Med. 2019; 6: 47. doi:10.3389/fcvm.2019.00047.; Mirsadraee S, Wilcox HE, Watterson KG, Kearney JN, Hunt J, Fisher J, Ingham E. Biocompatibility of acellular human pericardium. J Surg Res. 2007; 143: 407-414. doi:10.1016/j.jss.2007.01.026.; Sadowski J, Bartus K, Kapelak B, Chung A, Stqpor M, Bochenek M. Aortic valve replacement with a novel anticalcification technology platform. Kardiologia Polska. 2015; 73: 317-322. doi:10.5603/KP.a2014.0214.; Barbarash O, Rutkovskaya N, Hryachkova O, Gruzdeva O, Uchasova E, Ponasenko A et al. Impact of recipient-related factors on structural dysfunction of xenoaortic bioprosthetic heart valves. J Patient Preference and Adherence. 2015; 9: 389-399. doi:10.2147/PPA.S76001.; Migneault I, Dartiguenave C, Bertrand MJ, Waldron KC. Glutaraldehyde: behavior in aqueous solution, reaction with proteins, and application to enzyme crosslinking. Biotechniques. 2004; 37: 790-796, 798-802.; Козлов БН, Петлин КА, Пряхин АС, Середкина ЕБ, Панфилов ДС, Шипулин ВМ. Непосредственные и отдаленные результаты применения биопротезов «ЮниЛайн» в аортальной позиции. Клиническая и экспериментальная хирургия. 2017; 5: 37-42. doi:10.24411/2308-11982017-00005.; Shang H, Claessens SM, Tian B, Wright GA. Aldehyde reduction in a novel pericardial tissue reduces calcification using rabbit intramuscular model. J Mater Sci Mater Med. 2016; 28: 16. doi:10.1007/s10856-016-5829-8.; Bre LP, McCarthy R, Wang W. Prevention of bioprosthetic heart valve calcification: strategies and outcomes. Curr Med Chem. 2014; 21: 2553-2564. doi:10.2174/0929867321666131212151216.; Tam H, Zhang W, Feaver KR, Parchment N, Sacks MS, Vyavahare N. A novel crosslinking method for improved tear resistance and biocompatibility of tissue based biomaterials. Biomaterials. 2015; 66: 83-91. doi:10.1016/j.biomaterials.2015.07.011.; Lim HG, Kim GB, Jeong S, Kim YJ. Development of a next-generation tissue valve using a glutaraldehyde-fixed porcine aortic valve treated with decellularization, a-galactosidase, space filler, organic solvent and detoxification. Eur J Cardiothorac Surg. 2015; 48: 104-113. doi:10.1093/ejcts/ezu385.; Rapoport HS, Connolly JM, Fulmer J, Dai N, Murti BH, Gorman RC, Gorman JH, Alferiev I, Levy RJ. Mechanisms of the in vivo inhibition of calcification of bioprosthetic porcine aortic valve cusps and aortic wall with triglycidylamine/mercapto bisphosphonate. Biomaterials. 2007; 28: 690-699. doi:10.1016/j.biomaterials.2006.09.029.; Jeong S, Yoon EJ, Lim HG, Sung SC, Kim YJ. The effect of space fillers in the cross-linking processes of bioprosthesis. BioResearch Open Access. 2013; 2: 98-106. doi:10.1089/biores.2012.0289.; Lopez-Moya M, Melgar-Lesmes P, Kolandaivelu K, de la Torre Hernandez JM, Edelman ER, Balcells M. Optimizing Glutaraldehyde-Fixed Tissue Heart Valves with Chondroitin Sulfate Hydrogel for Endothelialization and Shielding against Deterioration. Biomacromolecules. 2018; 19: 1234-1244. doi:10.1021/acs.biomac.8b00077.; Chen Y-N, Peng L, Liu T, Wang Y, Shi S, Wang H. Poly(vinyl alcohol)-Tannic Acid Hydrogels with Excellent Mechanical Properties and Shape Memory Behaviors. ACS Appl Mater Interfaces. 