Výsledky vyhledávání - "ишемия"
-
1
Autoři: А. Р. Обухович
Zdroj: Žurnal Grodnenskogo Gosudarstvennogo Medicinskogo Universiteta, Vol 23, Iss 4, Pp 321-330 (2025)
Popis souboru: electronic resource
Relation: http://journal-grsmu.by/index.php/ojs/article/view/3313; https://doaj.org/toc/2221-8785; https://doaj.org/toc/2413-0109
Přístupová URL adresa: https://doaj.org/article/9e97e6c3998c4d41ae3c394ad43878aa
-
2
Autoři:
Zdroj: Žurnal Grodnenskogo Gosudarstvennogo Medicinskogo Universiteta, Vol 23, Iss 3, Pp 203-208 (2025)
Popis souboru: electronic resource
Relation: http://journal-grsmu.by/index.php/ojs/article/view/3284; https://doaj.org/toc/2221-8785; https://doaj.org/toc/2413-0109
Přístupová URL adresa: https://doaj.org/article/730110f6882c4eb1af60573ae617fc9b
-
3
Autoři:
Zdroj: University Therapeutic Journal, Vol 7, Iss 3 (2025)
Témata: безболевая ишемия миокарда, сахарный диабет 2-го типа, коронавирусная инфекция, эндотелиальная дисфункция, ишемическая болезнь сердца, постковидный период, Medicine
Popis souboru: electronic resource
Relation: https://ojs3.gpmu.org/index.php/Un-ther-journal/article/view/6673; https://doaj.org/toc/2713-1912; https://doaj.org/toc/2713-1920
Přístupová URL adresa: https://doaj.org/article/e9d60356973c49f3bfc220ba05528ce1
-
4
Zdroj: Патология кровообращения и кардиохирургия, Vol 29, Iss 1 (2025)
Témata: стеноз сонной артерии, стентирование сонной артерии, RD1-811, Surgery, ишемия мозга, нейрокогнитивный тест, когнитивное нарушение
Přístupová URL adresa: https://doaj.org/article/810c1473c787454182dd86e32e0d1241
-
5
Autoři: a další
Zdroj: University Therapeutic Journal, Vol 7, Iss 2 (2025)
Témata: кишечная микробиота, кишечный барьер, повышенная проницаемость, сердечно-сосудистые заболевания, артериальная гипертензия, ишемия миокарда, Medicine
Popis souboru: electronic resource
Relation: https://ojs3.gpmu.org/index.php/Un-ther-journal/article/view/6542; https://doaj.org/toc/2713-1912; https://doaj.org/toc/2713-1920
Přístupová URL adresa: https://doaj.org/article/8905ed6705824195bc64e036423231aa
-
6
Autoři: a další
Zdroj: Žurnal Grodnenskogo Gosudarstvennogo Medicinskogo Universiteta, Vol 23, Iss 1, Pp 13-18 (2025)
Témata: атеросклероз артерий нижних конечностей, ангиопластика артерий, стентирование артерий, хроническая ишемия, перемежающаяся хромота, Medicine
Popis souboru: electronic resource
Relation: http://journal-grsmu.by/index.php/ojs/article/view/3235; https://doaj.org/toc/2221-8785; https://doaj.org/toc/2413-0109
Přístupová URL adresa: https://doaj.org/article/141dde0940c84a03a7df40036a67dc4e
-
7
Autoři: a další
-
8
-
9
-
10
-
11
-
12
-
13
-
14
Zdroj: Высшая школа: научные исследования.
-
15
Autoři: a další
Zdroj: POLYTRAUMA; № 3 (2025): сентябрь; 44-50 ; ПОЛИТРАВМА / POLYTRAUMA; № 3 (2025): сентябрь; 44-50 ; 2541-867X ; 1819-1495
Témata: false aneurysm of the popliteal artery, pseudoaneurysm, acute ischemia, rupture of the bifurcation of the tibial arteries, popliteal-posterior tibial autovenous grafting, intra-articular fracture, shrapnel wound, special military operation, ложная аневризма подколенной артерии, псевдоаневризма, острая ишемия, отрыв бифуркации берцовых артерий, подколенно-заднебольшеберцовое аутовенозное протезирование, разрыв подколенной артерии, внутрисуставной перелом, осколочное ранение, специальная военн
Popis souboru: application/pdf
-
16
Autoři: a další
Přispěvatelé: a další
Zdroj: Complex Issues of Cardiovascular Diseases; Online First ; Комплексные проблемы сердечно-сосудистых заболеваний; Online First ; 2587-9537 ; 2306-1278
Témata: Ишемия миокарда без обструкции, Endothelium, Nitric oxide, Endothelin-1, Ion channels, MicroRNA, SNP, Non-obstructive myocardial ischemia, Эндотелий, Оксид азота, Эндотелин-1, Ионные каналы, МикроРНК
Popis souboru: application/pdf
Relation: https://www.nii-kpssz.com/jour/article/view/1677/1058; Сапин М.Р., Милюков В.Е., Долгов Е.Н., Жарикова Т.С. Коронарные сосуды и гемомикроциркуляторное русло миокарда в норме и при ишемической болезни сердца. Регионарное кровообращение и микроциркуляция. 2013;12(1):5-10. https://doi.org/10.24884/1682-6655-2013-12-1-5-10; Копылов Ф.Ю., Быкова А.А., Василевский Ю.В., Симаков С.С. Роль измерения фракционированного резерва кровотока при атеросклерозе коронарных артерий. Терапевтический архив. 2015;87(9):106‑113. https://doi.org/10.17116/terarkh2015879106-113; Hong KS, Kim K, Hill MA. Regulation of blood flow in small arteries: mechanosensory events underlying myogenic vasoconstriction. J Exerc Rehabil. 2020;16(3):207-215. doi:10.12965/jer.2040432.216.; Fedele F, Severino P, Bruno N, Stio R, Caira C, D'Ambrosi A, Brasolin B, Ohanyan V, Mancone M. Role of ion channels in coronary microcirculation: a review of the literature. Future Cardiol. 2013;9(6):897-905. doi:10.2217/fca.13.65.; Копьева К.В., Мальцева А.Н., Мочула А.В., Гракова Е.В., Завадовский К.В. Неблагоприятные сердечно-сосудистые события у пациентов с коронарной микроваскулярной дисфункцией: результаты 12-месячного наблюдения с группой контроля. Российский кардиологический журнал. 