Search Results - "жидкостная биопсия"

Refine Results
  1. 1
  2. 2
  3. 3
  4. 4
  5. 5
  6. 6
  7. 7

    Source: Advances in Molecular Oncology; Том 11, № 2 (2024); 85-96 ; Успехи молекулярной онкологии; Том 11, № 2 (2024); 85-96 ; 2413-3787 ; 2313-805X

    File Description: application/pdf

    Relation: https://umo.abvpress.ru/jour/article/view/679/350; Costello J.F., Fruhwald M.C., Smiraglia D.J. et al. Aberrant CpG-island methylation has non-random and tumour-type-specific patterns. Nat Genet 2000;24(2):132–8. DOI:10.1038/72785; Chalitchagorn K., Shuangshoti S., Hourpai N. et al. Distinctive pattern of LINE-1 methylation level in normal tissues and the association with carcinogenesis. Oncogene 2004;23(54):8841–6. DOI:10.1038/sj.onc.1208137; Лихтенштейн А.В., Киселева Н.П. Метилирование ДНК и канцерогенез. Биохимия 2001;66(3):235–55. DOI:10.1023/a:1010249510906; Залетаев Д.В., Немцова М.В., Бочков Н.П. Метилирование ДНК как этиологический фактор канцерогенеза. Вестник Российской академии медицинских наук 2002;6–11.; Robertson K.D. DNA methylation and human disease. Nat Rev Genet 2005;6(8):597–610. DOI:10.1038/nrg1655; Ross J.P., Rand K.N., Molloy P.L. Hypomethylation of repeated DNA sequences in cancer. Epigenomics 2010;2(2):245–69. DOI:10.2217/epi.10.2; Немцова М.В., Михайленко Д.С., Кузнецова Е.Б. и др. Инактивация эпигенетических регуляторов вследствие мутаций в солидных опухолях. Биохимия 2020;85(7):735–48. DOI:10.1134/S0006297920070020; Estecio M.R., Gharibyan V., Shen L. et al. LINE-1 hypomethylation in cancer is highly variable and inversely correlated with microsatellite instability. PLoS One 2007;2(5):e399. DOI:10.1371/journal.pone.0000399; Ohno S. So much “junk” DNA in our genome. Brookhaven Symp Biol 1972;23:366–70.; Fedoroff N.V. Transposable elements, epigenetics, and genome evolution. Science 2012;338(6108):758–67. DOI:10.1126/science.338.6108.758; Ponomaryova A.A., Rykova E.Y., Gervas P.A. et al. Aberrant methylation of LINE-1 transposable elements: a search for cancer biomarkers. Cells 2020;9(9):2017. DOI:10.3390/cells9092017; Cajuso T., Sulo P., Tanskanen T. et al. Retrotransposon insertions can initiate colorectal cancer and are associated with poor survival. Nat Commun 2019;10:4022. DOI:10.1038/s41467-019-11770-0; Rodriguez-Martin B., Alvarez E.G., Baez-Ortega A. et al. Pancancer analysis of whole genomes identifies driver rearrangements promoted by LINE-1 retrotransposition. Nat Genet 2020;52(3):306–19. DOI:10.1038/s41588-019-0562-0; Bouras E., Karakioulaki M., Bougioukas K.I. et al. Gene promoter methylation and cancer: an umbrella review. Gene 2019;710:333–40. DOI:10.1016/j.gene.2019.06.023; Markou A., Londra D., Tserpeli V. et al. DNA methylation analysis of tumor suppressor genes in liquid biopsy components of early stage NSCLC: a promising tool for early detection. Clin Epigenetics 2022;14(1):61. DOI:10.1186/s13148-022-01283-x; Yang J., Wang Q., Zhang Z.Y. et al. DNA methylation-based epigenetic signatures predict somatic genomic alterations in gliomas. Nat Commun 2022;13:4410. DOI:10.1038/s41467-022-31827-x; Yang X., Wen X., Guo Q. et al. Predicting disease-free survival in colorectal cancer by circulating tumor DNA methylation markers. Clin Epigenetics 2022;14:160. DOI:10.1186/s13148-022-01383-8; Weisenberger D.J., Campan M., Long T.I. et al. Analysis of repetitive element DNA methylation by MethyLight. Nucleic Acids Res 2005;33(21):6823–36. DOI:10.1093/nar/gki987; Piskareva O., Lackington W., Lemass D. et al. The human L1 element: a potential biomarker in cancer prognosis, current status and future directions. Curr Mol Med 2011;11(4):286–303. DOI:10.2174/156652411795677954; Kitkumthorn N., Mutirangura A. Long interspersed nuclear element-1 hypomethylation in cancer: biology and clinical applications. Clin Epigenetics 2011;2(2):315–30. DOI:10.1007/s13148-011-0032-8; Nagai Y., Sunami E., Yamamoto Y. et al. LINE-1 hypomethylation status of circulating cell-free DNA in plasma as a biomarker for colorectal cancer. Oncotarget 2017;8(7):11906–16. DOI:10.18632/oncotarget.14439; Gainetdinov I.V., Kapitskaya K.Y., Rykova E.Y. et al. Hypomethylation of human-specific family of LINE-1 retrotransposons in circulating DNA of lung cancer patients. Lung Cancer 2016;99:127–30. DOI:10.1016/j.lungcan.2016.07.005; Liu Z.J., Huang Y., Wei L. et al. Combination of LINE-1 hypomethylation and RASSF1A promoter hypermethylation in serum DNA is a non-invasion prognostic biomarker for early recurrence of hepatocellular carcinoma after curative resection. Neoplasma 2017;64(5):795–802. DOI:10.4149/neo_2017_519; Serrano M.J., Garrido-Navas M.C., Diaz Mochon J.J. et al. Precision prevention and cancer interception: the new challenges of liquid biopsy. Cancer Discov 2020;10(11):1635. DOI:10.1158/2159-8290.CD-20-0466; Cescon D.W., Bratman S.V., Chan S.M. et al. Circulating tumor DNA and liquid biopsy in oncology. Nat Cancer 2020;1(3):276–90. DOI:10.1038/s43018-020-0043-5; Nassar F.J., Msheik Z.S., Nasr R.R. et al. Methylated circulating tumor DNA as a biomarker for colorectal cancer diagnosis, prognosis, and prediction. Clin Epigenetics 2021;13(1):111. DOI:10.1186/s13148-021-01095-5; Ponomaryova A.A., Rykova E.Y., Azhikina T.L. et al. Long interspersed nuclear element-1 methylation status in the circulating DNA from blood of patients with malignant and chronic inflammatory lung diseases. Eur J Cancer Prevent 2021;30(2):127–31. DOI:10.1097/CEJ.0000000000000601; Quillien V., Lavenu A., Karayan-Tapon L. et al. Comparative assessment of 5 methods (methylation-specific polymerase chain reaction, MethyLight, pyrosequencing, methylation-sensitive high-resolution melting, and immunohistochemistry) to analyze O6-methylguanine-DNA-methyltranferase in a series of 100 glioblastoma patients. Cancer 2012;118(17):4201–11. DOI:10.1002/cncr.27392; Livak K.J., Schmittgen T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2–ΔΔCT method. Methods 2001;25(4):402–8. DOI:10.1006/meth.2001.1262; de Vos L., Gevensleben H., Schrock A. et al. Comparison of quantification algorithms for circulating cell-free DNA methylation biomarkers in blood plasma from cancer patients. Clin Epigenetics 2017;9:125. DOI:10.1186/s13148-017-0425-4; Dietrich D., Hasinger O., Liebenberg V. et al. DNA methylation of the homeobox genes PITX2 and SHOX2 predicts outcome in non-small-cell lung cancer patients. Diagn Mol Pathol 2012;21(2):93–104. DOI:10.1097/PDM.0b013e318240503b; Dietrich D., Hasinger O., Banez L.L. et al. Development and clinical validation of a real-time PCR assay for PITX2 DNA methylation to predict prostate-specific antigen recurrence in prostate cancer patients following radical prostatectomy. J Mol Diagn 2013;15(2):270–9. DOI:10.1016/j.jmoldx.2012.11.002; Dietrich D., Jung M., Puetzer S. et al. Diagnostic and prognostic value of SHOX2 and SEPT9 DNA methylation and cytology in benign, paramalignant and malignant pleural effusions. PLoS One 2013;8(12):e84225. DOI:10.1371/journal.pone.0084225; Grutzmann R., Molnar B., Pilarsky C. et al. Sensitive detection of colorectal cancer in peripheral blood by septin 9 DNA methylation assay. PLoS One 2008;3(11):e3759. DOI:10.1371/journal.pone.0003759; Warnecke P.M., Stirzaker C., Melki J.R. et al. Detection and measurement of PCR bias in quantitative methylation analysis of bisulphite-treated DNA. Nucleic Acids Res 1997;25(21):4422–6. DOI:10.1093/nar/25.21.4422; Korshunova Y., Maloney R.K., Lakey N. et al. Massively parallel bisulphite pyrosequencing reveals the molecular complexity of breast cancer-associated cytosine-methylation patterns obtained from tissue and serum DNA. Genome Res 2008;18(1):19–29. DOI:10.1101/gr.6883307; Egger G., Wielscher M., Pulverer W. et al. DNA methylation testing and marker validation using PCR: diagnostic applications. Exp Rev Mol Diagn 2012;12(1):75–92. DOI:10.1586/erm.11.90; Pharo H.D., Andresen K., Berg K.C.G. et al. A robust internal control for high-precision DNA methylation analyses by droplet digital PCR. Clin Epigenetics 2018;10:24. DOI:10.1186/s13148-018-0456-5; Botezatu I.V., Kondratova V.N., Shelepov V.P. et al. Asymmetric mutant-enriched polymerase chain reaction and quantitative DNA melting analysis of KRAS mutation in colorectal cancer. Anal Biochem 2020;590:1–9. DOI:10.1016/j.ab.2019.113517; Kondratova V.N., Botezatu I.V., Shelepov V.P. et al. SLAM-MS: mutation scanning of stem-loop amplicons with TaqMan probes by quantitative DNA melting analysis. Sci Rep 2020;10(1):5476. DOI:10.1038/s41598-020-62173-x; Bustin S.A., Benes V., Garson J.A. et al. The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments. Clin Chem 2009;55(4):611–22. DOI:10.1373/clinchem.2008.112797; Ботезату И.В., Кондратова В.Н., Строганова А.М. и др. Жидкостная биопсия колоректального рака: новый подход к оценке аберрантного метилирования гена SEPT9. Успехи молекулярной онкологии 2021;8(4):53–60. URL: https://umo.abvpress.ru/jour/article/view/389; Botezatu I.V., Kondratova V.N., Stroganova A.M. et al. Aberrant methylation scanning by quantitative DNA melting analysis with hybridization probes as exemplified by liquid biopsy of SEPT9 and HIST1H4F in colorectal cancer. Clinica Chimica Acta 2023;551:117591. DOI:10.1016/j.cca.2023.117591; Dong S.H., Li W., Wang L. et al. Histone-related genes are hypermethylated in lung cancer and hypermethylated HIST1H4F could serve as a pan-cancer biomarker. Cancer Res 2019;79(24):6101–12. DOI:10.1158/0008-5472.CAN-19-1019; Mazzara S., Rossi R.L., Grifantini R. et al. CombiROC: an interactive web tool for selecting accurate marker combinations of omics data. Sci Rep 2017;7:45477. DOI:10.1038/srep45477; Budczies J., Klauschen F., Sinn B.V. et al. Cutoff finder: a comprehensive and straightforward web application enabling rapid biomarker cutoff optimization. PLoS One 2012;7(12):e51862. DOI:10.1371/journal.pone.0051862; Huang Q., Liu Z., Liao Y. et al. Multiplex fluorescence melting curve analysis for mutation detection with dual-labeled, self-quenched probes. PLoS One 2011;6(4):e19206. DOI:10.1371/journal.pone.0019206; Wittwer C.T. High-resolution DNA melting analysis: advancements and limitations. Hum Mutat 2009;30(6):857–9. DOI:10.1002/humu.20951; Erali M., Wittwer C.T. High resolution melting analysis for gene scanning. Methods 2010;50(4):250–61. DOI:10.1016/j.ymeth.2010.01.013; Tse M.Y., Ashbury J.E., Zwingerman N. et al. A refined, rapid and reproducible high resolution melt (HRM)-based method suitable for quantification of global LINE-1 repetitive element methylation. BMC Res Notes 2011;4:565. DOI:10.1186/1756-0500-4-565; Stanzer S., Balic M., Strutz J. et al. Rapid and reliable detection of LINE-1 hypomethylation using high-resolution melting analysis. Clin Biochem 2010;43(18):1443–8. DOI:10.1016/j.clinbiochem.2010.09.013; Armbruster D.A., Pry T. Limit of blank, limit of detection and limit of quantitation. Clin Biochem Rev 2008;29(Suppl. 1):S49–52.; Antelo M., Balaguer F., Shia J. et al. A high degree of LINE-1 hypomethylation is a unique feature of early-onset colorectal cancer. PLoS One 2012;7(9):e45357. DOI:10.1371/journal.pone.0045357; Akimoto N., Zhao M., Ugai T. et al. Tumor long interspersed nucleotide element-1 (LINE-1) hypomethylation in relation to age of colorectal cancer diagnosis and prognosis. Cancers 2021;13(9):2016. DOI:10.3390/cancers13092016; Debernardi C., Libera L., Berrino E. et al. Evaluation of global and intragenic hypomethylation in colorectal adenomas improves patient stratification and colorectal cancer risk prediction. Clin Epigenetics 2021;13(1):154. DOI:10.1186/s13148-021-01135-0; Iacopetta B., Grieu F.F., Phillips M.F. et al. Methylation levels of LINE-1 repeats and CpG island loci are inversely related in normal colonic mucosa. Cancer Sci 2007;98(9):1454–60. DOI:10.1111/j.1349-7006.2007.00548.x; Ren J., Cui J.P., Luo M. et al. The prevalence and persistence of aberrant promoter DNA methylation in benzene-exposed Chinese workers. PLoS One 2019;14(8):e0220500. DOI:10.1371/journal.pone.0220500; Sahnane N., Magnoli F., Bernasconi B. et al. Aberrant DNA methylation profiles of inherited and sporadic colorectal cancer. Clin Epigenetics 2015;7:131. DOI:10.1186/s13148-015-0165-2; Stefanoli M., La R.S., Sahnane N. et al. Prognostic relevance of aberrant DNA methylation in g1 and g2 pancreatic neuroendocrine tumors. Neuroendocrinology 2014;100(1)26–34. DOI:10.1159/000365449; Ogino S., Kawasaki T., Nosho K. et al. LINE-1 hypomethylation is inversely associated with microsatellite instability and CpG island methylator phenotype in colorectal cancer. Int J Cancer 2008;122(12):2767–73. DOI:10.1002/ijc.23470; Yang A.S., Estécio M.R.H., Doshi K. et al. A simple method for estimating global DNA methylation using bisulfite PCR of repetitive DNA elements. Nucleic Acids Res 2004;32(3):e38-8. DOI:10.1093/nar/gnh032; Barchitta M., Quattrocchi A., Maugeri A. et al. LINE-1 hypomethylation in blood and tissue samples as an epigenetic marker for cancer risk: A systematic review and meta-analysis. PLoS One 2014;9(10):e109478. DOI:10.1371/journal.pone.0109478; https://umo.abvpress.ru/jour/article/view/679