2016; 8: 27199-27206. doi:10.1021/acsami.6b08374.; Suchy T, Supova M, Sauerova P, Verdanova M, Sucharda Z, Ryglova S, Zaloudkova M, Sedlacek R, Kalbacova MH. The effects of different cross-linking conditions on collagen-based nanocomposite scaffolds-an in vitro evaluation using mesenchymal stem cells. Biomed Mater. 2015; 10: 065008. doi:10.1088/1748-6041/10/6/065008.; Mallard I, Landy D, Fourmentin S. Evaluation of Polyethylene Glycol Crosslinked в-CD Polymers for the Removal of Methylene Blue. Appl Sci. 2020; 10: 4679. doi:10.3390/app10134679.; Gao S, Yuan Z, Guo W, Chen M, Liu S, Xi T, Guo Q. Comparison of glutaraldehyde and carbodiimides to crosslink tissue engineering scaffolds fabricated by decellularized porcine menisci. Mater Sci Eng C. 2017; 71: 891-900. doi:10.1016/j.msec.2016.10.074.; Muppalaneni S, Omidian H. Polyvinyl Alcohol in Medicine and Pharmacy: A Perspective. J Develop Drugs. 2013; 2: 112. doi:10.4172/2329-6631.1000112.; Cwalina B, Turek A, Nozynski J, Jastrzebska M, Nawrat Z. Structural Changes in Pericardium Tissue Modified with Tannic Acid. Int J Artif Organs. 2005; 28 (6): 648-653. doi:10.1177/039139880502800614.; Wang D, Jiang H, Li J, Zhou JY, Hu SS. Mitigated calcification of glutaraldehyde-fixed bovine pericardium by tannic acid in rats. Chin Med J (Engl). 2008; 121: 1675-1679. doi:10.1097/00029330-200809010-00017.; Ovcharenko EA, Klyshnikov KU, Yuzhalin AE, Savrasov GV, Glushkova TV, Vasukov GU et al. Comparison of xenopericardial patches of different origin and type of fixation implemented for TAVI. International Journal of Biomedical Engineering and Technology. 2017; 25 (1): 44-59. doi:10.1504/IJBET.2017.086551.; Gu L, Shan T, Ma Y, Tay FR, Niu L. Novel Biomedical Applications of Crosslinked Collagen. Trends Biotechnol. 2018; 37: 464-491. doi:10.1016/j.tibtech.2018.10.007.; D'Alessandro CC, Komninou MA, Badria AF, Korossis S, Koutsoukos P, Mavrilas D. Calcification assessment of bioprosthetic heart valve tissues using an improved in vitro model. IEEE Trans Biomed Eng. 2020; 67: 2453-2461. doi:10.1109/tbme.2019.2963043.; Vasudev SC, Moses LR, Sharma CP. Covalently bonded heparin to alter the pericardial calcification. Artif Cells Blood Substit Immobil Biotechnol. 2000; 28: 241-253. doi:10.3109/10731190009119355.; Vasudev SC, Chandy T. Polyethylene glycol-grafted bovine pericardium: a novel hybrid tissue resistant to calcification. J Mater Sci: Mater. 1999; 10: 121-128. doi:10.1023/a:1008925204988.; Hulin A, Hego A, Lancellotti P, Oury C. Advances in Pathophysiology of Calcific Aortic Valve Disease Propose Novel Molecular Therapeutic Targets. Front Cardiovasc Med. 2018; 5: 21. doi:10.3389/fcvm.2018.00021.; Isenburg JC, Karamchandani NV, Simionescu DT, Vyavahare NR. Structural requirements for stabilization of vascular elastin by polyphenolic tannins. Biomaterials. 2006; 27: 3645-3651. doi:10.1016/j.biomaterials.2006.02.016.; https://journal.transpl.ru/vtio/article/view/1317

  19. 19

    Přispěvatelé: L. A. Bogdanov N. Yu. Osyaev Yu. D. Bogdanova a další

    Zdroj: Complex Issues of Cardiovascular Diseases; Том 10, № 3 (2021); 26-33 ; Комплексные проблемы сердечно-сосудистых заболеваний; Том 10, № 3 (2021); 26-33 ; 2587-9537 ; 2306-1278