2023;28(3):5269. https://doi.org/10.15829/1560-4071-2023-5269; Sueda S, Sakaue T. Intracoronary ergonovine testing among 505 consecutive Japanese patients with angina-like chest pain and unobstructed coronary artery disease. Heart Vessels. 2022;37(6):931-941. doi:10.1007/s00380-021-02002-x.; Копьева К.В., Мальцева А.И., Мочула A.B., и др. . Роль маркеров эндотелиальной дисфункции в патогенезе коронарной микроваскулярной дисфункции у пациентов с необструктивным поражением коронарных артерий. Бюллетень сибирской медицины. 2024;23(3):49-58. https://doi.org/10.20538/1682-0363-2024-3-49-58; Yildiz M, Ashokprabhu N, Shewale A, et al. Myocardial infarction with non-obstructive coronary arteries (MINOCA). Front Cardiovasc Med. 2022;9:1032436. doi:10.3389/fcvm.2022.1032436.; Копьева КВ, Мальцева АН, Мочула АВ, и др. Роль микроваскулярной дисфункции в патогенезе сердечной недостаточности с сохранённой фракцией выброса. Казанский медицинский журнал. 2022;103(6):918-927. doi:10.17816/KMJ109034; Бойцов С.А., Шахнович Р.М., Терещенко С.Н., и др. Особенности реперфузионной стратегии лечения пациентов с инфарктом миокарда с подъемом сегмента ST по данным Российского регистра острого инфаркта миокарда – РЕГИОН-ИМ. Кардиология. 2024;64(2):3-17. https://doi.org/10.18087/cardio.2024.2.n2601; Шерашов А.В., Шилова А.С., Першина Е.С., и др. Инфаркт миокарда без признаков обструктивного атеросклероза коронарных артерий. Кардиология. 2020;60(3):89-95. https://doi.org/10.18087/cardio.2020.3.n881; Vrints C, Andreotti F, Koskinas KC, et al. 2024 ESC Guidelines for the management of chronic coronary syndromes. Eur Heart J. 2024;45(36):3415-3537. doi:10.1093/eurheartj/ehae177.; Wium-Andersen MK, Villumsen MD, Wium-Andersen IK, et al. The familial and genetic contribution to the association between depression and cardiovascular disease: a twin cohort study. Mol Psychiatry. 2021;26(8):4245-4253. doi:10.1038/s41380-020-00954-6.; Shi S, Zhong VW. Genetic susceptibility modifies the association between egg consumption and coronary artery disease. Am J Clin Nutr. 2023;118(4):735-736. doi:10.1016/j.ajcnut.2023.07.021; Stein AP, Harder J, Holmes HR, et al. Single Nucleotide Polymorphisms in Coronary Microvascular Dysfunction. J Am Heart Assoc. 2024;13(4):e032137. doi:10.1161/JAHA.123.032137.; Severino P, D'Amato A, Pucci M, et al. Ischemic Heart Disease and Heart Failure: Role of Coronary Ion Channels. Int J Mol Sci. 2020 ;21(9):3167. doi:10.3390/ijms21093167.; Cheng J, Wen J, Wang N, et al. Ion Channels and Vascular Diseases. Arterioscler Thromb Vasc Biol. 2019;39(5):e146-e156. doi:10.1161/ATVBAHA.119.312004; Goodwill AG, Dick GM, Kiel AM, Tune JD. Regulation of Coronary Blood Flow. Compr Physiol. 2017;7(2):321-382. doi:10.1002/cphy.c160016; Yang HQ, Martinez-Ortiz W, Hwang J, et al. Palmitoylation of the KATP channel Kir6.2 subunit promotes channel opening by regulating PIP2 sensitivity. Proc Natl Acad Sci U S A. 2020;117(19):10593-10602. doi:10.1073/pnas.1918088117.; Li Y, Aziz Q, Tinker A. The Pharmacology of ATP-Sensitive K+ Channels (KATP). Handb Exp Pharmacol. 2021;267:357-378. doi:10.1007/164_2021_466.; Severino P, D'Amato A, Mancone M, et al. Protection against Ischemic Heart Disease: A Joint Role for eNOS and the KATP Channel. Int J Mol Sci. 2023;24(9):7927. doi:10.3390/ijms24097927.; Yang M, Dart C, Kamishima T, Quayle JM. Hypoxia and metabolic inhibitors alter the intracellular ATP:ADP ratio and membrane potential in human coronary artery smooth muscle cells. PeerJ. 2020;8:e10344. doi:10.7717/peerj.10344.; Severino P, D'Amato A, Netti L, et al. Susceptibility to ischaemic heart disease: Focusing on genetic variants for ATP-sensitive potassium channel beyond traditional risk factors. Eur J Prev Cardiol. 2021;28(13):1495-1500. doi:10.1177/2047487320926780.; Do Couto NF, Fancher I, Granados ST, et al. Impairment of microvascular endothelial Kir2.1 channels contributes to endothelial dysfunction in human hypertension. Am J Physiol Heart Circ Physiol. 2024;327(4):H1004-H1015. doi:10.1152/ajpheart.00732.2023.; Severino P, D'Amato A, Prosperi S, et al. Potential Role of eNOS Genetic Variants in Ischemic Heart Disease Susceptibility and Clinical Presentation. J Cardiovasc Dev Dis. 2021;8(9):116. doi:10.3390/jcdd8090116.; Dwenger MM, Ohanyan V, Navedo MF, Nystoriak MA. Coronary microvascular Kv1 channels as regulatory sensors of intracellular pyridine nucleotide redox potential. Microcirculation. 2018;25(1):10.1111/micc.12426. doi:10.1111/micc.12426.; Xing H, Sabe SA, Shi G, et al. Role of Protein Kinase C in Metabolic Regulation of Coronary Endothelial Small Conductance Calcium-Activated Potassium Channels. J Am Heart Assoc. 2024;13(3):e031028. doi:10.1161/JAHA.123.031028.; Халиков АА, Кильдюшов ЕМ, Кузнецов КО, и др. Использование микроРНК с целью определения давности наступления смерти: обзор. Судебная медицина. 