  8. 8
  9. 9
  10. 10

    Source: Siberian journal of oncology; Том 22, № 3 (2023); 108-118 ; Сибирский онкологический журнал; Том 22, № 3 (2023); 108-118 ; 2312-3168 ; 1814-4861

    File Description: application/pdf

    Relation: https://www.siboncoj.ru/jour/article/view/2590/1118; Хухлаева Е.А., Коновалов А.Н., Пронин И.Н., Корниенко В.Н., Гаврюшин А.В. Нейрорадиология и принципы классификации опухолей ствола головного мозга. Медицинская визуализация. 2011; 6: 62-74.; Louis D.N., Perry A., Wesseling P., Brat D.J., Cree I.A., Figarella-Branger D., Hawkins C., Ng H.K., Pfister S.M., Reifenberger G., Soffietti R., von Deimling A., Ellison D.W. The 2021 WHO Classification of Tumors of the Central Nervous System: a summary. Neuro Oncol. 2021; 23(8): 1231-51. doi:10.1093/neuonc/noab106.; Диникина Ю.В., Белогурова М.Б. Особенности новой классификации опухолей центральной нервной системы ВОЗ 2021: взгляд клинициста. Российский журнал персонализированной медицины. 2022; 2(4): 77-90. doi:10.18705/2782-3806-2022-2-4-77-90.; Gianno F., Giovannoni I., Cafferata B., Diomedi-Camassei F., Minasi S., Barresi S., Buttarelli F.R., Alesi V., Cardoni A., Antonelli M., Puggioni C., Colafati G.S., Carai A., Vinci M., Mastronuzzi A., Miele E., Alaggio R., Giangaspero F., Rossi S. Paediatric-type diffuse high-grade gliomas in the 5th CNS WHO Classification. Pathologica. 2022; 114(6): 422-35. doi:10.32074/1591-951X-830.; Регентова О.С., Щербенко О.И. Современное состояние проблемы диагностики и лечения диффузно растущих глиом ствола мозга у детей и подростков. Вестник Российского научного центра рентгенорадиологии Минздрава России. 2019; 19(1): 95-130.; Hoffman L.M., Veldhuijzen van Zanten S.E.M., Colditz N., et al. Clinical, Radiologic, Pathologic, and Molecular Characteristics of LongTerm Survivors of Diffuse Intrinsic Pontine Glioma (DIPG): A Collaborative Report From the International and European Society for Pediatric Oncology DIPG Registries. J Clin Oncol. 2018; 36(19): 1963-72. doi:10.1200/JCO.2017.75.9308.; Veldhuijzen van Zanten S.E.M., Sewing A.C.P., van Lingen A., Hoekstra O.S., Wesseling P., Meel M.H., van Vuurden D.G., Kaspers G.J.L., Hulleman E., Bugiani M. Multiregional Tumor Drug-Uptake Imaging by PET and Microvascular Morphology in End-Stage Diffuse Intrinsic Pontine Glioma. J Nucl Med. 2018; 59(4): 612-5. doi:10.2967/jnumed.117.197897.; Lobon-Iglesias M.J., Santa-Maria Lopez V., Puerta Roldan P., Candela-Canto S., Ramos-Albiac M., Gomez-Chiari M., Puget S., Bolle S., Goumnerova L., Kieran M.W., Cruz O., Grill J., Morales La Madrid A. Tumor dissemination through surgical tracts in diffuse intrinsic pontine glioma. J Neurosurg Pediatr. 2018; 22(6): 678-83. doi:10.3171/2018.6.PEDS17658.; Hoffman L.M., DeWire M., Ryall S., Buczkowicz P., Leach J., Miles L., Ramani A., Brudno M., Kumar S.S., Drissi R., Dexheimer P., Salloum R., Chow L., Hummel T., Stevenson C., Lu Q.R., Jones B., Witte D., Aronow B., Hawkins C.E., Fouladi M. Spatial genomic heterogeneity in diffuse intrinsic pontine and midline high-grade glioma: implications for diagnostic biopsy and targeted therapeutics. Acta Neuropathol Commun. 2016; 4: 1. doi:10.1186/s40478-015-0269-0. Erratum in: Acta Neuropathol Commun. 2016; 4: 13.; Bronkhorst A.J., Ungerer V., Holdenrieder S. The emerging role of cell-free DNA as a molecular marker for cancer management. Biomol Detect Quantif. 2019; 17. doi:10.1016/j.bdq.2019.100087.; Lu V.M., Power E.A., Zhang L., Daniels D.J. Unlocking the translational potential of circulating nucleosomes for liquid biopsy in diffuse intrinsic pontine glioma. Biomark Med. 2019; 13(8): 597-600. doi:10.2217/bmm-2019-0139.; Garnier D., Jabado N., Rak J. Extracellular vesicles as prospective carriers of oncogenic protein signatures in adult and paediatric brain tumours. Proteomics. 2013; 13(10-11): 1595-607. doi:10.1002/pmic.201200360.; Nobre L., Zapotocky M., Johnson M., Wasserman J., Abla O., Whitlock J., Tabori U., Hawkins C. Abstract 2226: Validation of a liquid biopsy tool to identify point mutations in pediatric brain tumor patients. Cancer Res. 2019; 79: 2226. doi:10.1158/1538-7445.AM2019-2226.; Назарян Д., Друй А., Ясько Л., Папуша Л., Новичкова Г. Жидкостные биопсии в детской нейроонкологии: в преддверии возможностей тераностики. Вопросы гематологии/онкологии и иммунопатологии в педиатрии. 2018; 17(1): 133-5. doi:10.24287/17261708-2018-17-1-133-135.; Lapin D.H., Tsoli M., Ziegler D.S. Genomic Insights into Diffuse Intrinsic Pontine Glioma. Front Oncol. 2017; 7: 57. doi:10.3389/fonc.2017.00057.; Dufour C., Vasseur R., PerbetR., LeblondP, VinchonM., Reyns N., Touzet G., Maurage C.A., Fabienne E., Florence R. DIPG-44. Molecular And Chromosomal Characterization Of A Unique Series Of Diffuse Midline Gliomas In Children And Young Adults. Neuro Oncol. 2018; 20s2: 57-8. doi:10.1093/neuonc/noy059.137.; Wu G., Broniscer A., McEachron TA., Lu C., Paugh B.S.,Becksfort J., Qu C., Ding L., Huether R., Parker M., Zhang J., Gajjar A., Dyer M.A., Mullighan C.G., Gilbertson R.J., Mardis E.R., Wilson R.K., Downing J.R., Ellison D.W., Zhang J., Baker S.J.; St. .Jude Childrens Research Hospital Washington University Pediatric Cancer Genome Project. Somatic histone H3 alterations in pediatric diffuse intrinsic pontine gliomas and nonbrainstem glioblastomas. Nat Genet. 2012; 44(3): 251-3. doi:10.1038/ng.1102.; Lewis P.W., Muller M.M., Koleisky M.S., Cordero F., Lin S., Banaszynski L.A., Garcia B.A., Muir T.W., Becher O.J., Allis C.D. Inhibition of PRC2 activity by a gain-of-function H3 mutation found in pediatric glioblastoma. Science. 2013; 340(6134): 857-61. doi:10.1126/science.1232245.; Mohammad F., Helin K. Oncohistones: drivers of pediatric cancers. Genes Dev. 2017; 31(23-24): 2313-24. doi:10.1101/gad.309013.117.; Salloum R., McConechy M.K., Mikael L.G., Fuller C., Drissi R., DeWire M., Nikbakht H., De Jay N., Yang X., Boue D., Chow L.M.L., Finlay J.L., Gayden T., Karamchandani J., Hummel T.R., Olshefski R., Osorio D.S., Stevenson C., Kleinman C.L., Majewski J., Fouladi M., Jabado N. Characterizing temporal genomic heterogeneity in pediatric high-grade gliomas. Acta Neuropathol Commun. 2017; 5(1): 78. doi:10.1186/s40478-017-0479-8.; Park Y., An P., Ding D., Eberhart C.G., Raabe E.H. DIPG-34. A Human Neural Stem Cell Dipg Model Identifies The Relative Contribution Of Different Oncogenic Elements To Invasive Malignant Transformation. Neuro Oncol. 2018; 20 (s2): 55-6. doi:10.1093/neuonc/noy059.127.; Silveira A.B., Kasper L.H., Fan Y., Jin H., Wu G., Shaw T.I., Zhu X., Larson J.D., Easton J., Shao Y., Yergeau D.A., Rosencrance C., Boggs K., Rusch M.C., Ding L., Zhang J., Finkelstein D., Noyes R.M., Russell B.L., Xu B., Broniscer A., Wetmore C., Pounds S.B., Ellison D.W., Zhang J., Baker S.J. H3.3 K27M depletion increases differentiation and extends latency of diffuse intrinsic pontine glioma growth in vivo. Acta Neuropathol. 2019; 137(4): 637-55. doi:10.1007/s00401-019-01975-4. Erratum in: Acta Neuropathol. 2019; 137(6): 1021.; Chan K.M., Fang D., Gan H., Hashizume R., Yu C., SchroederM., Gupta N., Mueller S., James C.D., Jenkins R., Sarkaria J., Zhang Z. The histone H3.3K27M mutation in pediatric glioma reprograms H3K27 methylation and gene expression. Genes Dev. 2013; 27(9): 985-90. doi:10.1101/gad.217778.113.; Louis D.N., Giannini C., Capper D., Paulus W., Figarella-Branger D., Lopes M.B., Batchelor T.T., Cairncross J.G., van den Bent M., Wick W., Wesseling P. cIMPACT-NOW update 2: diagnostic clarifications for diffuse midline glioma, H3 K27M-mutant and diffuse astrocytoma/anaplastic astrocytoma, IDH-mutant. Acta Neuropathol. 2018; 135(4): 639-42. doi:10.1007/s00401-018-1826-y.; Han H.J., Jain P., Resnick A.C. Shared ACVR1 mutations in FOP and DIPG: Opportunities and challenges in extending biological and clinical implications across rare diseases. Bone. 2018; 109: 91-100. doi:10.1016/j.bone.2017.08.001.; Carvalho D., Taylor K.R., Olaciregui N.G., Molinari V, Clarke M., Mackay A., Ruddle R., Henley A., Valenti M., Hayes A., Brandon A.H., Eccles S.A., Raynaud F., Boudhar A., Monje M., Popov S., Moore A.S., Mora J., Cruz O., Vinci M., Brennan P.E., Bullock A.N., Carcaboso A.M., Jones C. ALK2 inhibitors display beneficial effects in preclinical models of ACVR1 mutant diffuse intrinsic pontine glioma. Commun Biol. 2019; 2: 156. doi:10.1038/s42003-019-0420-8.; Saratsis A.M., Yadavilli S., Magge S., Rood B.R., Perez J., Hill D.A., Hwang E., Kilburn L., Packer R.J., Nazarian J. Insights into pediatric diffuse intrinsic pontine glioma through proteomic analysis of cerebrospinal fluid. Neuro Oncol. 2012; 14(5): 547-60. doi:10.1093/neuonc/nos067.; WerbrouckC., Evangelista C.C.S., Lobon-IglesiasMJ., Barret E., Le Teuff G., Merlevede J., Brusini R., Kergrohen T., Mondini M., Bolle S., Varlet P., Beccaria K., Boddaert N., Puget S., Grill J., Debily M.A., Castel D. TP53 Pathway Alterations Drive Radioresistance in Diffuse Intrinsic Pontine Gliomas (DIPG). Clin Cancer Res. 2019; 25(22): 6788-6800. doi:10.1158/1078-0432.CCR-19-0126.; Paugh B.S., Broniscer A., Qu C., Miller C.P., Zhang J., Tatevossian R.G., Olson J.M., Geyer J.R., Chi S.N., da Silva N.S., Onar-Thomas A., Baker J.N., Gajjar A., Ellison D.W., Baker S.J. Genome-wide analyses identify recurrent amplifications of receptor tyrosine kinases and cell-cycle regulatory genes in diffuse intrinsic pontine glioma. J Clin Oncol. 2011; 29(30): 3999-4006. doi:10.1200/JCO.2011.35.5677.; Paugh B.S., Zhu X., Qu C., Endersby R., Diaz A.K., Zhang J., Bax D.A., Carvalho D., Reis R.M., Onar-Thomas A., Broniscer A., Wetmore C., Zhang J., Jones C., Ellison D.W., Baker S.J. Novel oncogenic PDGFRA mutations in pediatric high-grade gliomas. Cancer Res. 2013; 73(20): 6219-29. doi:10.1158/0008-5472.CAN-13-1491.; Akamandisa M.P., Nie K., Nahta R., Hambardzumyan D., Castel-lino R.C. Inhibition of mutant PPM1D enhances DNA damage response and growth suppressive effects of ionizing radiation in diffuse intrinsic pontine glioma. Neuro Oncol. 2019; 21(6): 786-99. doi:10.1093/neuonc/noz053.; Chi A.S., Tarapore R.S., Hall M.D., Shonka N., Gardner S., Umemura Y., Sumrall A., Khatib Z., Mueller S., Kline C., Zaky W., Khatua S., Weathers S.P., Odia Y., Niazi T.N., Daghistani D., Cherrick I., Korones D., Karajannis M.A., Kong X.T., Minturn J., Waanders A., Arillaga-Romany I., Batchelor T., Wen P.Y., Merdinger K., Schalop L., Stogniew M., Allen J.E., Oster W., Mehta M.P. Pediatric and adult H3 K27M-mutant diffuse midline glioma treated with the selective DRD2 antagonist ONC201. J Neurooncol. 