Výsledky vyhledávání - "геохимия"

Upřesnit hledání
  1. 1
  2. 2
  3. 3
  4. 4
  5. 5
  6. 6
  7. 7
  8. 8
  9. 9
  10. 10
  11. 11
  12. 12
  13. 13
  14. 14

    Zdroj: Geodynamics & Tectonophysics; Том 16, № 1 (2025); 0807 ; Геодинамика и тектонофизика; Том 16, № 1 (2025); 0807 ; 2078-502X

    Popis souboru: application/pdf

    Relation: https://www.gt-crust.ru/jour/article/view/1983/872; Acosta-Vigil A., London D., Morgan G.B., Dewers T.A., 2003. Solubility of Excess Alumina in Hydrous Granitic Melts in Equilibrium with Peraluminous Minerals at 700–800 °C and 200 MPa, and Applications of the Aluminum Saturation Index. Contributions to Mineralogy and Petrology 146, 100–119. https://doi.org/10.1007/s00410-003-0486-6.; Азовскова О.Б., Сорока Е.И., Ровнушкин М.Ю., Солошенко Н.Г. Sm-Nd-изотопия даек Воронцовского золоторудного месторождения (Северный Урал) // Вестник геонаук. 2020. № 9. С. 3–6. https://doi.org/10.19110/geov.2020.9.1.; Blichert-Toft J., Puchtel I.S., 2010. Depleted Mantle Sources Through Time: Evidence from Lu-Hf and Sm-Nd Isotope Systematics of Archean Komatiites. Earth and Planetary Science Letters 297 (3–4), 598–606. https://doi.org/10.1016/j.epsl.2010.07.012.; Bouvier A., Vervoort J.D., Patchett P.J., 2008. The Lu-Hf and Sm-Nd Isotopic Composition of CHUR: Constraints from Unequilibrated Chondrites and Implications for the Bulk Composition of Terrestrial Planets. Earth and Planetary Science Letters 273 (1–2), 48–57. https://doi.org/10.1016/j.epsl.2008.06.010.; Boynton W.V., 1984. Cosmochemistry of the Rare Earth Elements: Meteorite Studies. Developments in Geochemistry 2, 63–114. https://doi.org/10.1016/B978-0-444-42148-7.50008-3.; Brown D., Spadea P., Puchkov V., Alvarez-Marron J., Herrington R., Willner A.P., Hetzel R., Gorozhanina Y., Juhlin C., 2006. Arc–Continent Collision in the Southern Urals. Earth-Science Reviews 79 (3–4), 261–287. https://doi.org/10.1016/j.earscirev.2006.08.003.; Фор Г. Основы изотопной геологии. М.: Мир, 1989. 590 с.; Frost B.R., Barnes C.G., Collins W.J., Arculus R.J., Ellis D.J., Frost C.D., 2001. A Geochemical Classification for Granitic Rocks. Journal of Petrology 42 (11), 2033–2048. https://doi.org/10.1093/petrology/42.11.2033.; Harris N.B.W., Pearce J.A., Tindle A.G., 1986. Geochemical Characteristics of Collision-Zone Magmatism. Geological Society of London Special Publications 19, 67–81. https://doi.org/10.1144/GSL.SP.1986.019.01.04.; Hughes C.J., 1972. Spilites, Keratophyres, and the Igneous Spectrum. Geological Magazine 109 (6), 513–527. https://doi.org/10.1017/S0016756800042795.; Hutchison C.S., 1974. Laboratory Handbook of Petrographic Techniques. John Wiley & Sons, New York, 527 p.; Hutchison C.S., 1975. The Norm, Its Variations, Their Calculation and Relationships. Schweizerische Mineralogische und Petrographische Mitteilungen 55, 243–256.; Иванов К.С., Смирнов В.Н., Ерохин Ю.В. Тектоника и магматизм коллизионной стадии (на примере Среднего Урала). Екатеринбург: ИГГ УрО РАН, 2000. 131 с.; Krogh T.