2021;7(3):132-138. doi:10.17816/fm412; Kong AS, Lai KS, Lim SE, et al. miRNA in Ischemic Heart Disease and Its Potential as Biomarkers: A Comprehensive Review. Int J Mol Sci. 2022;23(16):9001. doi:10.3390/ijms23169001.; Sun L, Wang J, Lei J, et al. Differential gene expression and miRNA regulatory network in coronary slow flow. Sci Rep. 2024;14(1):8419. doi:10.1038/s41598-024-58745-w.; Seyhan AA. Trials and Tribulations of MicroRNA Therapeutics. Int J Mol Sci. 2024;25(3):1469. Doi:10.3390/ijms25031469.; Li X, Sun M, Wang Z, et al. Recent advances in mechanistic studies of heart failure with preserved ejection fraction and its comorbidities-Role of microRNAs. Eur J Clin Invest. 2024;54(3):e14130. doi:10.1111/eci.14130.; Singh R, Yadav V, Kumar S, Saini N. MicroRNA-195 inhibits proliferation, invasion and metastasis in breast cancer cells by targeting FASN, HMGCR, ACACA and CYP27B1. Sci Rep. 2015;5:17454. doi:10.1038/srep17454.; Wakabayashi I, Eguchi R, Sotoda Y, et al. Blood levels of microRNAs associated with ischemic heart disease differ between Austrians and Japanese: a pilot study. Sci Rep. 2020;10(1):13628. doi:10.1038/s41598-020-69332-0.; Nakagawa Y, Nishikimi T, Kuwahara K, et al. MiR30-GALNT1/2 Axis-Mediated Glycosylation Contributes to the Increased Secretion of Inactive Human Prohormone for Brain Natriuretic Peptide (proBNP) From Failing Hearts. J Am Heart Assoc. 2017;6(2):e003601. doi:10.1161/JAHA.116.003601.; Horton WB, Barrett EJ. Microvascular Dysfunction in Diabetes Mellitus and Cardiometabolic Disease. Endocr Rev. 2021;42(1):29-55. doi:10.1210/endrev/bnaa025.; Veitch S, Njock MS, Chandy M, et al. MiR-30 promotes fatty acid beta-oxidation and endothelial cell dysfunction and is a circulating biomarker of coronary microvascular dysfunction in pre-clinical models of diabetes. Cardiovasc Diabetol. 2022;21(1):31. doi:10.1186/s12933-022-01458-z.; Hu Y, Xiong J, Wen H, et al. MiR-98-5p promotes ischemia/reperfusion-induced microvascular dysfunction by targeting NGF and is a potential biomarker for microvascular reperfusion. Microcirculation. 2021;28(1):e12657. doi:10.1111/micc.12657.; Juni RP, Kocken JMM, Abreu RC, et al. MicroRNA-216a is essential for cardiac angiogenesis. Mol Ther. 2023;31(6):1807-1828. doi:10.1016/j.ymthe.2023.04.007; Shah RV, Rong J, Larson MG, et al. Associations of Circulating Extracellular RNAs With Myocardial Remodeling and Heart Failure. JAMA Cardiol. 2018;3(9):871-876. doi:10.1001/jamacardio.2018.2371.; Greco S, Zaccagnini G, Perfetti A, et al. Long noncoding RNA dysregulation in ischemic heart failure. J Transl Med. 2016;14(1):183. doi:10.1186/s12967-016-0926-5.; Greco S, Gorospe M, Martelli F. Noncoding RNA in age-related cardiovascular diseases. J Mol Cell Cardiol. 2015;83:142-55. doi:10.1016/j.yjmcc.2015.01.011.; Thum T, Condorelli G. Long noncoding RNAs and microRNAs in cardiovascular pathophysiology. Circ Res. 2015;116(4):751-62. doi:10.1161/CIRCRESAHA.116.303549.; Yang KC, Yamada KA, Patel AY, et al. Deep RNA sequencing reveals dynamic regulation of myocardial noncoding RNAs in failing human heart and remodeling with mechanical circulatory support. Circulation. 2014;129(9):1009-21. doi:10.1161/CIRCULATIONAHA.113.003863.; Yoshino S, Cilluffo R, Best PJ, et al. Single nucleotide polymorphisms associated with abnormal coronary microvascular function. Coron Artery Dis. 2014;25(4):281-9. doi:10.1097/MCA.0000000000000104.; Cugino D, Gianfagna F, Santimone I, et al. Type 2 diabetes and polymorphisms on chromosome 9p21: a meta-analysis. Nutr Metab Cardiovasc Dis. 2012;22(8):619-25. doi:10.1016/j.numecd.2010.11.010; Holdt LM, Teupser D. From genotype to phenotype in human atherosclerosis--recent findings. Curr Opin Lipidol. 2013;24(5):410-8. doi:10.1097/MOL.0b013e3283654e7c.; Holdt LM, Hoffmann S, Sass K, et al. Alu elements in ANRIL non-coding RNA at chromosome 9p21 modulate atherogenic cell functions through trans-regulation of gene networks. PLoS Genet. 2013;9(7):e1003588. doi:10.1371/journal.pgen.1003588; Li YY, Wang H, Zhang YY. CDKN2B-AS1 gene rs4977574 A/G polymorphism and coronary heart disease: A meta-analysis of 40,979 subjects. J Cell Mol Med. 2021;25(18):8877-8889. doi:10.1111/jcmm.16849.; Fernandes T, Magalhães FC, Roque FR, et al. Exercise training prevents the microvascular rarefaction in hypertension balancing angiogenic and apoptotic factors: role of microRNAs-16, -21, and -126. Hypertension. 2012;59(2):513-20. doi:10.1161/HYPERTENSIONAHA.111.185801.; Gomes JL, Fernandes T, Soci UP, et al. Obesity Downregulates MicroRNA-126 Inducing Capillary Rarefaction in Skeletal Muscle: Effects of Aerobic Exercise Training. Oxid Med Cell Longev. 2017;2017:2415246. doi:10.1155/2017/2415246.; Соболева Г.Н., Федулов В.К., Самко А.Н., Левицкий И.В., Рогоза А.Н., Балахонова Т.В., Карпов Ю.А. Прогностическое значение дисфункции эндотелия коронарных и плечевой артерии, традиционных факторов риска в развитии сердечно-сосудистых осложнений у пациентов с микрососудистой стенокардией. Российский кардиологический журнал. 