    Popis souboru: application/pdf

    Relation: https://www.nii-kpssz.com/jour/article/view/944/595; Shi X., Gao J., Lv Q., Cai H., Wang F., Ye R., Liu X. Calcification in Atherosclerotic Plaque Vulnerability: Friend or Foe? Front Physiol. 2020; 11: 56. doi:10.3389/fphys.2020.00056.; Vengrenyuk Y, Carlier S.,. Xanthos S., Cardoso L., Ganatos P, Virmani R., Einav S., Gilchrist L., Weinbaum S. A hypothesis for vulnerable plaque rupture due to stress-induced debonding around cellular microcalcifications in thin fibrous caps. Proc Natl Acad Sci U S A. 2006; 103(40): 14678-83. doi:10.1073/pnas.0606310103.; Kelly-Arnold A., Maldonado N., Laudier D., Aikawa E., Cardoso L., Weinbaum S. Revised microcalcification hypothesis for fibrous cap rupture in human coronary arteries. Proc Natl Acad Sci U S A. 2013; 110(26): 10741-6. doi:10.1073/pnas.1308814110.; Petsophonsakul P., Furmanik M., Forsythe R., Dweck M., Schurink G.W., Natour E., Reutelingsperger C., Jacobs M., Mees B., Schurgers L. Role of Vascular Smooth Muscle Cell Phenotypic Switching and Calcification in Aortic Aneurysm Formation. Arterioscler Thromb Vasc Biol. 2019; 39(7): 13511368. doi:10.1161/ATVBAHA.119.312787.; Halevi R., Hamdan A., Marom G., Lavon K., Ben-Zekry S., Raanani E., Haj-Ali R. A New Growth Model for Aortic Valve Calcification. J Biomech Eng. 2018; 140(10). doi:10.1115/1.4040338.; Lindman B.R., Clavel M.A., Mathieu P, Iung B., Lancellotti P., Otto C.M., Pibarot P. Calcific aortic stenosis. Nat Rev Dis Primers. 2016; 2: 16006. doi:10.1038/nrdp.2016.6.; Di Vito A., Donato A., Presta I., Mancuso T., Brunetti F.S., Mastroroberto P, Amorosi A., Malara N., Donato G. Extracellular Matrix in Calcific Aortic Valve Disease: Architecture, Dynamic and Perspectives. Int J Mol Sci. 202; 22(2): 913. doi:10.3390/ijms22020913.; Demer L.L., Tintut Y Inflammatory, metabolic, and genetic mechanisms of vascular calcification. Arterioscler Thromb Vasc Biol. 2014; 34(4): 715-23. doi:10.1161/ATVBAHA.113.302070.; Massera D., Kizer J.R., Dweck M.R. Mechanisms of mitral annular calcification. Trends Cardiovasc Med. 2020 Jul;30(5):289-295. doi:10.1016/j.tcm.2019.07.011; Shroff R.C., McNair R., Skepper J.N., Figg N., Schurgers L. J., Deanfield J., Rees L., Shanahan C.M. Chronic mineral dysregulation promotes vascular smooth muscle cell adaptation and extracellular matrix calcification. J Am Soc Nephrol. 2010; 21: 103-112. doi:10.1681/ASN.2009060640.; Kapustin A.N., Chatrou M.L., Drozdov I., Zheng Y, Davidson S.M., Soong D., Furmanik M., Sanchis P., De Rosales R.T., Alvarez-Hernandez D., Shroff R., Yin X., Muller K., Skepper J.N., Mayr M., Reutelingsperger C.P., Chester A., Bertazzo S., Schurgers L.J., Shanahan C.M. Vascular smooth muscle cell calcification is mediated by regulated exosome secretion. Circ Res. 2015; 116(8): 1312-23. doi:10.1161/CIRCRESAHA.116.305012.; Mayr M., Grainger D., Mayr U., Leroyer A.S., Leseche G., Sidibe A., Herbin O., Yin X., Gomes A., Madhu B., Griffiths J.R., Xu Q., Tedgui A., Boulanger C.M. Proteomics, metabolomics, and immunomics on microparticles derived from human atherosclerotic plaques. Circ Cardiovasc Genet. 