Е., 1973. A Low-Contamination Method for Hydrothermal Decomposition of Zircon and Extraction of U and Pb for Isotopic Age Determinations. Geochimica et Cosmochimica Acta 37 (3), 485–494. https://doi.org/10.1016/0016-7037(73)90213-5.; Large R.R., Gemmell J.B., Paulick H., Huston D.L., 2001. The Alteration Box Plot: A Simple Approach to Understanding the Relationship Between Alteration Mineralogy and Lithogeochemistry Associated with Volcanic-Hosted Massive Sulfide Deposits. Economic Geology 96 (5), 957–971. https://doi.org/10.2113/gsecongeo.96.5.957.; Ludwig K.R., 1991. PbDat 1.21 for MS-DOS: A Computer Program for IBM-PC Compatibles for Processing Raw Pb-U-Th Isotope Data. Version 1.07. USGS Open File Report, 35 p.; Ludwig K.R., 2012. ISOPLOT 3.75. A Geochronological Toolkit for Microsoft Excel. User’s Manual. Berkeley Geochronology Center Special Publication 5, 75 p.; Маслов В.А., Артюшкова О.В. Стратиграфия и корреляция девонских отложений Магнитогорской мегазоны Южного Урала. Уфа: ДизайнПолиграфСервис, 2010. 288 с.; Middlemost E.A.K., 1994. Naming Materials in the Magma/Igneous Rock System. Earth-Science Reviews 37 (3–4), 215–224. https://doi.org/10.1016/0012-8252(94)90029-9.; Pearce J.A., Harris N.B.W., Tindle A.G., 1984. Trace Element Discrimination Diagrams for the Tectonic Interpretation of Granitic Rocks. Journal of Petrology 25 (4), 956–983. https://doi.org/10.1093/petrology/25.4.956.; Пучков В.Н. Геология Урала и Приуралья (актуальные вопросы стратиграфии, тектоники и металлогении) // Уральский геологический журнал. 2010. Т. 3. С. 80–84.; Rakhimov I.R., Ankusheva N.N., Samigullin A.A., Shanina S.N., 2023. Origin and Evolution of Ore-Forming Fluids at the Small-Sized Gold Deposits in the Khudolaz Area, Southern Urals. Minerals 13 (6), 781. https://doi.org/10.3390/min13060781.; Рахимов И.Р., Самигуллин А.А. Геохимия амфиболитов, ассоциирующих с офиолитовыми массивами Урала (на примере Рай-Иза и Среднего Крака) как ключ к пониманию проблемы их происхождения // Вестник ВГУ. Серия: Геология. 2024. № 4. С. 35–50.; Rollinson H.R., 1993. Using Geochemical Data: Evaluation, Presentation, Interpretation. Longman Scientific & Technical, London, 352 p. https://doi.org/10.4324/9781315845548.; Салихов Д.Н., Бердников П.Г. Магматизм и оруденение позднего палеозоя Магнитогорского мегасинклинория. Уфа: БФ АН СССР, 1985. 94 с.; Салихов Д.Н., Холоднов В.В., Пучков В.Н., Рахимов И.Р. Магнитогорская зона Южного Урала в позднем палеозое: магматизм, флюидальный режим, металлогения, геодинамика. М.: Наука, 2019. 392 с.; Салихов Д.Н., Пшеничный Г.Н. Магматизм и оруденение зоны ранней консолидации Магнитогорской эвгеосинклинали. Уфа: БФ АН СССР, 1984. 112 с.; Салихов Д.Н., Рахимов И.Р., Мосейчук В.М. Каменноугольный магматизм коллизионной эпохи на Южном Урале // Геологический сборник. 