2017;(3):54-58. https://doi.org/10.15829/1560-4071-2017-3-54-58; Alexy T, Detterich J, Connes P, et al. Physical Properties of Blood and their Relationship to Clinical Conditions. Front Physiol. 2022;13:906768. doi:10.3389/fphys.2022.906768.; Rajendran P, Rengarajan T, Thangavel J, et al. The vascular endothelium and human diseases. Int J Biol Sci. 2013;9(10):1057-69. doi:10.7150/ijbs.7502; Shan J, Liu S, Liu Y, Zhu J. C/EBP Homologous Protein: A Potential Therapeutic Target for Atherosclerosis Treatment? Cardiovasc Drugs Ther. 2024;38(3):415. doi:10.1007/s10557-022-07424-x.; Davenport AP, Hyndman KA, Dhaun N, et al. Endothelin. Pharmacol Rev. 2016;68(2):357-418. doi:10.1124/pr.115.011833.; Ford TJ, Corcoran D, Padmanabhan S, et al. Genetic dysregulation of endothelin-1 is implicated in coronary microvascular dysfunction. Eur Heart J. 2020;41(34):3239-3252. doi:10.1093/eurheartj/ehz915.; Hynynen MM, Khalil RA. The vascular endothelin system in hypertension--recent patents and discoveries. Recent Pat Cardiovasc Drug Discov. 2006;1(1):95-108. doi:10.2174/157489006775244263.; Rodríguez-Pascual F, Redondo-Horcajo M, Lamas S. Functional cooperation between Smad proteins and activator protein-1 regulates transforming growth factor-beta-mediated induction of endothelin-1 expression. Circ Res. 2003;92(12):1288-95. doi:10.1161/01.RES.0000078491.79697.7F.; Loomis ED, Sullivan JC, Osmond DA, et al. Endothelin mediates superoxide production and vasoconstriction through activation of NADPH oxidase and uncoupled nitric-oxide synthase in the rat aorta. J Pharmacol Exp Ther. 2005;315(3):1058-64. doi:10.1124/jpet.105.091728.; Xu H, Lin L, Yuan WJ. Antiarrhythmic effect of endothelin-A receptor antagonist on acute ischemic arrhythmia in isolated rat heart. Acta Pharmacol Sin. 2003;24(1):37-44.; Virdis A, Schiffrin EL. Vascular inflammation: a role in vascular disease in hypertension? Curr Opin Nephrol Hypertens. 2003;12(2):181-7. doi:10.1097/00041552-200303000-00009.; Lin CC, Hsieh HL, Shih RH, et al. Up-regulation of COX-2/PGE2 by endothelin-1 via MAPK-dependent NF-κB pathway in mouse brain microvascular endothelial cells. Cell Commun Signal. 2013;11(1):8. doi:10.1186/1478-811X-11-8.; Gupta RM, Hadaya J, Trehan A, et al. A Genetic Variant Associated with Five Vascular Diseases Is a Distal Regulator of Endothelin-1 Gene Expression. Cell. 2017;170(3):522-533.e15. doi:10.1016/j.cell.2017.06.049.; Cox ID, Bøtker HE, Bagger JP, et al. Elevated endothelin concentrations are associated with reduced coronary vasomotor responses in patients with chest pain and normal coronary arteriograms. J Am Coll Cardiol. 1999;34(2):455-60. doi:10.1016/s0735-1097(99)00224-7; Konijn LCD, Takx RAP, Mali WPTM, et al. Different Lower Extremity Arterial Calcification Patterns in Patients with Chronic Limb-Threatening Ischemia Compared with Asymptomatic Controls. J Pers Med. 2021;11(6):493. doi:10.3390/jpm11060493.; Matsuzawa Y, Lerman A. Endothelial dysfunction and coronary artery disease: assessment, prognosis, and treatment. Coron Artery Dis. 2014;25(8):713-24. doi:10.1097/MCA.0000000000000178.; Bonetti PO, Lerman LO, Lerman A. Endothelial dysfunction: a marker of atherosclerotic risk. Arterioscler Thromb Vasc Biol. 2003;23(2):168-75. doi:10.1161/01.atv.0000051384.43104.fc.; Eroglu E, Kocyigit I, Lindholm B. The endothelin system as target for therapeutic interventions in cardiovascular and renal disease. Clin Chim Acta. 2020;506:92-106. doi:10.1016/j.cca.2020.03.008.; Zhang Q, Church JE, Jagnandan D, et al. Functional relevance of Golgi- and plasma membrane-localized endothelial NO synthase in reconstituted endothelial cells. Arterioscler Thromb Vasc Biol. 2006;26(5):1015-21. doi:10.1161/01.ATV.0000216044.49494.c4.; Fedele G, Castiglioni S, Trapani V, et al. Impact of Inducible Nitric Oxide Synthase Activation on Endothelial Behavior under Magnesium Deficiency. Nutrients. 2024;16(10):1406. doi:10.3390/nu16101406.; Mehta PK, Huang J, Levit RD, et al. Ischemia and no obstructive coronary arteries (INOCA): A narrative review. Atherosclerosis. 2022;363:8-21. doi:10.1016/j.atherosclerosis.2022.11.009.; Nakayama M, Yasue H, Yoshimura M, et al. T-786-->C mutation in the 5'-flanking region of the endothelial nitric oxide synthase gene is associated with coronary spasm. Circulation. 1999;99(22):2864-70. doi:10.1161/01.cir.99.22.2864.; Joshi MS, Mineo C, Shaul PW, Bauer JA. Biochemical consequences of the NOS3 Glu298Asp variation in human endothelium: altered caveolar localization and impaired response to shear. FASEB J. 2007;21(11):2655-63. doi:10.1096/fj.06-7088com.; Tousoulis D, Kampoli AM, Tentolouris C, et al. The role of nitric oxide on endothelial function. Curr Vasc Pharmacol. 2012;10(1):4-18. doi:10.2174/157016112798829760.; Niu W, Qi Y. An updated meta-analysis of endothelial nitric oxide synthase gene: three well-characterized polymorphisms with hypertension. PLoS One. 2011;6(9):e24266. doi:10.1371/journal.pone.0024266.; Nassereddine S, Hassani Idrissi H, Habbal R, et al. The polymorphism G894 T of endothelial nitric oxide synthase (eNOS) gene is associated with susceptibility to essential hypertension (EH) in Morocco. BMC Med Genet. 