2009; 2: 379-388. doi:10.1161/CIRCGENETICS.108.842849.; New S.E., Goettsch C., Aikawa M., Marchini J.F., Shibasaki M. , Yabusaki K., Libby P, Shanahan C.M., Croce K., Aikawa E. Macrophage-derived matrix vesicles: an alternative novel mechanism for microcalcification in atherosclerotic plaques. Circ Res. 2013; 113: 72-77. doi:10.1161/CIRCRESAHA.113.301036.; Cote N., El Husseini D., Pepin A., Guauque-Olarte S., Ducharme Vi, Bouchard-Cannon P, Audet A, Fournier D, Gaudreault N. Derbali H, McKee MD, Simard C, Despres JP, Pibarot P, Bosse Y, Mathieu P. ATP acts as a survival signal and prevents the mineralization of aortic valve. J Mol Cell Cardiol. 2012; 52: 1191-202.; Durham A.L., Speer M.Y., Scatena M., Giachelli C.M., Shanahan C.M. Role of smooth muscle cells in vascular calcification: implications in atherosclerosis and arterial stiffness. Cardiovasc. Res. 2018; 114(4): 590-600. doi:10.1093/cvr/cvy010.; Allahverdian S., Chaabane C., Boukais K., Francis G.A., Bochaton-Piallat M.L. Smooth muscle cell fate and plasticity in atherosclerosis. Cardiovasc. Res. 2018; 114(4): 540-550. doi:10.1093/cvr/cvy022.; Chistiakov D.A., Orekhov A.N., Bobryshev Y.V. Vascular smooth muscle cell in atherosclerosis. Acta Physiol. (Oxf). 2015; 214(1): 33-50. doi:10.1111/apha.12466.; Reynolds J.L., Skepper J.N., McNair R., Kasama T., Gupta K., Weissberg PL., Jahnen-Dechent W., Shanahan C.M. Multifunctional roles for serum protein fetuin-a in inhibition of human vascular smooth muscle cell calcification. J Am Soc Nephrol. 2005; 16: 2920-2930. doi:10.1681/ASN.2004100895.; Ambale-Venkatesh B., Yang X., Wu C.O., Liu K., Hundley W.G., McClelland R., Gomes A.S., Folsom A.R., Shea S., Guallar E., Bluemke D.A., Lima J.A.C. Cardiovascular Event Prediction by Machine Learning: The Multi-Ethnic Study of Atherosclerosis. Circ Res. 2017; 121(9): 1092-1101. doi:10.1161/CIRCRESAHA.117.311312.; Foley R.N., Collins A.J., Herzog C.A., Ishani A., Kalra PA. Serum phosphorus levels associate with coronary atherosclerosis in young adults. J Am Soc Nephrol. 2009; 20(2): 397-404. doi:10.1681/ASN.2008020141.; Chen J., Peacock J.R., Branch J., David Merryman W. Biophysical analysis of dystrophic and osteogenic models of valvular calcification. J Biomech Eng 2015; 137 (2): 020903. DOI:10.1115/1.4029115.; Hutcheson J.D., Goettsch C., Bertazzo S., Maldonado N., Ruiz J.L., Goh W., Yabusaki K., Faits T., Bouten C., Franck G., Quillard T., Libby P., Aikawa M., Weinbaum S., Aikawa E. Genesis and growth of extracellular-vesicle-derived microcalcification in atherosclerotic plaques. Nat Mater. 2016; 15(3): 335-43. doi:10.1038/nmat4519.; Burgmaier M., Milzi A., Dettori R., Burgmaier K., Marx N., Reith S. Colocalization of plaque macrophages with calcification is associated with a more vulnerable plaque phenotype and a greater calcification burden in coronary target segments as determined by OCT. PLoS One. 2018; 13(10): e0205984. doi:10.1371/journal.pone.0205984.; Fuery M.A., Liang L., Kaplan F.S., Mohler E.R. 3rd. Vascular ossification: Pathology, mechanisms, and clinical implications. Bone. 2018; 109: 28-34. doi:10.1016/j.bone.2017.07.006.; Carino A., Ludwig C., Cervellino A., Muller E., Testino A. Formation and transformation of calcium phosphate phases under biologically relevant conditions: Experiments and modelling. Acta Biomater. 