2013. № 10. С. 176–199.; Scarrow J.H., Spadea P., Cortesogno L., Savelieva G.N., Gaggero L., 2000. Geochemistry of Garnet Metagabbros from the Mindyak Ophiolite Massif, Southern Urals. Ofioliti 25 (2), 103–115. DOI:10.4454/ofioliti.v25i2.118.; Schnetzler C.C., Philpotts J.A., 1968. Partition Coefficients of Rare-Earth Elements and Barium Between Igneous Matrix Material and Rock-Forming Mineral Phenocrysts–I. In: L.H. Ahrens (Ed.), Origin and Distribution of the Elements. Pergamon Press, Oxford, New York, p. 929–938. https://doi.org/10.1016/B978-0-08-012835-1.50076-3.; Schnetzler C.C., Philpotts J.A., 1970. Partition Coefficients of Rare-Earth Elements Between Igneous Matrix Material and Rock-Forming Mineral Phenocrysts–II. Geochimica et Cosmochimica Acta 34 (3), 331–340. https://doi.org/10.1016/0016-7037(70)90110-9.; Серавкин И.Б., Знаменский С.Е., Косарев А.М. Разрывная тектоника и рудоносность Башкирского Зауралья. Уфа: Уфимский полиграфкомбинат, 2001. 318 с.; Shand S.J., 1943. Eruptive Rocks: Their Genesis, Composition, and Classification, with a Chapter on Meteorites. Second Edition. John Wiley & Sons, New York, 444 p.; Stacey J.T., Kramers J.D., 1975. Approximation of Terrestrial Lead Isotope Evolution by a Two-Stage Model. Earth and Planetary Science Letters 26 (2), 207–221. https://doi.org/10.1016/0012-821X(75)90088-6.; Государственная геологическая карта Российской Федерации. Серия Южно-Уральская. Масштаб 1:200000. Лист N-40-XXIX (Сибай): Объяснительная записка. М.: МФ ВСЕГЕИ, 2015. 218 с.; Steiger R.H., Jäger E., 1977. Subcommission on Geochronology: Convention on the Use of Decay Constants in Geo- and Cosmochronology. Earth and Planetary Science Letters 36 (3), 359–362. https://doi.org/10.1016/0012-821X(77)90060-7.; Sun S.-S., McDonough W.F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. Geological Society of London Special Publications 42 (1), 313–345. https://doi.org/10.1144/GSL.SP.1989.042.01.19.; Sylvester P.J., 1989. Post-Collisional Alkaline Granites. Journal of Geology 97 (3), 261–280. https://doi.org/10.1086/629302.; Turkina O.M., 2000. Modeling Geochemical Types of Tonalite–Trondhjemite Melts and Their Natural Equivalents. Geochemistry International 38 (7), 640–651.; Вишневская И.А. Изотопно-геохимические особенности кембрийских фосфоритов Каратауского бассейна (Южный Казахстан) // Вестник СПбГУ. Науки о Земле. 2018. Т. 63. № 3. С. 267–290. https://doi.org/10.21638/spbu07.2018.302.; Watson E.B., Harrison T.M., 1983. Zircon Saturation Revisited: Temperature and Composition Effects in a Variety of Crustal Magma Types. Earth and Planetary Science Letters 64 (2), 295–304. https://doi.org/10.1016/0012-821X(83)90211-X.; Xiong X.L., Adam J., Green T.H., 2005. Rutile Stability and Rutile/Melt HFSE Partitioning During Partial Melting of Hydrous Basalt: Implications for TTG Genesis. Chemical Geology 218 (3–4), 339–359. https://doi.org/10.1016/j.chemgeo.2005.01.014.; Захаров О.А., Ткачёв С.А. Изучение закономерностей размещения эндогенного оруденения Худолазовской синклинали, связанного с основными интрузиями, с целью направления поисковых работ на медно-никелевые и другие руды по работам Восточно-Уральской партии за 1982–1984 гг.: Отчет. Уфа, 1984. Т. 1. 148 с.; Знаменский С.Е. Структурные условия формирования коллизионных месторождений золота восточного склона Южного Урала. Уфа: Гилем, 2009. 345 с.