2018;19(1):127. doi:10.1186/s12881-018-0638-1; Aoyama R, Kubota Y, Tara S, et al. Vascular Endothelial Dysfunction in Myeloproliferative Neoplasms and Gene Mutations. Int Heart J. 2022;63(4):661-668. doi:10.1536/ihj.22-003; Wiszniak S, Schwarz Q. Exploring the Intracrine Functions of VEGF-A. Biomolecules. 2021;11(1):128. doi:10.3390/biom11010128; Giordano FJ, Gerber HP, Williams SP, et al. A cardiac myocyte vascular endothelial growth factor paracrine pathway is required to maintain cardiac function. Proc Natl Acad Sci U S A. 2001;98(10):5780-5. doi:10.1073/pnas.091415198.; Carmeliet P, Ng YS, Nuyens D, et al. Impaired myocardial angiogenesis and ischemic cardiomyopathy in mice lacking the vascular endothelial growth factor isoforms VEGF164 and VEGF188. Nat Med. 1999;5(5):495-502. doi:10.1038/8379.; Dittrich GM, Froese N, Wang X, et al. Fibroblast GATA-4 and GATA-6 promote myocardial adaptation to pressure overload by enhancing cardiac angiogenesis. Basic Res Cardiol. 2021;116(1):26. doi:10.1007/s00395-021-00862-y.; Taimeh Z, Loughran J, Birks EJ, Bolli R. Vascular endothelial growth factor in heart failure. Nat Rev Cardiol. 2013;10(9):519-30. doi:10.1038/nrcardio.2013.94.; Tang J, Wang J, Kong X, et al. Vascular endothelial growth factor promotes cardiac stem cell migration via the PI3K/Akt pathway. Exp Cell Res. 2009;315(20):3521-31. doi:10.1016/j.yexcr.2009.09.026.; Friehs I, Barillas R, Vasilyev NV, et al. Vascular endothelial growth factor prevents apoptosis and preserves contractile function in hypertrophied infant heart. Circulation. 2006;114(1 Suppl):I290-5. doi:10.1161/CIRCULATIONAHA.105.001289.; Zentilin L, Puligadda U, Lionetti V, et al. Cardiomyocyte VEGFR-1 activation by VEGF-B induces compensatory hypertrophy and preserves cardiac function after myocardial infarction. FASEB J. 2010;24(5):1467-78. doi:10.1096/fj.09-143180.; Sato T, Takeda N. The roles of HIF-1α signaling in cardiovascular diseases. J Cardiol. 2023;81(2):202-208. doi:10.1016/j.jjcc.2022.09.002.; Abraham D, Hofbauer R, Schäfer R, et al. Selective downregulation of VEGF-A(165), VEGF-R(1), and decreased capillary density in patients with dilative but not ischemic cardiomyopathy. Circ Res. 2000;87(8):644-7. doi:10.1161/01.res.87.8.644.; Ольховский И.А., Горбенко А.С., Столяр М.А. и др. Частота выявления соматической мутации V617F в ген JAK2 у пациентов с сердечно-сосудистой патологией. Терапевтический архив. 2019; 91 (7): 25–28. DOI:10.26442/00403660.2019.07.000245; Hu X, Li J, Fu M, et al. The JAK/STAT signaling pathway: from bench to clinic. Signal Transduct Target Ther. 2021;6(1):402. doi:10.1038/s41392-021-00791-1.; Guy A, Gourdou-Latyszenok V, Le Lay N, et al. Vascular endothelial cell expression of JAK2V617F is sufficient to promote a pro-thrombotic state due to increased P-selectin expression. Haematologica. 2019;104(1):70-81. doi:10.3324/haematol.2018.195321.; Beckman JD, DaSilva A, Aronovich E, et al. JAK-STAT inhibition reduces endothelial prothrombotic activation and leukocyte-endothelial proadhesive interactions. J Thromb Haemost. 2023;21(5):1366-1380. doi:10.1016/j.jtha.2023.01.027; Guadall A, Lesteven E, Letort G, et al. Endothelial Cells Harbouring the JAK2V617F Mutation Display Pro-Adherent and Pro-Thrombotic Features. Thromb Haemost. 2018;118(9):1586-1599. doi:10.1055/s-0038-1667015.; Mashiba J, Koike G, Kamiunten H, et al. Vasospastic angina and microvascular angina are differentially influenced by PON1 A632G polymorphism in the Japanese. Circ J. 2005;69(12):1466-71. doi:10.1253/circj.69.1466.; Asleh R, Levy AP, Levy NS, et al. Haptoglobin Phenotype Is Associated With High-Density Lipoprotein-Bound Hemoglobin Content and Coronary Endothelial Dysfunction in Patients With Mild Nonobstructive Coronary Artery Disease. Arterioscler Thromb Vasc Biol. 2019;39(4):774-786. doi:10.1161/ATVBAHA.118.312232.; Lai WK, Kan MY. Homocysteine-Induced Endothelial Dysfunction. Ann Nutr Metab. 2015;67(1):1-12. doi:10.1159/000437098; Weng L, Taylor KD, Chen YD, et al. Genetic loci associated with nonobstructive coronary artery disease in Caucasian women. Physiol Genomics. 2016;48(1):12-20. doi:10.1152/physiolgenomics.00067.2015; Wenzel P, Rossmann H, Müller C, et al. Heme oxygenase-1 suppresses a pro-inflammatory phenotype in monocytes and determines endothelial function and arterial hypertension in mice and humans. Eur Heart J. 2015;36(48):3437-46. doi:10.1093/eurheartj/ehv544.; Ayer A, Zarjou A, Agarwal A, Stocker R. Heme Oxygenases in Cardiovascular Health and Disease. Physiol Rev. 2016;96(4):1449-508. doi:10.1152/physrev.00003.2016.; Liang KW, Lee WJ, Lee IT, et al. Subjects with microvascular angina have longer GT repeats polymorphism in the haem oxygenase-1 gene promoter. Biomarkers. 2020;25(2):144-148. doi:10.1080/1354750X.2020.1713214.