2018; 74: 478-488. doi:10.1016/j.actbio.2018.05.027.; Lee J.S., Morrisett J.D., Tung C.H. Detection of hydroxyapatite in calcified cardiovascular tissues. Atherosclerosis. 2012; 224(2): 340-7. doi:10.1016/j.atherosclerosis.2012.07.023.; Cheng C.L., Chang H.H., Huang P.J., Wang W.C., Lin S.Y. Ex vivo assessment of valve thickness/ calcification of patients with calcific aortic stenosis in relation to in vivo clinical outcomes. J Mech Behav Biomed Mater. 2017; 74: 324-332. doi:10.1016/j.jmbbm.2017.06.020.; Cottignoli V, Relucenti M., Agrosi G., Cavarretta E., Familiari G., Salvador L., Maras A. Biological niches within human calcified aortic valves: towards understanding of the pathological biomineralization process. Biomed Res Int. 2015; 2015: 542687. doi:10.1155/2015/542687.; Mangialardo S., Cottignoli V., Cavarretta E., Salvador L., Postorino P., Maras A. Pathological biominerals: raman and infrared studies of bioapatite deposits in human heart valves. Appl Spectrosc. 2012; 66(10): 1121-7. doi:10.1366/12-06606.; Cottignoli V, Cavarretta E., Salvador L., Valfre C., Maras A. Morphological and chemical study of pathological deposits in human aortic and mitral valve stenosis: a biomineralogical contribution. Patholog Res Int. 2015; 2015: 342984. doi:10.1155/2015/342984.; Bischetti S., Scimeca M., Bonanno E., Federici M., Anemona L., Menghini R., Casella S., Cardellini M., Ippoliti A., Mauriello A. Carotid plaque instability is not related to quantity but to elemental composition of calcification. Nutr Metab Cardiovasc Dis. 2017; 27(9): 768-774. doi:10.1016/j.numecd.2017.05.006.; Pettenazzo E., Deiwick M., Thiene G., Molin G., Glasmacher B., Martignago F., Bottio T., Reul H., Valente M. Dynamic in vitro calcification of bioprosthetic porcine valves evidence of apatite crystallization. J Thorac Cardiovasc Surg. 2001; 121(3): 500-9. doi:10.1067/mtc.2001.112464.

  20. 20

    Zdroj: Complex Issues of Cardiovascular Diseases; Том 10, № 2 (2021); 16-24 ; Комплексные проблемы сердечно-сосудистых заболеваний; Том 10, № 2 (2021); 16-24 ; 2587-9537 ; 2306-1278

    Popis souboru: application/pdf

    Relation: https://www.nii-kpssz.com/jour/article/view/851/557; Baumgartner H., Falk V., Bax J.J., De Bonis M., Hamm C., Holm P.J., Iung B., Lancellotti P., Lansac E., Rodriguez Munoz D., Rosenhek R., Sjogren J., Tornos Mas P., Vahanian A., Walther T., Wendler O., Windecker S., Zamorano J.L., ESC Scientific Document Group. 2017 ESC/EACTS Guidelines for the management of valvular heart disease. Eur. Heart J. 2017, 38(36):2739-2791. doi:10.1093/eurheartj/ehx391.; Nishimura R.A., Otto C.M., Bonow R.O., Carabello B.A., Erwin J.P. 3rd., Fleisher L.A., Jneid H., Mack M.J., McLeod C.J., O'Gara P.T., Rigolin V.H., Sundt T.M. 3rd., Thompson A. 2017 AHA/ACC focused update of the 2014 AHA/ACC guideline for the management of patients with valvular heart disease: a report of the American College of Cardiology American Heart Association task force on clinical practice guidelines. Circulation. 