  15. 15

    Zdroj: Geodynamics & Tectonophysics; Том 16, № 1 (2025); 0805 ; Геодинамика и тектонофизика; Том 16, № 1 (2025); 0805 ; 2078-502X

    Popis souboru: application/pdf

    Relation: https://www.gt-crust.ru/jour/article/view/1981/869; https://www.gt-crust.ru/jour/article/view/1981/870; Anenburg M., Mavrogenes J.E., 2018. Carbonatitic Versus Hydrothermal Origin for Fluorapatite REE-Th Deposits: Experimental Study of REE Transport and Crustal "Antiskarn" Metasomatism. American Journal of Sciences 318 (3), 335–366. https://doi.org/10.2475/03.2018.03.; Anenburg M., Walters J.B., 2024. Metasomatic Ijolite, Glimmerite, Silicocarbonatite, and Antiskarn Formation: Carbonatite and Silicate Phase Equilibria in the System Na2O–CaO–K2O–FeO–MgO–Al2O3–SiO2–H2O–O2–CO2. Contributions to Mineralogy and Petrology 179, 40 https://doi.org/10.1007/s00410-024-02109-0.; Barnes C.G., Prestvik T., Sundvoll B., Surratt D., 2005. Pervasive Assimilation of Carbonate and Silicate Rocks in the Hortavaer Igneous Complex, North-Central Norway. Lithos 80 (1–4), 179–199. https://doi.org/10.1016/j.lithos.2003.11.002.; Bell K., 2005. Carbonatites. In: R.C. Selley, L.R.M. Cocks, I.R. Plimer (Eds), Vol. 3. Encyclopedia of Geology. Elsevier, p. 217–233.; Bell K., Tilton G.R., 2002. Probing the Mantle: The Story from Carbonatites. Eos 83 (25), 273–277. https://doi.org/10.1029/2002EO000190.; Brooker R.A., Kjarsgaard B.A., 2011. Silicate–Carbonate Liquid Immiscibility and Phase Relations in the System SiO2–Na2O–Al2O3–CaO–CO2 at 0.1–2.5 GPa with Applications to Carbonatite Genesis. Journal of Petrology 52 (7–8), 1281–1305. https://doi.org/10.1093/petrology/egq081.; Carter L.B., Dasgupta R., 2016. Effect of Melt Composition on Crustal Carbonate Assimilation: Implications for the Transition from Calcite Consumption to Skarnification and Associated CO2 Degassing. Geochemistry, Geophysics, Geosystems 17 (10), 3893–3916. https://doi.org/10.1002/2016GC006444.; Dolenec M., Serafimovski T., Daneu N., Dolenec T., Smuc N.R., Vrhovnik P., Lojen S., 2015. The Case of the Carbonatite-Like Dyke of the Madenska River Complex at the Kriva Lakavica Section in the Republic of Macedonia: Oxygen and Carbon Isotopic Constraints. Turkish Journal of Earth Sciences 24 (6), 627–639. https://doi.org/10.3906/yer-1502-28.; Doroshkevich A., Sklyarov E., Starikova A., Vasiliev V., Ripp G., Izbrodin I., Posokhov V., 2017. Stable Isotope (C, O, H) Characteristics and Genesis of the Tazheran Brucite Marbles and Skarns, Olkhon Region, Russia. Mineralogy and Petrology 111, 399–416. https://doi.org/10.1007/s00710-016-0477-8.; Durand C., Baumgartner L.P., Marquer D., 2015. Low Melting Temperature for Calcite at 1000 Bars on the Join CaCO3-H2O – Some Geological Implications. Terra Nova 27 (5), 364–369. https://doi.org/10.1111/ter.12168.; Fanelli M.T., Cava N., Wyllie P.J., 1986. Calcite and Dolomite Without Portlandite at a New Eutectic in CaO–MgO–CO2–H2O with Applications to Carbonatites. In: Morphology and Phase Equilibria of Minerals. Proceedings of the 13th General Meeting of the International Mineralogical Association (September 19–25, 1982, Varna). Bulgarian Academy of Science, Sofia, Bulgaria, p. 313–322.; Федоровский В.