Dostupnost: https://www.nii-kpssz.com/jour/article/view/1677
-
17
Autoři: a další
Přispěvatelé: a další
Zdroj: Complex Issues of Cardiovascular Diseases; Том 14, № 3 (2025); 152-162 ; Комплексные проблемы сердечно-сосудистых заболеваний; Том 14, № 3 (2025); 152-162 ; 2587-9537 ; 2306-1278 ; undefined
Popis souboru: application/pdf
Relation: https://www.nii-kpssz.com/jour/article/view/1641/1051; https://www.nii-kpssz.com/jour/article/downloadSuppFile/1641/1988; https://www.nii-kpssz.com/jour/article/downloadSuppFile/1641/1989; https://www.nii-kpssz.com/jour/article/downloadSuppFile/1641/1990; https://www.nii-kpssz.com/jour/article/downloadSuppFile/1641/1991; https://www.nii-kpssz.com/jour/article/downloadSuppFile/1641/1992; https://www.nii-kpssz.com/jour/article/downloadSuppFile/1641/1993; https://www.nii-kpssz.com/jour/article/downloadSuppFile/1641/1994; Cruz C.B.B.V., Hajjar L.A., Bacal F., Lofrano-Alves M.S., Lima M.S.M., Abduch M.C., Vieira M.L.C., Chiang H.P., Salviano J.B.C., da Silva Costa I.B.S., et al. Usefulness of speckle tracking echocardiography and biomarkers for detecting acute cellular rejection after heart transplantation. Cardiovascular Ultrasound 2021; 19(1): 6. doi:10.1186/s12947-020-00235-w.; Martin S.S., Aday A.W., Allen N.B., Almarzooq Z.I., Anderson C.A.M., Arora P., Avery C.L., Baker-Smith C.M., Bansal N., Beaton A.Z., et al. 2025 Heart Disease and Stroke Statistics: A Report of US and Global Data From the American Heart Association. Circulation 2025; 151(8): e41–660. doi:10.1161/CIR.0000000000001303.; Takeno M., Yasuda S., Otsuka Y., Morii I., Kawamura A., Yano K., Miyazaki S. Impact of Metabolic Syndrome on the Long-Term Survival of Patients With Acute Myocardial Infarction Potential Association With C-Reactive Protein. Circulation Journal 2008; 72(3): 415–9. doi:10.1253/circj.72.415.; Ege M.R., Guray U., Bøhmer E., Seljeflot I., Arnesen H., Hoffmann P., Abdelnoor M., Halvorsen S. Comment on: The association between metabolic syndrome and infarct size in patients with acute myocardial infarction. Scandinavian Journal of Clinical and Laboratory Investigation 2010; 70(8): 592–592. doi:10.3109/00365513.2010.481819.; Thim T., Bentzon J.F., Kristiansen S.B., Simonsen U., Andersen H.L., Wassermann K., Falk E. Size of myocardial infarction induced by ischaemia/reperfusion is unaltered in rats with metabolic syndrome. Clinical Science 2006; 110(6): 665–71. doi:10.1042/CS20050326.; Donner D., Headrick J.P., Peart J.N., Du Toit E.F. Obesity improves myocardial ischaemic tolerance and RISK signalling in insulin-insensitive rats. Disease Models & Mechanisms 2013; 6: 457–66. doi:10.1242/dmm.010959.; Нарыжная Н.В., Бирулина Ю.Г., Курбатов Б.К., Сиротина М.А., Маслов Л.Н. Возрастные особенности формирования инсулинорезистентности организма и чувствительности к инсулину адипоцитов у крыс при индуцированном метаболическом синдроме. Сибирский журнал клинической и экспериментальной медицины 2021;36(3):119-126. doi:10.29001/2073-8552-2021-36-3-119-126.; Popov S.V., Mukhomedzyanov A.V., Maslov L.N., Naryzhnaya N.V., Kurbatov B.K., Prasad N.R., Singh N., Fu F., Azev V.N. The Infarct-Reducing Effect of the δ2 Opioid Receptor Agonist Deltorphin II: The Molecular Mechanism. Membranes 2023; 13(1): 63. doi:10.3390/membranes13010063.; Prokudina E.S., Naryzhnaya N.V., Mukhomedzyanov A.V., Gorbunov A.S., Zhang Y., Jaggi A.S., Tsibulnikov S.Y., Nesterov E.A., Lishmanov Y.B., Suleiman M.S.S., et al. Effect of Chronic Continuous Normobaric Hypoxia on Functional State of Cardiac Mitochondria and Tolerance of Isolated Rat Heart to Ischemia and Reperfusion: Role of µ and δ2 Opioid Receptors. Physiological Research 2019; 68(6): 909–20. doi:10.33549/physiolres.933945.; Clavijo L.C., Pinto T.L., Kuchulakanti P.K., Torguson R., Chu W.W., Satler L.F., Kent K.M., Suddath W.O., Pichard A.D., Waksman R. Metabolic syndrome in patients with acute myocardial infarction is associated with increased infarct size and in-hospital complications. Cardiovascular Revascularization Medicine 2006; 7(1): 7–11. doi:10.1016/j.carrev.2005.10.007.; Chen H.H., Wu C.J., Chen Y.C., Tsai C.S., Lin F.J., Yeh H.I. Metabolic syndrome is associated with severe coronary artery disease and poor cardiac outcome in end-stage renal disease patients with acute coronary syndrome. Coronary Artery Disease 