2017, 135(25):e1159-e1195. doi:10.1161/CIR.0000000000000503.; Lindman B.R., Clavel M.A., Mathieu P., Iung B., Lancellotti P., Otto C.M., Pibarot P. Calcific aortic stenosis. Nat Rev Dis Primers. 2016; 2:16006. doi:10.1038/nrdp.2016.6.; Harb S.C., Griffin B.P. Mitral valve disease: a comprehensive review. Curr Cardiol Rep. 2017; 19(8):73. doi:10.1007/s11886-017-0883-5.; Fiedler A.G., Tolis G.Jr. Surgical treatment of valvular heart disease: overview of mechanical and tissue prostheses, advantages, disadvantages, and implications for clinical use. Curr. Treat. Options Cardiovasc. Med. 2018; 20(1):7. doi:10.1007/s11936-018-0601-7.; Pibarot P., Dumesnil J.G. Prosthetic heart valves: selection of the optimal prosthesis and long-term management. Circulation. 2009; 119(7):1034-1048. doi:10.1161/CIRCULATIONAHA.108.778886.; Li K.Y.C. Bioprosthetic heart valves: upgrading a 50year old technology. Front. Cardiovasc. Med. 2019; 6:47. doi:10.3389/fcvm.2019.00047.; Capodanno D., Petronio A.S., Prendergast B., Eltchaninoff H., Vahanian A., Modine T., Lancellotti P., Sondergaard L., Ludman P.F., Tamburino C., Piazza N., Hancock J., Mehilli J., Byrne R.A., Baumbach A., Kappetein A.P., Windecker S., Bax J., Haude M. Standardized definitions of structural deterioration and valve failure in assessing longterm durability of transcatheter and surgical aortic bioprosthetic valves: a consensus statement from the European Association of Percutaneous Cardiovascular Interventions (EAPCI) endorsed by the European Society of Cardiology (ESC) and the European Association for Cardio-Thoracic Surgery (EACTS). Eur. Heart J. 2017; 38(45):3382-3390. doi:10.1093/eurheartj/ehx303.; Dvir D., Bourguignon T., Otto C.M., Hahn R.T., Rosenhek R., Webb J.G., Treede H., Sarano M.E., Feldman T., Wijeysundera H.C., Topilsky Y., Aupart M., Reardon M.J., Mackensen G.B., Szeto W.Y., Kornowski R., Gammie J.S., Yoganathan A.P., Arbel Y., Borger M.A., Simonato M., Reisman M., Makkar R.R., Abizaid A., McCabe J.M., Dahle G., Aldea G.S., Leipsic J., Pibarot P., Moat N.E., Mack M.J., Kappetein A.P., Leon M.B.; VIVID (Valve in Valve International Data) Investigators. Standardized definition of structural valve degeneration for surgical and transcatheter bioprosthetic aortic valves. Circulation. 2018; 137(4):388-399. doi:10.1161/CIRCULATIONAHA.117.030729.; Bonetti A., Marchini M., Ortolani F. Ectopic mineralization in heart valves: new insights from in vivo and in vitro procalcific models and promising perspectives on noncalcifiable bioengineered valves. J. Thorac. Dis. 2019; 11(5):2126-2143. doi:10.21037/jtd.2019.04.78.; Schoen F.J., Levy R.J. Calcification of tissue heart valve substitutes: progress toward understanding and prevention. Ann. Thorac. Surg. 2005; 79(3):1072-1080. doi:10.1016/j.athoracsur.2004.06.033.; Chen J., Peacock J.R., Branch J., David Merryman W. Biophysical analysis of dystrophic and osteogenic models of valvular calcification. J. Biomech. Eng. 2015; 137(2):020903. doi:10.1115/1.4029115.; Delogne C., Lawford P.V., Habesch S.M., Carolan V.A. Characterization of the calcification of cardiac valve bioprostheses by environmental scanning electron microscopy and vibrational spectroscopy. Journal of Microscopy 2007; 228(1):62-77. doi:10.1111/j.1365-2818.2007.01824.x.; Wang Y., Azais T., Robin M., Vallee A., Catania C., Legriel P., Pehau-Arnaudet G., Babonneau F., Giraud-Guille M.M., Nassif N. The predominant role of collagen in the nucleation, growth, structure and orientation of bone apatite. Nat Mater. 