2019; 145(1): 97-105. doi:10.1007/s11060-019-03271-3.; Mount C.W., Majzner R.G., Sundaresh S., Arnold E.P., Kadapa-kkam M., Haile S., Labanieh L., Hulleman E., Woo P.J., Rietberg S.P., Vogel H., Monje M., Mackall C.L. Potent antitumor efficacy of anti-GD2 CAR T cells in H3-K27M+ diffuse midline gliomas. Nat Med. 2018; 24(5): 572-9. doi:10.1038/s41591-018-0006-x.; Wingerter A., El Malki K., Sandhoff R., Seidmann L., Wagner D.C., Lehmann N., Vewinger N., Frauenknecht K.B.M., Sommer C.J., Traub F., Kindler T., Russo A., Otto H., Lollert A., Staatz G., Roth L., Paret C., Faber J. Exploiting Gangliosides for the Therapy of Ewing's Sarcoma and H3K27M-Mutant Diffuse Midline Glioma. Cancers (Basel). 2021; 13(3): 520. doi:10.3390/cancers13030520.; Cobb D.A., de Rossi J., Liu L., An E., Lee D.W. Targeting of the alphav beta3 integrin complex by CAR-T cells leads to rapid regression of diffuse intrinsic pontine glioma and glioblastoma. J Immunother Cancer. 2022; 10(2). doi:10.1136/jitc-2021-003816.; Chung C., Sweha S.R., Pratt D., Tamrazi B., Panwalkar P., Banda A., Bayliss J., Hawes D., Yang F., Lee H.J., Shan M., Cieslik M., Qin T., Werner C.K., Wahl D.R., Lyssiotis C.A., Bian Z., Shotwell J.B., Yadav V.N., Koschmann C., Chinnaiyan AM., Bluml S., Judkins A.R., Venneti S. Integrated Metabolic and Epigenomic Reprograming by H3K27M Mutations in Diffuse Intrinsic Pontine Gliomas. Cancer Cell. 2020; 38(3): 334-49. doi:10.1016/j.ccell.2020.07.008.; Duchatel R.J., Mannan A., Woldu A.S., Hawtrey T., Hindley P.A., Douglas A.M., Jackson E.R., Findlay I.J., Germon Z.P., Staudt D., Kearney P.S., Smith N.D., Hindley K.E., Cain J.E., Andre N., La Madrid AM., Nixon B., De Iuliis G.N., Nazarian J., Irish K., Alvaro F., Eisenstat D.D., Beck A., Vitanza N.A., Mueller S., Morris J.C., Dun M.D. Preclinical and clinical evaluation of German-sourced ONC201 for the treatment of H3K27M-mutant diffuse intrinsic pontine glioma. Neurooncol Adv. 2021; 3(1). doi:10.1093/noajnl/vdab169.; Mackay A., Molinari V., Carvalho D., Pemberton H., Temelso S., Burford A., Clarke M., Fofana M., Boult J., Izquierdo E., Taylor K.,Bjerke L., Salom J.F., Kessler K., Rogers R., Chandler C., Zebian B., Martin A., Stapleton S., Hettige S., Marshall L., Carceller F., Mandeville H., Vaidya S., Bridges L., Al-Sarraj S., Pears J., Mastronuzzi A., Carai A., del Bufalo F., de Torres C., Sunol M., Cruz O., Mora J., Moore A., Robinson S., Lord C., Carcaboso A.M., Vinci M., Jones C. HGG-23. drug screening linked to molecular profiling identifies novel dependencies in patient-derived primary cultures of paediatric high grade glioma and dipg. Neuro Oncol. 2018; 20(S2): 93-4. doi:10.1093/neuonc/noy059.295.; Fons N.R., Sundaram R.K., Breuer G.A., Peng S., McLean R.L., Kalathil A.N., Schmidt M.S., Carvalho D.M., Mackay A., Jones C., Car-caboso A.M., Nazarian J., BerensM.E., Brenner C., Bindra R.S. PPM1D mutations silence NAPRT gene expression and confer NAMPT inhibitor sensitivity in glioma. Nat Commun. 2019; 10(1): 3790. doi:10.1038/s41467-019-11732-6.; Carvalho D., Olaciregui N.G., Ruddle R., Donovan A., Pal A., Raynaud F., Richardson P.J., Carcaboso A.M., Jones C. DIPG-29. Pre-clinical efficacy of combined acvr1 and PI3K/mTOR inhibition in diffuse intrinsic pontine glioma (DIPG). Neuro Oncol. 2018; 20: 54-5. doi:10.1093/neuonc/noy059.122.; Panditharatna E., Kilburn L.B., Aboian M.S., Kambhampati M., Gordish-Dressman H., Magge S.N., Gupta N., Myseros J.S., Hwang E.I., Kline C., Crawford J.R., Warren K.E., Cha S., Liang W.S., Berens M.E., Packer R.J., Resnick A.C., Prados M., Mueller S., Nazarian J. Clinically Relevant and Minimally Invasive Tumor Surveillance of Pediatric Diffuse Midline Gliomas Using Patient-Derived Liquid Biopsy. Clin Cancer Res. 2018; 24(23): 5850-9. doi:10.1158/1078-0432.CCR-18-1345.; Huang T.Y., Piunti A., Lulla R.R., Qi J., Horbinski C.M., Tomita T., James C.D., Shilatifard A., Saratsis A.M. Detection of Histone H3 mutations in cerebrospinal fluid-derived tumor DNA from children with diffuse midline glioma. Acta Neuropathol Commun. 2017; 5(1): 28. doi:10.1186/s40478-017-0436-6.; Bruzek AK., Tunkle L., Stallard S., Thamilselvan V, Qin T., Wolfe I., Mody R., Muraszko K.L., Robertson P.L., Maher C.O., Garton H.J.L., Koschmann C. DIPG-06. rapid, ultra-deep sequencing of pediatric DIPG from cerebrospinal fluid using a novel hand-held electronic dna analysis platform. Neuro Oncol. 2019; 21s2: 69. doi:10.1093/neuonc/noz036.027.; Pan C., Diplas B.H., Chen X., Wu Y., Xiao X., Jiang L., Geng Y., Xu C., Sun Y., Zhang P., Wu W., Wang Y., Wu Z., Zhang J., Jiao Y., Yan H., Zhang L. Molecular profiling of tumors of the brainstem by sequencing of CSF-derived circulating tumor DNA. Acta Neuropathol. 2019; 137(2): 297-306. doi:10.1007/s00401-018-1936-6.; Cantor E., Wierzbicki K., Tarapore R.S., Ravi K., Thomas C., CartaxoR., Band Yadav V, RavindranR., BruzekA.K., Wadden J., .John V, May Babila C., Cummings J.R., Rahman Kawakibi A., Ji S., Ramos J., Paul A., Walling D., Leonard M., Robertson P., Franson A., Mody R., Garton H.J.L., Venneti S., Odia Y., Kline C., Vitanza N.A., Khatua S., Mueller S., Allen J.E., Gardner S.L., Koschmann C. Serial H3K27M cell-free tumor DNA (cf-tDNA) tracking predicts ONC201 treatment response and progression in diffuse midline glioma. Neuro Oncol. 2022; 24(8): 1366-74. doi:10.1093/neuonc/noac030.; Регентова О.С., Щербенко О.И., Джикия Е.Л., Захаренко М.В., Сенчукова А.Л., Измайлов Т.Р., Кулинич Т.М., Боженко В.К. Содержание и динамика в процессе лечения некоторых молекулярно-генетических маркеров в плазме крови у больных глиальными опухолями мозга по данным «жидкостной биопсии». Вестник Российского научного центра рентгенорадиологии Минздрава России. 2020; 20(2): 117-28.; Wadden J., Ravi K., John V., Babila C.M., Koschmann C. Cell-Free Tumor DNA (cf-tDNA) Liquid Biopsy: Current Methods and Use in Brain Tumor Immunotherapy. Front Immunol. 2022; 13. doi:10.3389/fimmu.2022.882452.; Zaytseva M., Usman N., Salnikova E., Sanakoeva A., Valiakhmetova A., Chervova A., PapushaL., Novichkova G., DruyA. Methodological Challenges of Digital PCR Detection of the Histone H3 K27M Somatic Variant in Cerebrospinal Fluid. Pathol Oncol Res. 2022; 28. doi:10.3389/pore.2022.1610024.; Ianno M.F., Biassoni V., Schiavello E., Carenzo A., Boschetti L., Gandola L., Diletto B., Marchesi E., Vegetti C., Molla A., Kramm C.M., van Vuurden D.G., Gasparini P., Gianno F., Giangaspero F., Modena P., Bison B., Anichini A., Vennarini S., Pignoli E., Massimino M., De Cecco L. A microRNA Prognostic Signature in Patients with Diffuse Intrinsic Pontine Gliomas through Non-Invasive Liquid Biopsy. Cancers (Basel). 2022; 14(17): 4307. doi:10.3390/cancers14174307.; Pericoli G., Galardi A., Lisa Petrilli L., Colletti M., Ferretti R., Paolini A., Masotti A., Levi Mortera S., Petrini S., de Billy E., Pascucci L., Court W., Cacchione A., Carai A., Camassei F.D., Moore A., Carcaboso AM., .Jones C., Mastronuzzi A., LocatelliF., Di Giannatale A., Vinci M. PDTM-09. diffuse intrinsic pontine glioma and pediatric glioblastoma derived-exosomes have specific oncogenic signatures. Neuro Oncol. 2018; 20 s6: 205. doi:10.1093/neuonc/noy148.851.; Petersen E.V., Chudakova D.A., Skorova E.Y., Anikin V., Reshetov I.V., Mynbaev O.A. The Extracellular Matrix-Derived Biomarkers for Diagnosis, Prognosis, and Personalized Therapy of Malignant Tumors. Front Oncol. 2020; 10. doi:10.3389/fonc.2020.575569.; Li Z., Langhans S.A. In Vivo and Ex Vivo Pediatric Brain Tumor Models: An Overview. Front Oncol. 2021; 11. doi:10.3389/fonc.2021.620831.; RotaCM., Brown A.T., Addleson E., Ives C., Trumper E., Pelton K., Teh W.P., Schniederjan M.J., Castellino R.C., Buhrlage S., Lauffenburger D.A., Ligon K.L., Griffith L.G., Segal R.A. Synthetic extracellular matrices and astrocytes provide a supportive microenvironment for the cultivation and investigation of primary pediatric gliomas. Neurooncol Adv. 2022; 4(1). doi:10.1093/noajnl/vdac049.; Kholosy M .W., Derieppe M., van den Ham F., Ober K., Su Y., Custers L., Schild L., van Zogchel M. J. L., M Wellens L., R Ariese H., Szanto C.L., Wienke J., Dierselhuis M.P., van Vuurden D., Dolman E.M., Molenaar J.J. Neuroblastoma and DIPG Organoid Coculture System for Personalized Assessment of Novel Anticancer Immunotherapies. J Pers Med. 2021; 11(9): 869. doi:10.3390/jpm11090869.; Carvalho D.M., Temelso S., Mackay A., Pemberton H.N., Rogers R., Kessler K., Izquierdo E., Bjerke L., Salom J.F., Clarke M., Grabovska Y., Burford A., Olaciregui N.G., Boult J.K.R., Molinari V., Fofana M., Proszek P., Potente E.F., Taylor K.R., Chandler C., Zebian B., Bhangoo R., Martin A.J., Dabbous B., Stapleton S., Hettige S., Marshall L.V., CarcellerF., MandevilleH.C., Vaidya S.J., Al-Sarraj S., Bridges L.R., Johnston R., Cryan J., Farrell M., Crimmins D., Caird J., Pears J., Pericoli G., Miele E., Mastronuzzi A., Locatelli F., Carai A., Robinson S.P., Hubank M., MonjeM., Moore A.S., Hassall T.E.G., Carcaboso A.M., Lord C.J., Vinci M., Jones C. Drug screening linked to molecular profiling identifies novel dependencies in patient-derived primary cultures of paediatric high grade glioma and DIPG. bioRxiv. 2020. doi:10.1101/2020.12.29.424674.; Kozhushko N., Jedrysik M., Fillmore H. OTME-22. Bioinformatic evaluation of ECM molecules and angiogenic associate genes in diffuse midline glioma (DMG): mapping the tumour microenvironment. Neurooncol Adv. 2021; 3(s2): 18. doi:10.1093/noajnl/vdab070.073.; Jedrysik M., Loveson K.L., Kozusko N., Singh P., Allison K., Fillmore H.L. OPTC-4. Bioinformatic analysis of COLXIa1 gene expression and its alternative splicing regulation in Paediatric Diffuse Intrinsic Pontine Gliomas (DIPGs). Neurooncol Adv. 2021; 3(S2): 6. doi:10.1093/noajnl/vdab070.025.; De T., Goyal S., Balachander G., Chatterjee K., Kumar P., Babu K G., Rangarajan A. A Novel Ex Vivo System Using 3D Polymer Scaffold to Culture Circulating Tumor Cells from Breast Cancer Patients Exhibits Dynamic E-M Phenotypes. J Clin Med. 2019; 8(9): 1473. doi:10.3390/jcm8091473.; Sherman H., Rossi A.E. A Novel Three-Dimensional Glioma Blood-Brain Barrier Model for High-Throughput Testing of Tumoricidal Capability. Front Oncol. 2019; 9: 351. doi:10.3389/fonc.2019.00351.; https://www.siboncoj.ru/jour/article/view/2590