С., Скляров Е.В. Ольхонский геодинамический полигон (Байкал): аэрокосмические данные высокого разрешения и геологические карты нового поколения // Геодинамика и тектонофизика. 2010. Т. 1. № 4. С. 331–418. https://doi.org/10.5800/GT-2010-1-4-0026.; Ферштатер Г.Б., Пушкарев Е.В. Карбонатные породы в офиолитовом Кемпирсайско-Хабарнинском комплексе (Южный Урал) // Известия АН СССР. Серия геологическая. 1988. № 12. С. 27–37.; Floess D., Baumgartner L.P., Vonlanthen P., 2015. An Observational and Thermodynamic Investigation of Carbonate Partial Melting. Earth and Planetary Science Letters 409, 147–156. https://doi.org/10.1016/j.epsl.2014.10.031.; Gaeta M., Di Rocco T., Freda C., 2009. Carbonate Assimilation in Open Magmatic Systems: The Role of Melt-Bearing Skarns and Cumulate-Forming Processes. Journal of Petrology 50 (1), 361–385. https://doi.org/10.1093/petrology/egp002.; Ganino C., Arndt N.T., Chauvel C., Jean A., Athurion C., 2013. Melting of Carbonate Wall Rocks and Formation of the Heterogeneous Aureole of the Panzhihua Intrusion, China. Geoscience Frontiers 4 (5), 535–546. https://doi.org/10.1016/j.gsf.2013.01.012.; Grebennikov A.V., Khanchuk A.I., 2021. Pacific-Type Transform and Convergent Margins: Igneous Rocks, Geochemical Contrasts and Discriminant Diagrams. International Geology Review 63 (5), 601–629. https://doi.org/10.1080/00206814.2020.1848646.; Hegner E., Rajesh S., Willbold M., Müller D., Joachimski M., Hofmann M., Linnemann U., Zieger J., Pradeepkumar A.P., 2020. Sediment-Derived Origin of the Putative Munnar Carbonatite, South India. Journal of Asian Earth Sciences 200, 104432. https://doi.org/10.1016/j.jseaes.2020.104432.; Holder R.M., Viete D.R., Brown M., Johnson T.E., 2019. Metamorphism and the Evolution of Plate Tectonics. Nature 572, 378–381. https://doi.org/10.1038/s41586-019-1462-2.; Humphreys-Williams E.R., Zahirovic S., 2021. Carbonatites and Global Tectonics. Elements 17 (5), 339–344. https://doi.org/10.2138/gselements.17.5.339.; Iacono Marziano G., Gaillard F., Pichavant M., 2008. Limestone Assimilation by Basaltic Magmas: An Experimental Re-Assessment and Application to Italian Volcanoes. Contributions to Mineralogy and Petrology 155, 719–738. https://doi.org/10.1007/s00410-007-0267-8.; Jin C., Cheng Z., Zhang Z., Hou T., Xu L., 2024a. Petrogenesis of the Wushi Carbonatites in the Northwestern Tarim Basin: Implications to Deep Carbon Recycling. Lithos 464–465, 107448. https://doi.org/10.1016/j.lithos.2023.107448.; Jin C., Zhang Z., Cheng Z., 2024b. Carbonatite and Related Mineralization: An Overview. In: R. Pandey, A. Pandey, L. Krmíček, C. Cicciniello, D. Müller (Eds), Alkaline Rocks: Economic and Geodynamic Significance Though Time. Geological Society of London Special Publications 551. https://doi.org/10.1144/SP551-2024-51.; Keller