2012; 11(8):724-733. doi:10.1038/nmat3362.; Aguiari P., Fiorese M., Iop L., Gerosa G., Bagno A. Mechanical testing of pericardium for manufacturing prosthetic heart valves. Interact. Cardiovasc. Thorac. Surg. 2016; 22(1):72-84. doi:10.1093/icvts/ivv282.; Soares J.S., Feaver K.R., Zhang W., Kamensky D., Aggarwal A., Sacks M.S. Biomechanical behavior of bioprosthetic heart valve heterograft tissues: characterization, simulation, and performance. Cardiovasc. Eng. Technol. 2016; 7(4):309-351. doi:10.1007/s13239-016-0276-8.; Richards J.M., Kunitake J.A.M.R., Hunt H.B., Wnorowski A.N., Lin D.W., Boskey A.L., Donnelly E., Estroff L.A., Butcher J.T. Crystallinity of hydroxyapatite drives myofibroblastic activation and calcification in aortic valves. Acta Biomater. 2018; 71:24-36. doi:10.1016/j.actbio.2018.02.024.; Weska R.F., Aimoli C.G., Nogueira G.M., Leirner A.A., Maizato M.J., Higa O.Z., Polakievicz B., Pitombo R.N., Beppu M.M. Natural and prosthetic heart valve calcification: morphology and chemical composition characterization. Artif. Organs. 2010; 34(4):311-318. doi:10.1111/j.1525-1594.2009.00858.x.; Cottignoli V., Cavarretta E., Salvador L., Valfre C., Maras A. Morphological and chemical study of pathological deposits in human aortic and mitral valve stenosis: a biomineralogical contribution. Patholog. Res. Int. 2015; 2015:342984. doi:10.1155/2015/342984.; Bertazzo S., Gentleman E. Aortic valve calcification: a bone of contention. Eur. Heart J. 2017; 38(16):1189-1193. doi:10.1093/eurheartj/ehw071.; Bertazzo S., Gentleman E., Cloyd K.L., Chester A.H., Yacoub M.H., Stevens M.M. Nano-analytical electron microscopy reveals fundamental insights into human cardiovascular tissue calcification. Nat. Mater. 2013; 12(6):576-583. doi:10.1038/nmat3627.; Mohler E.R. 3rd., Gannon F., Reynolds C., Zimmerman R., Keane M.G., Kaplan F.S. Bone formation and inflammation in cardiac valves. Circulation. 2001; 103(11):1522-1528. doi:10.1161/01.cir.103.11.1522.; Ovcharenko EA, KU Klyshnikov, AE Yuzhalin, GV Savrasov, TV Glushkova, GU Vasukov, DV Nushtaev, YuA Kudryavtsev, LS Barbarash. Comparison of xenopericardial patches of different origin and type of fixation implemented for TAVI. International Journal of Biomedical Engineering and Technology. 2017; 25(1):44-59. doi:10.1504/IJBET.2017.086551; Барбараш Л.С., Рогулина Н.В., Рутковская Н.В., Овчаренко Е.А. Механизмы развития дисфункций биологических протезов клапанов сердца. Комплексные проблемы сердечно-сосудистых заболеваний. 2018;7(2):10-24. https://doi.org/10.17802/2306-1278-2018-7-2-10-24; Lu F., Wu H., Bai Y., Gong D., Xia C., Li Q., Lu F., Xu Z. Evidence of osteogenic regulation in calcific porcine aortic valves. Heart Surg Forum. 2018; 21(5):E375-E381. doi:10.1532/hsf.2033.