  11. 11
  12. 12

    Source: Siberian journal of oncology; Том 21, № 1 (2022); 115-121 ; Сибирский онкологический журнал; Том 21, № 1 (2022); 115-121 ; 2312-3168 ; 1814-4861 ; 10.21294/1814-4861-2022-21-1

    File Description: application/pdf

    Relation: https://www.siboncoj.ru/jour/article/view/2035/957; Corrales L., Scilla K., Caglevic C., Miller K., Oliveira J., Rolfo C. Immunotherapy in Lung Cancer: A New Age in Cancer Treatment. Adv Exp Med Biol. 2018; 995: 65–95. doi:10.1007/978-3-030-02505-2_3.; Antonia S.J., Villegas A., Daniel D., Vicente D., Murakami S., Hui R., Kurata T., Chiappori A., Lee K.H., de Wit M., Cho B.C., Bourhaba M., Quantin X., Tokito T., Mekhail T., Planchard D., Kim Y.C., Karapetis C.S., Hiret S., Ostoros G., Kubota K., Gray J.E., Paz-Ares L., de Castro Carpeño J., Faivre-Finn C., Reck M., Vansteenkiste J., Spigel D.R., Wadsworth C., Melillo G., Taboada M., Dennis P.A., Özgüroğlu M.; PACIFIC Investigators. Overall Survival with Durvalumab after Chemoradiotherapy in Stage III NSCLC. N Engl J Med. 2018; 379(24): 2342–50. doi:10.1056/NEJMoa1809697.; Berry M.F., Worni M., Pietrobon R., D'Amico T.A., Akushevich I. Variability in the treatment of elderly patients with stage IIIA (N2) nonsmall- cell lung cancer. J Thorac Oncol. 2013; 8(6): 744–52. doi:10.1097/JTO.0b013e31828916aa.; Liu C., Zheng S., Jin R., Wang X., Wang F., Zang R., Xu H., Lu Z., Huang J., Lei Y., Mao S., Wang Y., Feng X., Sun N., Wang Y., He J. The superior efficacy of anti-PD-1/PD-L1 immunotherapy in KRAS-mutant non-small cell lung cancer that correlates with an inflammatory phenotype and increased immunogenicity. Cancer Lett. 2020; 470: 95–105. doi:10.1016/j.canlet.2019.10.027.; Ricciuti B., Leonardi G.C., Metro G., Grignani F., Paglialunga L., Bellezza G., Baglivo S., Mencaroni C., Baldi A., Zicari D., Crinò L. Targeting the KRAS variant for treatment of non-small cell lung cancer: potential therapeutic applications. Expert Rev Respir Med. 2016; 10(1): 53–68. doi:10.1586/17476348.2016.1115349.; Jancík S., Drábek J., Radzioch D., Hajdúch M. Clinical relevance of KRAS in human cancers. J Biomed Biotechnol. 2010: 150960. doi:10.1155/2010/150960.; Riely G.J., Marks J., Pao W. KRAS mutations in non-small cell lung cancer. Proc Am Thorac Soc. 2009; 6(2): 201–5. doi:10.1513/pats.200809-107LC.; Castellano E., Downward J. RAS Interaction with PI3K: More Than Just Another Effector Pathway. Genes Cancer. 2011; 2(3): 261–74. doi:10.1177/1947601911408079.; Coelho M.A., de Carné Trécesson S., Rana S., Zecchin D., Moore C., Molina-Arcas M., East P., Spencer-Dene B., Nye E., Barnouin K., Snijders A.P., Lai W.S., Blackshear P.J., Downward J. Oncogenic RAS Signaling Promotes Tumor Immunoresistance by Stabilizing PD-L1 mRNA. Immunity. 2017; 47(6): 1083–99. doi:10.1016/j.immuni.2017.11.016.; Borghaei H., Paz-Ares L., Horn L., Spigel D.R., Steins M., Ready N.E., Chow L.Q., Vokes E.E., Felip E., Holgado E., Barlesi F., Kohlhäufl M., Arrieta O., Burgio M.A., Fayette J., Lena H., Poddubskaya E., Gerber D.E., Gettinger S.N., Rudin C.M., Rizvi N., Crinò L., Blumenschein G.R. Jr, Antonia S.J., Dorange C., Harbison C.T., Graf Finckenstein F., Brahmer J.R. Nivolumab versus Docetaxel in Advanced Nonsquamous Non-Small-Cell Lung Cancer. N Engl J Med. 2015; 373(17): 1627–39. doi:10.1056/NEJMoa1507643.; Ternyila D. Pembrolizumab Boosts Survival in Metastatic Nonsquamous NSCLC Regardless of KRAS Mutations. Target oncology. 2019.; Lee C.K., Man J., Lord S., Cooper W., Links M., Gebski V., Herbst R.S., Gralla R.J., Mok T., Yang J.C. Clinical and Molecular Characteristics Associated With Survival Among Patients Treated With Checkpoint Inhibitors for Advanced Non-Small Cell Lung Carcinoma: A Systematic Review and Meta-analysis. JAMA Oncol. 2018; 4(2): 210–6. doi:10.1001/jamaoncol.2017.4427.; Kim J.H., Kim H.S., Kim B.J. Prognostic value of KRAS mutation in advanced non-small-cell lung cancer treated with immune checkpoint inhibitors: A meta-analysis and review. Oncotarget. 2017; 8(29): 48248–52. doi:10.18632/oncotarget.17594.; Song P., Yang D., Wang H., Cui X., Si X., Zhang X., Zhang L. Relationship between the efficacy of immunotherapy and characteristics of specific tumor mutation genes in non-small cell lung cancer patients. Thorac Cancer. 2020; 11(6): 1647–54. doi:10.1111/1759-7714.13447.; Dong Z.Y., Zhong W.Z., Zhang X.C., Su J., Xie Z., Liu S.Y., Tu H.Y., Chen H.J., Sun Y.L., Zhou Q., Yang J.J., Yang X.N., Lin J.X., Yan H.H., Zhai H.R., Yan L.X., Liao R.Q., Wu S.P., Wu Y.L. Potential Predictive Value of TP53 and KRAS Mutation Status for Response to PD-1 Blockade Immunotherapy in Lung Adenocarcinoma. Clin Cancer Res. 2017; 23(12): 3012–24. doi:10.1158/1078-0432.CCR-16-2554.; Román M., Baraibar I., López I., Nadal E., Rolfo C., Vicent S., Gil-Bazo I. KRAS oncogene in non-small cell lung cancer: clinical perspectives on the treatment of an old target. Mol Cancer. 2018; 17(1): 33. doi:10.1186/s12943-018-0789-x.; Skoulidis F., Byers L.A., Diao L., Papadimitrakopoulou V.A., Tong P., Izzo J., Behrens C., Kadara H., Parra E.R., Canales J.R., Zhang J., Giri U., Gudikote J., Cortez M.A., Yang C., Fan Y., Peyton M., Girard L., Coombes K.R., Toniatti C., Heffernan T.P., Choi M., Frampton G.M., Miller V., Weinstein J.N., Herbst R.S., Wong K.K., Zhang J., Sharma P., Mills G.B., Hong W.K., Minna J.D., Allison J.P., Futreal A., Wang J., Wistuba I.I., Heymach J.V. Co-occurring genomic alterations define major subsets of KRAS-mutant lung adenocarcinoma with distinct biology, immune profiles, and therapeutic vulnerabilities. Cancer Discov. 2015; 5(8): 860–77. doi:10.1158/2159-8290.CD-14-1236.; Aredo J.V., Padda S.K., Kunder C.A., Han S.S., Neal J.W., Shrager J.B., Wakelee H.A. Impact of KRAS mutation subtype and concurrent pathogenic mutations on non-small cell lung cancer outcomes. Lung Cancer. 2019; 133: 144–50. doi:10.1016/j.lungcan.2019.05.015.; Tao L., Sun J., Mekhail T., Meng L., Fang Ch., Du Yu., Socinski M.A., Allen A., Rzeszutko B.L., Chang C.C. The prognostic value of KRAS mutation subtypes and PD-L1 expression in patients with lung adenocarcinoma. Clin Lung Cancer. 2021 Jul; 22(4): e506-e511. doi:10.1016/j.cllc.2020.07.004.; Scheffler M., Ihle M.A., Hein R., Merkelbach-Bruse S., Scheel A.H., Siemanowski J., Brägelmann J., Kron A., Abedpour N., Ueckeroth F., Schüller M., Koleczko S., Michels S., Fassunke J., Pasternack H., Heydt C., Serke M., Fischer R., Schulte W., Gerigk U., Nogova L., Ko Y.D., Abdulla D.S.Y., Riedel R., Kambartel K.O., Lorenz J., Sauerland I., Randerath W., Kaminsky B., Hagmeyer L., Grohé C., Eisert A., Frank R., Gogl L., Schaepers C., Holzem A., Hellmich M., Thomas R.K., Peifer M., Sos M.L., Büttner R., Wolf J. K-ras Mutation Subtypes in NSCLC and Associated Co-occuring Mutations in Other Oncogenic Pathways. J Thorac Oncol. 2019; 14(4): 606–16. doi:10.1016/j.jtho.2018.12.013.; Adderley H., Blackhall F.H., Lindsay C.R. KRAS-mutant non-small cell lung cancer: Converging small molecules and immune checkpoint inhibition. EBioMedicine. 2019; 41: 711–16. doi:10.1016/j.ebiom.2019.02.049.; Skoulidis F., Goldberg M.E., Greenawalt D.M., Hellmann M.D., Awad M.M., Gainor J.F., Schrock A.B., Hartmaier R.J., Trabucco S.E., Gay L., Ali S.M., Elvin J.A., Singal G., Ross J.S., Fabrizio D., Szabo P.M., Chang H., Sasson A., Srinivasan S., Kirov S., Szustakowski J., Vitazka P., Edwards R., Bufill J.A., Sharma N., Ou S.I., Peled N., Spigel D.R., Rizvi H., Aguilar E.J., Carter B.W., Erasmus J., Halpenny D.F., Plodkowski A.J., Long N.M., Nishino M., Denning W.L., Galan-Cobo A., Hamdi H., Hirz T., Tong P., Wang J., Rodriguez-Canales J., Villalobos P.A., Parra E.R., Kalhor N., Sholl L.M., Sauter J.L., Jungbluth A.A., Mino-Kenudson M., Azimi R., Elamin Y.Y., Zhang J., Leonardi G.C., Jiang F., Wong K.K., Lee J.J., Papadimitrakopoulou V.A., Wistuba I.I., Miller V.A., Frampton G.M., Wolchok J.D., Shaw A.T., Jänne P.A., Stephens P.J., Rudin C.M., Geese W.J., Albacker L.A., Heymach J.V. STK11/LKB1 Mutations and PD-1 Inhibitor Resistance in KRAS-Mutant Lung Adenocarcinoma. Cancer Discov. 2018; 8(7): 822–35. doi:10.1158/2159-8290.CD-18-0099.; Skoulidis F., Arbour K.C., Hellmann M.D., Patil P.D., Marmarelis M.E., Awad M.M., Murray J.Ch., Hellyer J., Gainor J.F., Dimou A., Bestvina Ch.M., Shu C.A., Riess J.W., Blakely C.M., Pecot Ch.V., Mezquita L., Tabbò F., Scheffler M., Papadimitrakopoulou V., Heymach J. Association of STK11/LKB1 genomic alterations with lack of benefit from the addition of pembrolizumab to platinum doublet chemotherapy in non-squamous non-small cell lung cancer. J Clin Oncol. 2019; 37: 102. doi:10.1200/JCO.2019.37.15_suppl.102.; Arbour K.C., Jordan E., Kim H.R., Dienstag J., Yu H.A., Sanchez- Vega F., Lito P., Berger M., Solit D.B., Hellmann M., Kris M.G., Rudin C.M., Ni A., Arcila M., Ladanyi M., Riely G.J. Effects of Co-occurring Genomic Alterations on Outcomes in Patients with KRAS-Mutant Non-Small Cell Lung Cancer. Clin Cancer Res. 2018; 24(2): 334–40. doi:10.1158/1078-0432.CCR-17-1841.; Sacher A.G., Paweletz C., Dahlberg S.E., Alden R.S., O’Connell A., Feeney N., Mach S.L., Jänne P.A., Oxnard G.R. Prospective validation of rapid plasma genotyping as a sensitive and specific tool for guiding lung cancer care. JAMA Oncol. 2016; 2(8): 1014–22. doi:10.1001/jamaoncol.2016.0173.; Marabese M., Ganzinelli M., Garassino M.C., Shepherd F.A., Piva S., Caiola E., Macerelli M., Bettini A., Lauricella C., Floriani I., Farina G., Longo F., Bonomi L., Fabbri M.A., Veronese S., Marsoni S., Broggini M., Rulli E. KRAS mutations affect prognosis of non-small-cell lung cancer patients treated with first-line platinum containing chemotherapy. Oncotarget. 2015; 20; 6(32): 34014–22. doi:10.18632/oncotarget.5607.; Svaton M., Fiala O., Pesek M., Bortlicek Z., Minarik M., Benesova L., Topolcan O. The Prognostic Role of KRAS Mutation in Patients with Advanced NSCLC Treated with Second- or Third-line Chemotherapy. Anticancer Res. 2016; 36(3): 1077–82.; Rolfo C., Mack P.C., Scagliotti G.V., Baas P., Barlesi F., Bivona T.G., Herbst R.S., Mok T.S., Peled N., Pirker R., Raez L.E., Reck M., Riess J.W., Sequist L.V., Shepherd F.A., Sholl L.M., Tan D.S.W., Wakelee H.A., Wistuba I.I., Wynes M.W., Carbone D.P., Hirsch F.R., Gandara D.R. Liquid Biopsy for Advanced Non-Small Cell Lung Cancer (NSCLC): A Statement Paper from the IASLC. J Thorac Oncol. 2018; 13(9): 1248–68. doi:10.1016/j.jtho.2018.05.030.; Poole J.C., Wu S.F., Lu T.T., Vibat C.R.T., Pham A., Samuelsz E., Patel M., Chen J., Daher T., Singh V.M., Arnold L.J. Analytical validation of the Target Selector ctDNA platform featuring single copy detection sensitivity for clinically actionable EGFR, BRAF, and KRAS mutations. PLoS One. 2019; 14(10). doi:10.1371/journal.pone.0223112.; https://www.siboncoj.ru/jour/article/view/2035

  13. 13
  14. 14

    Source: Сборник статей

    File Description: application/pdf

    Relation: Актуальные вопросы современной медицинской науки и здравоохранения: Материалы VI Международной научно-практической конференции молодых учёных и студентов, посвященной году науки и технологий, (Екатеринбург, 8-9 апреля 2021): в 3-х т.; http://elib.usma.ru/handle/usma/6865

  15. 15
  16. 16

    Source: Cancer Urology; Том 17, № 3 (2021); 130-139 ; Онкоурология; Том 17, № 3 (2021); 130-139 ; 1996-1812 ; 1726-9776