2006; 17(7): 593–6. doi:10.1097/01.mca.0000224418.21563.6e.; Iglesias Bolaños P., Olivar Roldán J., Peñalver Talavera D., Díaz Guardiola P., Vega Piñero B., Monereo Megías S. Impacto de la obesidad central en la extensión del área de necrosis miocárdica. Endocrinología y Nutrición 2009; 56(1): 4–8. doi:10.1016/S1575-0922(09)70187-1.; Kranjčec D., Altabas V. Metabolic syndrome influencing infarct size and heart failure in patients with acute coronary syndrome - Does gender matter? Endocrine Journal 2012; 59(12): 1065–76. doi:10.1507/endocrj.EJ12-0131.; Islam M.S., Bari M.A., Paul G.K., Islam M.Z., Rahman M.Z., Hoshneara M., Karim M.A., Nabi M.N., Pandit H. Impact of metabolic syndrome in acute myocardial infarction at hospital. Mymensingh Medical Journal : MMJ 2013; 22(2): 261–6.; Traub J., Schürmann P., Schmitt D., Gassenmaier T., Fette G., Frantz S., Störk S., Beyersdorf N., Boivin-Jahns V., Jahns R., et al. Features of metabolic syndrome and inflammation independently affect left ventricular function early after first myocardial infarction. International Journal of Cardiology 2023; 370: 43–50. doi:10.1016/j.ijcard.2022.10.142.; Hajsadeghi S., Chitsazan M., Chitsazan M., Haghjoo M., Babaali N., Norouzzadeh Z., Mohsenian M. Metabolic syndrome is associated with higher wall motion score and larger infarct size after acute myocardial infarction. Research in Cardiovascular Medicine 2015; 4(1): 3. doi:10.5812/cardiovascmed.25018.; Zhao L.-H., Liu Y., Xiao J.-Y., Wang J.-X., Li X.-W., Cui Z., Gao J. Prognostic Value of Metabolic Syndrome in Patients With Non-ST Elevated Myocardial Infarction Undergoing Percutaneous Coronary Intervention. Frontiers in Cardiovascular Medicine 2022; 9(June): 1–10. doi:10.3389/fcvm.2022.912999.; Ermolenko E., Simanenkova A., Voropaeva L., Lavrenova N., Kotyleva M., Minasian S., Chernikova A., Timkina N., Gladyshev N., Dmitriev A., et al. Metformin Influence on the Intestinal Microbiota and Organism of Rats with Metabolic Syndrome. International Journal of Molecular Sciences 2022; 23(12): 6837. doi:10.3390/ijms23126837.; Simanenkova A., Minasian S., Karonova T., Vlasov T., Timkina N., Shpilevaya O., Khalzova A., Shimshilashvili A., Timofeeva V., Samsonov D., et al. Comparative evaluation of metformin and liraglutide cardioprotective effect in rats with impaired glucose tolerance. Scientific Reports 2021; 11(1): 6700. doi:10.1038/s41598-021-86132-2.; Chandra L., Pandey S., Baral N., Majhi S., Acharya P., Karki P., Shrestha S., Das B. Prevalence of the metabolic syndrome in acute myocardial infarction and its impact on hospital outcomes. International Journal of Diabetes in Developing Countries 2009; 29(2): 52. doi:10.4103/0973-3930.53120.; Hohendanner F., Boegner M., Huettemeister J., Zhang K., Dreysse S., Knosalla C., Falk V., Schoenrath F., Just I.A., Stawowy P. Microvascular dysfunction in heart transplantation is associated with altered cardiomyocyte mitochondrial structure and unimpaired excitation-contraction coupling. PLOS ONE 2024; 19(5): e0303540. doi:10.1371/journal.pone.0303540.; Akande O., Chen Q., Toldo S., Lesnefsky E.J., Quader M. Ischemia and reperfusion injury to mitochondria and cardiac function in donation after circulatory death hearts - an experimental study. PLOS ONE 2020; 15(12): e0243504. doi:10.1371/journal.pone.0243504.; Schneeberger S., Amberger A., Mandl J., Hautz T., Renz O., Obrist P., Meusburger H., Brandacher G., Mark W., Strobl D., et al. Cold ischemia contributes to the development of chronic rejection and mitochondrial injury after cardiac transplantation. Transplant International 2010; 23(12): 1282–92. doi:10.1111/j.1432-2277.2010.01126.x.; Rukavina-Mikusic I.A., Rey M., Martinefski M., Tripodi V., Valdez L.B. Temporal evolution of cardiac mitochondrial dysfunction in a type 1 diabetes model. Mitochondrial complex I impairment, and H2O2 and NO productions as early subcellular events. Free Radical Biology and Medicine 2021; 162: 129–40. doi:10.1016/j.freeradbiomed.2020.11.033.; Cao L., Liu C., Ou C., Ma Q., Xu H., Li X., Bao Y., Chen R., Yang Y., Wu M., et al. Impact of pretransplant T2DM on left ventricular deformation and myocardial perfusion in heart transplanted recipients: a 3.0 T cardiac magnetic resonance study. Cardiovascular Diabetology 2024; 23(1): 216. doi:10.1186/s12933-024-02323-x.