J., Hoefs J., 1995. Stable Isotope Characteristics of Recent Natrocarbonatites from Oldoinyo Lengai. In: K. Bell, J. Keller (Eds), Carbonatite Volcanism: Oldoinyo Lengai and the Petrogenesis of Natrocarbonatites. Springer, Berlin, Heidelberg, p. 113–123. https://doi.org/10.1007/978-3-642-79182-6_9.; Khanchuk A.I., Ivanov V.V., 1999. Meso-Сenozoic Geodynamic Settings and Gold Mineralization of the Russian Far East. Russian Geology and Geophysics 40 (11), 1607–1617.; Korzhinskii D.S., 1970. Theory of Metasomatic Zoning. Clarendon Press, Oxford, 162 p.; Le Bas M.J., Babttat M.A.O., Taylor R.N., Milton J.A., Windley B.F., Evins P.M., 2004. The Carbonatite-Marble Dykes of Abyan Province, Yemen Republic: The Mixing of Mantle and Crustal Carbonate Materials Revealed by Isotope and Trace Element Analysis. Mineralogy and Petrology 82, 105–135. https://doi.org/10.1007/s00710-004-0056-2.; Le Maitre R.W. (Ed.), 2002. Igneous Rocks: A Classification and Glossary of Terms. Cambridge University Press, Cambridge, 251 p. https://doi.org/10.1017/CBO9780511535581.; Lentz D.R., 1998. Late-Tectonic U-Th-Mo-REE Skarn and Carbonatitic Vein-Dyke Systems in the Southwestern Grenville Province: A Pegmatite-Related Pneumatolytic Model Linked to Marble Melting. In: D.R. Lentz (Ed.), Mineralized Intrusion-Related Skarn Systems. Vol. 26. Mineralogical Association of Canada, Ottawa, p. 519–657.; Lentz D.R., 1999. Carbonatite Genesis: A Reexamination of the Role of Intrusion-Related Pneumatolytic Skarn Processes in Limestone Melting. Geology 27 (4), 335–338. https://doi.org/10.1130/0091-7613(1999)027%3C0335:CGAROT%3E2.3.CO;2.; Liu Y., Berner Z., Massonne H.-J., Zhong D., 2006. Carbonatite-Like Dykes from the Eastern Himalayan Syntaxis: Geochemical, Isotopic, and Petrogenetic Evidence for Melting of Metasedimentary Carbonate Rocks Within the Orogenic Crust. Journal of Asian Earth Sciences 26 (1), 105–120. https://doi.org/10.1016/j.jseaes.2004.10.003.; Meinert L.D., 1992. Skarns and Skarn Deposits. Geoscience Canada 19 (4), 145–162.; Mitchell R.H., 2005. Carbonatites and Carbonatites and Carbonatites. The Canadian Mineralogist 43 (6), 2049–2068. https://doi.org/10.2113/gscanmin.43.6.2049.; Mollo S., Gaeta M., Freda C., Di Rocco T., Misiti V., Scarlato P., 2010. Carbonate Assimilation in Magmas: A Reappraisal Based on Experimental Petrology. Lithos 114 (3–4), 503–514.; Проскурнин В.Ф., Петров О.В., Гавриш А.В., Падерин П.Г., Мозолева И.Н., Петрушков Б.С., Багаева А.А. Раннемезозойский пояс карбонатитов полуострова Таймыр // Литосфера. 2010. № 3. С. 95–102.; Roberts D., Zwaan K.B., 2007. Marble Dykes Emanating from Marble Layers in an Amphibolite-Facies, Multiply-Deformed Carbonate Succession, Troms, Northern Norway. Geological Magazine 144 (5), 883–888. https://doi.org/10.1017/S0016756807003810.; Santos R.V., dos Santos E.J., de Souza Neto J.A., Carmona L.C.M., Sial A.N., Mancini L.H., de Lira Santos L.C.M., do Nascimento G.H., Mendes L.U.S., Anastácio E.M.F., 2013. Isotope Geochemistry of Paleoproterozoic Metacarbonates from Itatuba, Borborema Province, Northeastern Brazil: Evidence of Marble Melting Within a Collisional Suture. Gondwana Research 23 (1), 380–389. https://doi.org/10.1016/j.gr.2012.04.010.; Метаморфизм и тектоника: Учебное пособие / Ред. Е.