    File Description: application/pdf

    Relation: https://oncourology.abvpress.ru/oncur/article/view/1521/1306; Witjes J.A. Follow-up in non-muscle invasive bladder cancer: facts and future. World J Urol 2020. DOI:10.1007/s00345-020-03569-2.; Cheng L., Lopez-Beltran A., MacLennan G.T. et al. Neoplasms of the urinary bladder. In: Urologic Surgical Pathology. Eds.: D.G. Bostwick, L. Cheng. Philadelphia, PA, USA: Elsevier/Mosby, 2008. Pp. 259-352.; Grossman H.B., Soloway M., Messing E. et al. Surveillance for recurrent bladder cancer using a point-of-care proteomic assay. JAMA 2006;295(3):299—305. DOI:10.1001/jama.295.3.299.; Black P.C., Brown G.A., Dinney C.P. Molecular markers of urothelial cancer and their use in the monitoring of superficial urothelial cancer. J Clin Oncol 2006;24(35):5528—35. DOI:10.1200/JC0.2006.08.0895.; Bakkar A.A., Wallerand H., Radvanyi F. et al. FGFR3 and TP53 gene mutations define two distinct pathway sin urothelial cell carcinoma of the bladder. Cancer Res 2003;63(23):8108—12.; Lindgren D., Liedberg F., Andersson A. et al. Molecular characterization of early-stage bladder carcinomas by expression profiles, FGFR3 mutation status, and loss of 9q. Oncogene 2006;25(18):2685—96. DOI:10.1038/sj.onc.1209249.; Карелин М.И., Пожарисский К.М., Тен В. и др. Роль антигена Къ67, мутированного гена-супрессора p53 и онкобелка HER2/neu в определении прогноза клинического течения рака мочевого пузыря. Вопросы онкологии 2006;52(6):643—8.; Wu X.R. Urothelial tumorigenesis: a tale of divergent pathways. Nature Rev Cancer 2005;5(9):713—25. DOI:10.1038/nrc1697.; Lopez-Beltran A., Cheng L.C., Mazzucchelli R. et al. Morphological and molecular profiles and pathways in bladder neoplasms. Anticancer Res 2008;28(5B):2893—900.; Lacy S., Lopez-Beltran A., Mac Lennan G.T. et al. Molecular pathogenesis of urothelial carcinoma: the clinical utility of emerging new biomarkers and future molecular classification of bladder cancer. Anal Quan Cytol Histol 2009;31(1):5—16.; Wang L., Feng С., Ding G. et al. Ki67 and TP53 expressions predict recurrence of non-muscle-invasive bladder cancer. Tumour Biol 2014;35(4):2989—95. DOI:10.1007/s13277-013-1384-9.; Davidson D.D., Cheng L. “Field cancerization” in the urothelium of the bladder. Anal Quant Cytol Histol 2006;28(6):337—8.; Denzinger S., Mohren K., Knuechel R. et al. Improved clonality analysis of multifocal bladder tumors by combination of histopathologic organ mapping, loss of heterozygosity, fluorescence in situ hybridization and p53 analyses. Hum Pathol 2006;37(2):143—51. DOI:10.1016/j.humpath.2005.10.014.; Dahse R., Gartner D., Werner W. et al. p53 mutations as an identification marker for the clonal origin of bladder tumors and its recurrences. Oncol Rep 2003;10(6):2033—7.; Jones T.D., Wang M., Eble J.N. et al. Molecular evidence supporting field effect in urothelial carcinogenesis. Clin Cancer Res 2005;11(18):6512—9. DOI:10.1158/1078-0432.CCR-05-0891.; Armstrong A.B., Wang M., Eble J.N. et al. TP53 mutation alanalysis supports monoclonal origin of biphasic sarcomatoid urothelial carcinoma (carcinosarcoma) of the urinary bladder. Mod Pathol 2009;22(1):113—8. DOI:10.1038/modpathol.2008.176.; Ben-Porath I., Thomson M.W., Carey VJ. et al. An embryonic stem cell-like gene expression signature in poorly differentiated aggressive human tumors. Nat Genet 2008;40(5):499—507. DOI:10.1038/ng.127.; Atlasi Y., Mowla S.J., Ziaee S.A., Bahrami A.R. OCT4, an embryonic stem cell marker, is highly expressed in bladder cancer. Int J Cancer 2007;120(7):1598—602. DOI:10.1002/ijc.22508.; She J.J., Zhang P.G., Wang Z.M. et al. Identification of side population cells from bladder cancer cells by Dye Cycle Violet staining. Cancer Biol Ther 2008;7(10):1663—8. DOI:10.4161/cbt.7.10.6637.; Barth I., Schneider U., Grimm T. et al. Progression of urothelial carcinoma in situ of the urinary bladder: a switch from luminal to basal phenotype and related therapeutic implications. Virchows Archiv 2018;472(5):749—58. DOI:10.1007/s00428-018-2354-9.; Babjuk M., Burger M., Capoun O. et al. European Association of Urology Guidelines on Non-muscle-invasive Bladder Cancer (Ta, T1, and Carcinoma in situ). Eur Urol 2021;S0302— 2838(21)01978—3. DOI:10.1016/j.eururo.2021.08.010.; Pan C.X., Zhu W., Cheng L. Implications of cancer stem cells in the treatment of cancer. Future Oncol 2006;2(6):723—31. DOI:10.2217/14796694.2.6.723.; Cheng L., Zhang S., Davidson D.D. et al. Implications of cancer stem cells for cancer therapy. In: Cancer Drug Discovery and Development: Stem Cells and Cancer. Eds.: R.G. Bagley, B.A. Teicher. NY, USA: Humana Press/Springer, 2009.; Jebar A.H., Hurst C.D., Tomlinson D.C. et al. FGFR3 and Ras gene mutations are mutually exclusive genetic events in urothelial cell carcinoma. Oncogene 2005;24(33):5218—25. DOI:10.1038/sj.onc.1208705.; Wolff E.M., Liang G., Jones P.A. Mechanisms of disease: genetic and epigenetic alterations that drive bladder cancer. Nat Clin Pract Urol 2005;2(10):502—10. DOI:10.1038/ncpuro0318.; Worst T.S., Weis C.A., Stohr R. et al. CDKN2A as transcriptomic marker for muscle-invasive bladder cancer risk stratification and therapy decisionmaking. Sci Rep 2018;8(1):14383. DOI:10.1038/s41598-018-32569-x.; Van Rhijn B.W., Montironi R., Zwarthoff E.C. et al. Frequent FGFR3 mutations in urothelial papilloma. J Pathol 2002;198(2):245—51. DOI:10.1002/path.1202.; Van Rhijn B.W., van der Kwast T.H., Vis A.N. et al. FGFR3 and P53 chararacterize alternative genetic path ways in the pathogenesis of urothelial cell carcinoma. Cancer Res 2004;64(6):1911—4. DOI:10.1158/0008-5472.can-03-2421.; Pierrot B.I., Brams A., D.C. Dunois-Larde et al. Oncogenic properties of the mutated forms of fibroblast growth factor receptor 3b. Carcinogenesis 2006;27(4):740—7. DOI:10.1093/carcin/bgi290.; Hernandez S., Lopez-Knowles E., Lloreta J. et al. Prospective study of FGFR3 mutations as a prognostic factor in nonmuscle invasive urothelial bladder carcinomas. J Clin Oncol 2006;24(22):3664—71. DOI:10.1200/JCO.2005.05.1771.; Knowles M.A. Role of FGFR3 in urothelial cell carcinoma: biomarker and potential therapeutic target. World J Urol 2007;25(6):581 —93. DOI:10.1007/s00345-007-0213-4.; Barbisan F., Santinelli A., Mazzucchelli R. et al. Strong immuno histochemical expression of fibroblast growth factor receptor 3, superficial staining pattern of cytokeratin 20 and low proliferative activity define those papillary urothelial neoplasms of low malignant potential that do not recur. Cancer 2008;112.