-
18
Autoři: Уктамович, Ражабов Достон
Zdroj: SCIENTIFIC JOURNAL OF APPLIED AND MEDICAL SCIENCES; Vol. 4 No. 5 (2025): SCIENTIFIC JOURNAL OF APPLIED AND MEDICAL SCIENCES; 79-83 ; НАУЧНЫЙ ЖУРНАЛ ПРИКЛАДНЫХ И МЕДИЦИНСКИХ НАУК; Том 4 № 5 (2025): SCIENTIFIC JOURNAL OF APPLIED AND MEDICAL SCIENCES; 79-83 ; 2181-3469
Popis souboru: application/pdf
-
19
Autoři: Рахмонович, Азимов Алишер
Zdroj: SCIENTIFIC JOURNAL OF APPLIED AND MEDICAL SCIENCES; Vol. 4 No. 3 (2025): SCIENTIFIC JOURNAL OF APPLIED AND MEDICAL SCIENCES; 110-113 ; НАУЧНЫЙ ЖУРНАЛ ПРИКЛАДНЫХ И МЕДИЦИНСКИХ НАУК; Том 4 № 3 (2025): SCIENTIFIC JOURNAL OF APPLIED AND MEDICAL SCIENCES; 110-113 ; 2181-3469
Popis souboru: application/pdf
-
20
Autoři: a další
Přispěvatelé: a další
Zdroj: Russian Sklifosovsky Journal "Emergency Medical Care"; Том 13, № 4 (2024); 562-569 ; Журнал им. Н.В. Склифосовского «Неотложная медицинская помощь»; Том 13, № 4 (2024); 562-569 ; 2541-8017 ; 2223-9022
Témata: церебральная ишемия, cerebral vasospasm, oxidative stress, endogenous vascular regulation, cerebral ischemia, церебральный ангиоспазм, окислительный стресс, эндогенная сосудистая регуляция
Popis souboru: application/pdf
Relation: https://www.jnmp.ru/jour/article/view/1997/1499; https://www.jnmp.ru/jour/article/view/1997/1659; Геморрагический инсульт. Клинические рекомендации. МЗ РФ, 2022. URL: https://cr.minzdrav.gov.ru/schema/523_2 [Дата обращения 20 декабря 2023 г.]; Крылов В.В., Дашьян В.Г., Шетова И.М., Кордонский А.Ю., Гринь А. А., Парфенов В.Е. и др. Нейрохирургическая помощь больным с сосудистыми заболеваниями головного мозга в Российской Федерации. Нейрохирургия. 2017;(4):11–20.; Крылов В.В., Дашьян В.Г. (ред.) Хирургия аневризм головного мозга при массивном субарахноидальном кровоизлиянии. Москва: АБВПресс; 2021.; Campbell BCV, Khatri P. Stroke. The Lancet. 2020;396(10244):129–142. PMID: 32653056 https://doi.org/10.1016/S0140-6736(20)31179-X; Hua W, Chen X, Wang J, Zang W, Jiang C, Ren H, et al. Mechanisms and potential therapeutic targets for spontaneous intracerebral hemorrhage. Brain Hemorrhages. 2020;1(2):99–104. https://doi.org/10.1016/j.hest.2020.02.002; Сhen Y, Chen S, Chang J, Wei J, Feng M, Wang R. Perihematomal edema after intracerebral hemorrhage: an update on pathogenesis, risk factors, and therapeutic advances. Frontiers Immunol. 2021;12:740632. https://doi.org/10.3389/fimmu.2021.740632; Jiang C, Guo H, Zhang Z, Wang Y, Liu S, Lai J, et al. Molecular, pathological, clinical, and therapeutic aspects of perihematomal edema in different stages of intracerebral hemorrhage. Oxid Med Cell Longev. 2022:3948921. PMID: 36164392 https://doi.org/10.1155/2022/3948921; Dodd WS, Laurent D, Dumont AS, Hasan DM, Jabbour PM, Starke RM, et al. Pathophysiology of delayed cerebral ischemia after subarachnoid hemorrhage: a review. J Am Heart Assoc. 2021;10(15):e021845. PMID: 34325514 https://doi.org/10.1161/JAHA.121.021845; Pluta RM. Delayed cerebral vasospasm and nitric oxide: review, new hypothesis, and proposed treatment. Pharmacol Ther. 2005;105(1):23–56. PMID: 15626454 https://doi.org/10.1016/j.pharmthera.2004.10.002; Sehba FA, Bederson JB. Nitric oxide in early brain injury after subarachnoid hemorrhage. Acta Neurochir Suppl. 2011;110(Pt 1):99–103. PMID: 21116923 https://doi.org/10.1007/978-3-7091-0353-1_18; Гаврилов В.Б., Гаврилова А.Р., Мажуль Л.М. Анализ методов определения продуктов перекисного окисления липидов в сыворотке крови по тесту с тиобарбитуровой кислотой. Вопросы медицинской химии. 1987;33(1):118–122. PMID: 2437702; Голиков П.П., Николаева Н.Ю. Метод определения нитрита/нитрата (NOx) в сыворотке крови. Биомедицинская химия. 2004;50(1):79–85. PMID: 15108630; Leclerc JL, Garcia JM, Diller MA, Carpenter A-M, Kamat PK, Hoh BL, et al. A comparison of pathophysiology in humans and rodent models of subarachnoid hemorrhage. Front Mol Neurosci. 2018:11:71. PMID: 29623028 https://doi.org/10.3389/fnmol.2018.00071; Hayman EG, Patel AP, James RF, Simard JM. Heparin and heparinderivatives in post-subarachnoid hemorrhage brain injury: a multimodal therapy for a multimodal disease. Molecules. 2017;22(5):724. PMID: 28468328 https://doi.org/10.3390/molecules22050724; Loftspring MC. Iron and early brain injury after subarachnoid hemorrhage. J Cereb Blood Flow Metab. 2010;30(11):1791–1792. PMID: 20736954 https://doi.org/10.1038/jcbfm.2010.139; Cavalli I, Stella C, Stoll T, Mascia L, Salvagno M, Coppalini G, et al. Serum LDH levels may predict poor neurological outcome after aneurysmal subarachnoid hemorrhage. BMC Neurol. 2023;23(1):228. PMID: 37312033 https://doi.org/10.1186/s12883-023-03282-8; Zheng S, Wang H, Chen G, Shangguan H, Yu L, Lin Z, et al. Higher serum levels of lactate dehydrogenase before microsurgery predict poor outcome of aneurysmal subarachnoid hemorrhage. Front Neurol. 2021:12:720574. PMID: 34456854 https://doi.org/10.3389/fneur.2021.720574; Zan X, Deng H, Zhang Y, Wang P, Chong W, Hai Y, et al. Lactate dehydrogenase predicting mortality in patients with aneurysmal subarachnoid hemorrhage. Ann Clin Transl Neurol. 2022;9(10):1565– 1573. PMID: 35984334 https://doi.org/10.1002/acn3.51650; https://www.jnmp.ru/jour/article/view/1997
Nájsť tento článok vo Web of Science