(3):636—44. DOI:10.1002/cncr.23212.; Lott S., Wang M., Zhang S. et al. FGFR3 and TP53 mutation analysis in inverted urothelial papilloma: incidence and etiological considerations. Mod Pathol 2009;22(5):627—32. DOI:10.1038/modpathol.2009.28.; Shariat S.F., Ashfaq R., Sagalowsky A.I., Lotan Y. Predictive value of cell cycle biomarkers in non-muscle invasive bladder transitional cell carcinoma. J Urol 2007;177(2):481 —7. DOI:10.1016/j.juro.2006.09.038.; Dyrskjot L., Thykjaer T., Kruhoffer M. et al. Identifying distinct classes of bladder carcinoma using microarrays. Nat Genet 2003;33(1):90—6. DOI:10.1038/ng1061.; Ito M., Nishiyama H., Kawanishi H. et al. P21-activated kinase 1, a new molecular marker for intravesical recurrence after transurethral resection of bladder cancer. J Urol 2007;178(3 Pt 1):1073—9. DOI:10.1016/j.juro.2007.05.012.; Choi Y.D., Cho N.H., Ahn H.S. et al. Matrix metalloproteinase expression in the recurrence of superficial low grade bladder transitional cell carcinoma. J Urol 2007;177(3):1174—8. DOI:10.1016/j.juro.2006.10.031.; Margulis V., Shariat S.F., Ashfaq R. et al. Ki-67 is an independent predictor of bladder cancer outcome in patients treated with radical cystectomy for organ-confined disease. Clin Cancer Res 2006;12(24):7369—73. DOI:10.1158/1078-0432.CCR-06-1472.; Helpap B., Schmitz-Drager B.J., Hamilton P.W. et al. Molecular pathology of non-invasive urothelial carcinomas (part I). Virchows Arch 2003;442(4):309—16. DOI:10.1007/s00428-002-0748-0.; Van Rhijn B.W, Lurkin I., Chopin D.K. et al. Combined microsatellite and FGFR3 mutation analysis enables a highly sensitive detection of urothelial cell carcinoma in voided urine. Clin Cancer Res 2003;9(1):257—63.; Lyu Q., Lin A., Cao M. et al. Alterations in TP53 are a potential biomarker of bladder cancer patients who benefit from immune checkpoint inhibition. Cancer Control 2020;27(1): 1073274820976665. DOI:10.1177/1073274820976665.; Chatterjee S.J., Datar R., Youssefzadeh D. et al. Combined effects of p53, p21 and pRb expression in the progression of bladder transitional cell carcinoma. J Clin Oncol 2004;22(6):1007—13. DOI:10.1200/JCO.2004.05.174.; Calvete J., Larrinaga G., Errarte P. et al. The coexpression of fibroblast activation protein (FAP) and basal-type markers (CK 5/6 and CD44) predicts prognosis in high-grade invasive urothelial carcinoma of the bladder. Hum Pathol 2019;91:61-8. DOI:10.1016/j.humpath.2019.07.002.; Karam J.A., Lotan Y., Karakiewicz P.I. et al. Use of combined apoptosis biomarkers for prediction of bladder cancer recurrence and mortality after radical cystectomy. Lancet Oncol 2007;8(2):128-36. DOI:10.1016/S1470-2045(07)70002-5.; Senol S., Yildirim A., Ceyran B. et al. Prognostic significance of survivin, p-catenin and p53 expression in urothelial carcinoma. Bosn J Basic Med Sci 2015;15(4):7—14. DOI:10.17305/bjbms.2015.556.; Li Q., Wang H., Peng H. et al. MicroRNAs: key players in bladder cancer. Mol Diagn Ther 2019;23(5):579—601. DOI:10.1007/s40291-019-00410-4.; Stoehr R., Zietz S., Burger M. et al. Deletions of chromosomes 9 and 8p in histologically normal urothelium of patients with bladder cancer. Eur Urol 2005;47(1):58—63. DOI:10.1016/j.eururo.2004.07.012.; Lopez-Beltran A., Alvarez-Kindelan J., Luque R.J. et al. Loss of heterozygosity at 9q32-33 (DBC1 locus) in primary non-invasive papillary urothelial neoplasm of low malignant potential and low-grade urothelial carcinoma of the bladder and their associated normal urothelium. J Pathol 2008;215(3):263—72. DOI:10.1002/path.2353.; Edwards J., Duncan P., Going J.J. et al. Loss of heterozygosity on chromosomes 11 and 17 are markers of recurrence in TCC of the bladder. Br J Cancer 2001;85(12):1894—9. DOI:10.1054/bjoc.2001.2159.; Fornari D., Steven K., Hansen A.B. et al. Transitional cell bladder tumor: predicting recurrence and progression by analysis of microsatellite loss of heterozygosity in urine sediment and tumor tissue. Cancer Genet Cytogenet 2006;167(1):15—9. DOI:10.1016/j.cancergencyto.2005.10.015.; Feng Y., Jiang Y., Wen T. et al. Identifying potential prognostic markers for muscle-invasive bladder urothelial carcinoma by weighted gene co-expression network analysis. Pathol Oncol Res 2019;26(2):1063—72. DOI:10.1007/s12253-019-00657-6.; Santoni G., Morelli M., Amantini C., Battelli N. Urinary markers in bladder cancer: an update. Front Oncol 2018;8:362. DOI:10.3389/fonc.2018.00362.; Yamada Y., Kato C., Arai T. et al. Aberrantly expressed PLOD1 promotes cancer aggressiveness in bladder cancer: a potential prognostic marker and therapeutic target. Mol Oncol 2019;13(9):1898—912. DOI:10.1002/1878-0261.12532.; Kim T.J., Moon H.W., Kang S. et al. UroVysion FISH could be effective and useful method to confirm the identity of cultured circulating tumor cells from bladder Cancer Patients. J Cancer 2019;10(14):3259—66. DOI:10.7150/jca.30079.; Gofrit O.N., Zorn K.C., Silvestre J. et al. The predictive value of multi-targeted fluorescent in-situ hybridization in patients with history of bladder cancer. Urol Oncol 2008;26(3):246—9. DOI:10.1016/j.urolonc.2007.02.011.; Nguyen C.T., Litt D.B., Dolar S.E. et al. Prognostic significance of non diagnostic molecular changes in urine detected by UroVysion fluorescence in situ hybridization during surveillance for bladder cancer. Urology 2009;73(2):347—50. DOI:10.1016/j.urology.2008.09.042.; Zhao H., Grossman H.B., Delclos G.L. et al. Increased plasma levels of angiogenin and the risk of bladder carcinoma: from initiate onto recurrence. Cancer 2005;104(1):30—5. DOI:10.1002/cncr.21136.; Dyrskjot L., Zieger K., Real F.X. et al. Gene expression signatures predict outcome in non-muscle-invasive bladder carcinoma: a multicenter validation study. Clin Cancer Res 2007;13(12):3545—51. DOI:10.1158/1078-0432.CCR-06-2940.; Marques J.F., Reis J.P., Fernandes G. et al. Circulating tumor DNA: a step into the future of cancer management. Acta Cytol 2019;63(6):456—465. DOI:10.1159/000492917.; Lee J.S., Rhee T.M., Pietrasz D. et al. Circulating tumor DNA as a prognostic indicator in resectable pancreatic ductal adenocarcinoma: a systematic review and meta-analysis. Sci Rep 2019;9(1):16971. DOI:10.1038/s41598-019-53271-6.; Christensen E., Birkenkamp-Demtroder K., Sethi H. et al. Early detection of metastatic relapse and monitoring of therapeutic efficacy by ultra-deep sequencing of plasma cell-free DNA in patients with urothelial bladder carcinoma. J Clin Oncol 2019;37(18):1547—57. DOI:10.1200/JCO.18.02052.; Jones R.P., Pugh S.A., Graham J. et al. Circulating tumour DNA as a biomarker in resectable and irresectable stage IV colorectal cancer; a systematic review and meta-analysis. Eur J Cancer 2021;144:368-81. DOI:10.1016/j.ejca.2020.11.025.; Birkenkamp-Demtroder K., Christensen E., Nordentoft I. et al. Monitoring treatment response and metastatic relapse in advanced bladder cancer by liquid biopsy analysis. Eur Urol 2018;73(4):535—40. DOI:10.1016/j.eururo.2017.09.011.; Powles T., Assaf Z.J., Davarpanah N. et al. ctDNA guiding adjuvant immunotherapy in urothelial carcinoma. Nature 2021;595(7867):432—7. DOI:10.1038/s41586-021-03642-9.; Ding W., Tong S., Gou Y. et al. Human epidermal growth factor receptor 2: a significant indicator for predicting progression in non-muscle-invasive bladder cancer especially in high-risk groups. World J Urol 2015;33(12):1951—7. DOI:10.1007/s00345-015-1557-9.; Moustakas G., Kampantais S., Nikolaidou A. et al. HER-2 overexpression is a negative predictive factor for recurrence in patients with non-muscle-invasive bladder cancer on intravesical therapy. J Int Med Res 2020;48(1):300060519895847. DOI:10.1177/0300060519895847.; Kiselyov A., Bunimovich-Mendrazhitsky S., Startsev V. Key signaling pathways in the muscle-invasive bladder carcinoma: clinical markers for disease modeling and optimized treatment. Int J Cancer 2016;138(11):2562—9. DOI:10.1002/ijc.29918.; Wolfs J.R.E., Hermans T.J.N., Koldewijn E.L., van de Kerkhof D. Novel urinary biomarkers ADXBLADDER and bladder EpiCheck for diagnostics of bladder cancer: a review. Urol Oncol 2021;39(3):161 —70. DOI:10.1016/j.urolonc.2020.11.014.; https://oncourology.abvpress.ru/oncur/article/view/1521

  17. 17

    Source: Bulletin of Siberian Medicine; Том 20, № 2 (2021); 44-53 ; Бюллетень сибирской медицины; Том 20, № 2 (2021); 44-53 ; 1819-3684 ; 1682-0363 ; 10.20538/1682-0363-2021-20-2

    File Description: application/pdf

    Relation: https://bulletin.tomsk.ru/jour/article/view/4376/2984; https://bulletin.tomsk.ru/jour/article/view/4376/3015; Виллерт А.Б., Коломиец Л.А., Юнусова Н.В., Иванова А.А. Асцит как предмет исследований при раке яичников. Сибирский онкологический журнал. 2019; 18 (1): 116–123. DOI:10.21294/1814-4861-2019-18-1-116-123.; Weinberg R.A. Coevolution in the tumor microenvironment. Nat. Genet. 2008; 40: 494–495. DOI:10.1038/ng0508-494.; Hyler A.R., Baudoin N.C., Brown M.S., Stremler M.A., Cimini D., Davalos R.V., Schmelz, E.M. Fluid shear stress impacts ovarian cancer cell viability, subcellular organization, and promotes genomic instability. PLoS One. 2018; 13 (3): e0194170. DOI:10.1371/journal.pone.; Кайгородова Е.В., Федулова Н.В., Очиров М.О., Дьяков Д.А., Молчанов С.В., Часовских Н.Ю. Различные популяции опухолевых клеток в асцитической жидкости больных раком яичников. Бюллетень сибирской медицины. 2020; 19 (1): 50–59. DOI:10.20538/1682-0363-2020-1-50-58.; Kaigorodova E.V., Savelieva O.E., Tashireva L.A., Tarabanovskaya N.A., Simolina E.I., Denisov E.V., Slonimskaya E.M., Choynzonov E.L., Perelmuter V.M. Heterogeneity of circulating tumor cells in neoadjuvant chemotherapy of breast cancer. Molecules. 2018; 23 (4): 727–737. DOI:10.3390/molecules23040727.; Tayama S., Motohara T., Narantuya D., Li C., Fujimoto K., Sakaguchi I., Tashiro H., Saya H., Nagano O., Katabuchi H.The impact of EpCAM expression on response to chemotherapy and clinical outcomes in patients with epithelial ovarian cancer. Oncotarget. 2017; 8 (27): 44312–44325. DOI:10.18632/oncotarget.17871.; Zheng J., Zhao S., Yu X., Huang S., Liu H.Y. Simultaneous targeting of CD44 and EpCAM with a bispecific aptamer effectively inhibits intraperitoneal ovarian cancer growth. Theranostics. 2017; 7 (5): 373–1388. DOI:10.7150/thno.17826.; Nakamura K., Terai Y., Tanabe A., Ono Y.J., Hayashi M., Maeda K., Fujiwara S., Ashihara K., Nakamura M., Tanaka Y. et al. CD24 expression is a marker for predicting clinical outcome and regulates the epithelial-mesenchymal transition in ovarian cancer via both the Akt and ERK pathways. Oncol. Rep. 2017; 37 (6): 3189–3200. DOI:10.3892/or.2017.5583.; Mrozik K.M., Blaschuk O.W., Cheong C.M., Zannettino A.C., Vandyke W.K. N-cadherin in cancer metastasis, its emerging role in haematological malignancies and potential as a therapeutic target in cancer. BMC Cancer. 2018; 18 (1): 939. DOI:10.1186/s12885-018-4845-0.; Glumac P.M., LeBeau A.M. The role of CD133 in cancer: A concise review. Clin. Transl. Med. 2018; 7 (1): 18. DOI:10.1186/s40169-018-0198-1.; Fagotti A., Ferrandina G., Fanfani F., Ercoli A., Lorusso D., Rossi M., Scambia G. A laparoscopy-based score to predict surgical outcome in patients with advanced ovarian carcinoma: A pilot study. Ann. Surg. Oncol. 2006; 13 (8): 1156–1161.; Wei X., Dombkowski D., Meirelles K., Pieretti-Vanmarcke R., Szotek P.P., Chang H.L., Preffer F.I., Mueller P.R., Teixeira J., MacLaughlin D.T. et al. Mullerian inhibiting substance preferentially inhibits stem/progenitors in human ovarian cancer cell lines compared with chemotherapeutics. Proc. Natl. Acad. Sci. USA. 2010; 107 (44): 18874–18879. DOI:10.1073/pnas.1012667107.; Gao M.Q., Choi Y.P., Kang S., Youn J.H., Cho N.H. CD24+ cells from hierarchically organized ovarian cancer are enriched in cancer stem cells. Oncogene. 2010; 29 (18): 2672–2680. DOI:10.1038/onc.2010.35.; Burgos-Ojeda D., Rueda B.R., Buckanovich R.J. Ovarian cancer stem cell markers: Prognostic and therapeutic implications. Cancer Lett. 2012; 322 (1): 1–7. DOI:10.1016/j.canlet.2012.02.002.; Burgos-Ojeda D., Wu R., McLean K., Chen Y.C., Talpaz M., Yoon E., Cho K.R., Buckanovich R.J. CD24+ Ovarian cancer cells are enriched for cancer-initiating cells and dependent on jak2 signaling for growth and metastasis. Mol. Cancer Ther. 2015; 14 (7): 1717–1727. DOI:10.1158/1535-7163.MCT-14-0607.; Gast C.E., Silk A.D., Zarour L. et al. Cell fusion potentiates tumor heterogeneity and reveals circulating hybrid cells that correlate with stage and survival. Sci. Adv. 2018; 4 (9): e7828. Published 2018 Sept. 12. DOI:10.1126/sciadv.aat7828.; Carter A. Cell fusion theory: can it explain what triggers metastasis? J. Natl. Cancer Inst. 2008; 100 (18): 1279–1281. DOI:10.1093/jnci/djn336.; Larizza L., Schirrmacher V., Pflüger E. Acquisition of high metastatic capacity after in vitro fusion of a nonmetastatic tumor line with a bone marrow-derived macrophage. J. Exp. Med. 1984; 160 (5): 1579–1584. DOI:10.1084/jem.160.5.1579.; Ramakrishnan M., Mathur S.R., Mukhopadhyay A. Fusion-derived epithelial cancer cells express hematopoietic markers and contribute to stem cell and migratory phenotype in ovarian carcinoma. Cancer Res. 2013; 73 (17): 5360–5370. DOI:10.1158/0008-5472.CAN-13-0896.; Powell A.E., Anderson E.C., Davies P.S. et al. Fusion between Intestinal epithelial cells and macrophages in a cancer context results in nuclear reprogramming. Cancer Res. 2011; 71 (4): 1497–1505. DOI:10.1158/0008-5472.CAN-10-3223.; Klymenko Y., Johnson J., Bos B., Lombard R., Campbell L., Loughran E., Stack M.S. Heterogeneous cadherin expression and multicellular aggregate dynamics in ovarian cancer dissemination. Neoplasia. 2017; 19 (7): 549–563. DOI:10.1016/j.neo.2017.04.002.; Vizzielli G., Costantini B., Tortorella L., Pitruzzella I., Gallotta V., Fanfani F., Gueli Alletti S., Cosentino F., Nero C., Scambia G. et al. A laparoscopic risk-adjusted model to predict major complications after primary debulking surgery in ovarian cancer: A single-institution assessment. Gynecol. Oncol. 2016; 142 (1): 19–24. DOI:10.1016/j.ygyno.2016.04.020.; Feng Z., Wen H., Jiang Z., Liu S., Ju X., Chen X., Xia L., Xu J., Bi R., Wu X. A triage strategy in advanced ovarian cancer management based on multiple predictive models for R0 resection: A prospective cohort study. J. Gynecol. Oncol. 2018; 29 (5): e65. DOI:10.3802/jgo.2018.29.e65.; Rutten M.J., Van Meurs H.S., Van De Vrie R., Naaktgeboren C.A., Fons G., Opmeer B.C., Spijkerboer A., Bossuyt P.M., Kenter G.G., Buist M.R. et al. Laparoscopy to predict the result of primary cytoreductive surgery in patients with advanced ovarian cancer: a randomized controlled trial. J. Clin. Oncol. 2017; 35 (6): 613–621. DOI:10.1200/JCO.2016.69.2962.; https://bulletin.tomsk.ru/jour/article/view/4376

  18. 18
  19. 19

    Source: Siberian journal of oncology; Том 19, № 6 (2020); 57-65 ; Сибирский онкологический журнал; Том 19, № 6 (2020); 57-65 ; 2312-3168 ; 1814-4861 ; 10.21294/1814-4861-2020-19-6

    File Description: application/pdf

    Relation: https://www.siboncoj.ru/jour/article/view/1640/808; Каприн А.Д., Старинский В.В., Петрова Г.В. Злокачественные опухоли в России в 2018 г. (Заболеваемость и смертность). М., 2019. 250 с.; Yang M.H., Imrali A., Heeschen C. Circulating cancer stem cells: the importance to select. Chin J Cancer Res. 2015 Oct; 27(5): 437–49. doi:10.3978/j.issn.1000-9604.2015.04.08.; Stoecklein N.H., Fischer J.C., Niederacher D., Terstappen L.W. Challenges for CTC-based liquid biopsies: low CTC frequency and diagnostic leukapheresis as a potential solution. Expert Rev Mol Diagn. 2016; 16(2): 147–164. doi:10.1586/14737159.2016.1123095.; Zhe X., Cher M.L., Bonfil R.D. Circulating tumor cells: finding the needle in the haystack. Am J Cancer Res. 2011; 1(6): 740–751.; Giordano A., Gao H., Anfossi S., Cohen E., Mego M., Lee B.N., Tin S., De Laurentiis M., Parker C.A., Alvarez R.H., Valero V., Ueno N.T., De Placido S., Mani S.A., Esteva F.J., Cristofanilli M., Reuben J.M. Epithelial-mesenchymal transition and stem cell markers in patients with HER2-positive metastatic breast cancer. Mol Cancer Ther. 2012 Nov; 11(11): 2526–34. doi:10.1158/1535-7163.MCT-12-0460.; Кайгородова Е.В. Циркулирующие опухолевые клетки: клиническое значение при раке молочной железы (обзор литературы). Вестник Российской академии медицинских наук. 2017; 72(6): 450–457. doi:10.15690/vramn833.; Kaigorodova E.V., Tarabanovskaya N.A., Staheeva M.N., Savelieva O.E., Tashireva L.A., Denisov E.V., Perelmuter V.M. Effect of minor and major surgical injury on the level of different populations of circulating tumor cells in the blood of breast cancer patients. Neoplasma. 2017; 64(3): 437–443. doi:10.4149/neo_2017_315.; Theodoropoulos P.A., Polioudaki H., Agelaki S., Kallergi G., Saridaki Z., Mavroudis D., Georgoulias V. Circulating tumor cells with a putative stem cell phenotype in peripheral blood of patients with breast cancer. Cancer Lett. 2010 Feb 1; 288(1): 99–106. doi:10.1016/j.canlet.2009.06.027.; Kasimir-Bauer S., Hoffmann O., Wallwiener D., Kimmig R., Fehm T. Expression of stem cell and epithelial-mesenchymal transition markers in primary breast cancer patients with circulating tumor cells. Breast Cancer Res. 2012 Jan 20; 14(1): R15. doi:10.1186/bcr3099.; Reuben J.M., Lee B.N., Gao H., Cohen E.N., Mego M., Giordano A., Wang X., Lodhi A., Krishnamurthy S., Hortobagyi G.N., Cristofanilli M., Lucci A., Woodward W.A. Primary breast cancer patients with high risk clinicopathologic features have high percentages of bone marrow epithelial cells with ALDH activity and CD44–CD24lo cancer stem cell phenotype. Eur J Cancer. 2011 Jul; 47(10): 1527–36. doi:10.1016/j.ejca.2011.01.011.; Armstrong A.J., Marengo M.S., Oltean S., Kemeny G., Bitting R.L., Turnbull J.D., Herold C.I., Marcom P.K., George D.J., Garcia-Blanco M.A. Circulating tumor cells from patients with advanced prostate and breast cancer display both epithelial and mesenchymal markers. Mol Cancer Res. 2011; 9(8): 997–1007. doi:10.1158/1541-7786.MCR-10-0490.; Al-Hajj M., Wicha M.S., Benito-Hernandez A., Morrison S.J., Clarke M.F. Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci USA. 2003 Apr 1; 100(7): 3983–8. doi:10.1073/pnas.0530291100.; Kaigorodova E.V., Savelieva O.E., Tashireva L.A., Tarabanovskaya N.A., Simolina E.I., Denisov E.V., Slonimskaya E.M., Choynzonov E.L., Perelmuter V.M. Heterogeneity of Circulating Tumor Cells in Neoadjuvant Chemotherapy of Breast Cancer. Molecules. 2018 Mar 22; 23(4): 727. doi:10.3390/molecules23040727.; Zavyalova M.V., Denisov E.V., Tashireva L.A., Savelieva O.E., Kaigorodova E.V., Krakhmal N.V., Perelmuter V.M. Intravasation as a Key Step in Cancer Metastasis. Biochemistry (Mosc). 2019; 84(7): 762–72. doi:10.1134/S0006297919070071.; Kim M.Y., Oskarsson T., Acharyya S., Nguyen D.X., Zhang X.H., Norton L., Massague J. Tumor self-seeding by circulating cancer cells. Cell. 2009; 139: 1315–26. doi:10.1016/j.cell.2009.11.025; Scatena R., Bottoni P., Giardina B. Circulating tumour cells and cancer stem cells: a role for proteomics in defining the interrelationships between function, phenotype and differentiation with potential clinical applications. Biochim Biophys Acta. 2013; 1835(2): 129–143. doi:10.1016/j.bbcan.2012.12.002.; Asiedu M.K., Ingle J.N., Behrens M.D., Radisky D.C., Knutson K.L. TGFbeta/TNF(alpha)-mediated epithelial- mesenchymal transition generates breast cancer stem cells with a claudin-low phenotype. Cancer Res. 2011 Jul 1; 71(13): 4707–19. doi:10.1158/0008-5472.CAN-10-4554.; Mani S.A., Guo W., Liao M.J., Eaton E.N., Ayyanan A., Zhou A.Y., Brooks M., Reinhard F., Zhang C.C., Shipitsin M., Campbell L.L., Polyak K., Brisken C., Yang J., Weinberg R.A. The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell. 2008; 133(4): 704–15. doi:10.1016/j.cell.2008.03.027.; Mego M., Gao H., Lee B. N., Cohen E. N., Tin S., Giordano A., Wu Q., Liu P., Nieto Y., Champlin R.E., Hortobagyi G.N., Cristofanilli M., Ueno N.T., Reuben J.M. Prognostic value of EMT-circulating tumor cells in metastatic breast cancer patients undergoing high-dose chemotherapy with autologous hematopoietic stem cell transplantation. J Cancer. 2012; 3: 369–80. doi:10.7150/jca.5111.; Aktas B., Tewes M., Fehm T., Hauch S., Kimmig R., KasimirBauer S. Stem cell and epithelial-mesenchymal transition markers are frequently overexpressed in circulating tumor cells of metastatic breast cancer patients. Breast Cancer Res. 2009. 11(4): R46. doi:10.1186/bcr2333; https://www.siboncoj.ru/jour/article/view/1640

  20. 20

    Source: Bulletin of Siberian Medicine; Том 19, № 1 (2020); 50-58 ; Бюллетень сибирской медицины; Том 19, № 1 (2020); 50-58 ; 1819-3684 ; 1682-0363 ; 10.20538/1682-0363-2020-19-1

    File Description: application/pdf

    Relation: https://bulletin.tomsk.ru/jour/article/view/2681/1692; https://bulletin.tomsk.ru/jour/article/view/2681/1716; Hyler A.R., Baudoin N.C., Brown M.S., Stremler M.A., Cimini D., Davalos R.V., Schmelz E.M. Fluid shear stress impacts ovarian cancer cell viability, subcellular organization, and promotes genomic instability. PLoS One. 2018; 13 (3): e0194170. DOI:10.1371/journal.pone.0194170.; Tayama S., Motohara T., Narantuya D., Li C., Fujimoto K., Sakaguchi I., Tashiro H., Saya H., Nagano O., Katabuchi H. The impact of EpCAM expression on response to chemotherapy and clinical outcomes in patients with epithelial ovarian cancer. Oncotarget. 2017; 8 (27): 44312–44325. DOI:10.18632/oncotarget.17871.; Zheng J., Zhao S., Yu X., Huang S., Liu H.Y. Simultaneous targeting of CD44 and EpCAM with a bispecific aptamer effectively inhibits intraperitoneal ovarian cancer growth. Theranostics. 2017; 7 (5): 1373–1388. DOI:10.7150/thno.17826.; Nakamura K., Terai Y., Tanabe A., Ono Y.J., Hayashi M., Maeda K., Fujiwara S., Ashihara K., Nakamura M., Tanaka Y., Tanaka T., Tsunetoh S., Sasaki H., Ohmichi M. CD24 expression is a marker for predicting clinical outcome and regulates the epithelial-mesenchymal transition in ovarian cancer via both the Akt and ERK pathways. Oncol. Rep. 2017; 37 (6): 3189–3200. DOI:10.3892/or.2017.5583.; Mrozik K.M., Blaschuk O.W., Cheong C.M., Zannettino A.C.W., Vandyke K. N-cadherin in cancer metastasis, its emerging role in haematological malignancies and potential as a therapeutic target in cancer. BMC Cancer. 2018; 18 (1): 939. DOI:10.1186/s12885-018-4845-0.; Glumac P.M., LeBeau A.M. The role of CD133 in cancer: a concise review. Clin. Transl. Med. 2018; 7 (1): 18. DOI:10.1186/s40169-018-0198-1.; Schild T., Low V., Blenis J., Gomes A.P. Unique metabolic adaptations dictate distal organ-specific metastatic colonization. Cancer Cell. 2018; 33: 347–354. DOI:10.1016/j.ccell.2018.02.001.; Cuiffo B.G., Karnoub A.E. Mesenchymal stem cells in tumor development: emerging roles and concepts. Cell Adh. Migr. 2012; 6 (3): 220–230. DOI:10.4161/cam.20875.; Wei X., Dombkowski D., Meirelles K., Pieretti-Vanmarcke R., Szotek P.P., Chang H.L., Preffer F.I., Mueller P.R., Teixeira J., MacLaughlin D.T., Donahoe P.K. Mullerian inhibiting substance preferentially inhibits stem/progenitors in human ovarian cancer cell lines compared with chemotherapeutics. Proc. Natl. Acad. Sci. USA. 2010; 107 (44): 18874–18879. DOI:10.1073/pnas.1012667107.; Burgos-Ojeda D., Rueda B.R., Buckanovich R.J. Ovarian cancer stem cell markers: prognostic and therapeutic implications. Cancer Lett. 2012; 322 (1): 1–7. DOI:10.1016/j.canlet.2012.02.002.; Burgos-Ojeda D., Wu R., McLean K., Chen Y.C., Talpaz M., Yoon E., Cho K.R., Buckanovich R.J. CD24+ ovarian cancer cells are enriched for cancer-initiating cells and dependent on JAK2 signaling for growth and metastasis. Mol. Cancer Ther. 2015; 14 (7): 1717–1727. DOI:10.1158/1535-7163.MCT-14-0607.; Meng E., Long B., Sullivan P., McClellan S., Finan M.A., Reed E., Shevde L., Rocconi R.P. CD44+/CD24- ovarian cancer cells demonstrate cancer stem cell properties and correlate to survival. Clin. Exp. Metastasis. 2012; 29 (8): 939–948. DOI:10.1007/s10585-012-9482-4.; Witt A.E., Lee C.W., Lee T.I., Azzam D.J., Wang B., Caslini C., Petrocca F., Grosso J., Jones M., Cohick E.B., Gropper A.B., Wahlestedt C., Richardson A.L., Shiekhattar R., Young R.A., Ince T.A. Identification of a cancer stem cell-specific function for the histone deacetylases, HDAC1 and HDAC7, in breast and ovarian cancer. Oncogene. 2017; 36 (12): 1707–1720. DOI:10.1038/onc.2016.337.; https://bulletin.tomsk.ru/jour/article/view/2681