В. Скляров. М.: Интермет Инжиниринг, 2001. 216 с.; Sklyarov E.V., Fedorovsky V.S., Kotov A.B., Lavrenchuk A.V., Mazukabzov A.M., Levitsky V.I., Sal’nikova E.B., Starikova A.E., Yakovleva S.Z., Anisimova I.V., Fedoseenko A.M., 2009. Carbonatites in Collisional Settings and Pseudo-Carbonatites of the Early Paleozoic Ol’khon Collisional System. Russian Geology and Geophysics 50 (12), 1091–1106. https://doi.org/10.1016/j.rgg.2009.11.008.; Sklyarov E.V., Fedorovsky V.S., Kotov A.B., Lavrenchuk A.V., Mazukabzov A.M., Starikova A.E., 2013. Carbonate and Silicate-Carbonate Injection Complexes in Collision Systems: The West Baikal Region as an Example. Geotectonics 47 (3), 180–196. https://doi.org/10.1134/S0016852113020064.; Sklyarov E.V., Lavrenchuk A.V., Doroshkevich A.G., Starikova A.E., Kanakin S.V., 2021. Pyroxenite as a Product of Mafic-Carbonate Melt Interaction (Tazheran Massif, West Baikal Area, Russia). Minerals 11 (6), 654. https://doi.org/10.3390/min11060654.; Sklyarov E.V., Lavrenchuk A.V., Fedorovsky V.S., Gladkochub D.P., Donskaya T.V., Kotov A.B., Mazukabzov A.M., Starikova A.E., 2020. Regional, Contact Metamorphism, and Autometamorphism of the Olkhon Terrane (West Baikal Area). Petrology 28, 47–61. https://doi.org/10.1134/S0869591120010051.; Скляров Е.В., Лавренчук А.В., Мазукабзов А.М. Дайки мраморов и кальцифиров Ольхонского композитного террейна (Западное Прибайкалье, Россия). Геодинамика и тектонофизика. 2022. T. 13. № 5. 0667. https://doi.org/10.5800/GT-2022-13-5-0667.; Sklyarov E.V., Lavrenchuk A.V., Semenova D.V., 2024. Assimilation of Carbonates by Mafic Magma: Fassaite Gabbro of the Olkhon Terrane (Western Baikal Region). Doklady Earth Sciences 519, 1860–1867. https://doi.org/10.1134/S1028334X24603055.; Su B.-X., Wang S.-Y., Dharmapriya P.L., Wang J., Malaviarachchi S.P.K., Yang K.-F., Fan H.-R., 2024a. Crustal Anatectic Origin of the Pegmatitic Carbonate Rocks in the Proterozoic Highland Complex, Sri Lanka. Contribution to Mineralogy and Petrology 179, 96. https://doi.org/10.1007/s00410-024-02178-1.; Su B.-X., Wang S.-Y., Wang J., Fan H.-R., 2024b. Crustal-Derived Versus Mantle-Derived Carbonatites. Lithos 488–489, 107826. https://doi.org/10.1016/j.lithos.2024.107826.; Vuorinen J.H., Skelton A.D.L., 2004. Origin of Silicate Minerals in Carbonatites from Alnö Island, Sweden: Magmatic Crystallization or Wall Rock Assimilation? Terra Nova 16 (4), 210–215. https://doi.org/10.1111/j.1365-3121.2004.00557.x.; Wan Y., Liu D., Xu Z., Dong C., Wang Z., Zhou H., Yang Z., Liu Z., Wu J., 2008. Paleoproterozoic Crustally Derived Carbonate-Rich Magmatic Rocks from the Daqinshan Area, North China Craton: Geological, Petrographical, Geochronological and Geochemical (Hf, Nd, O and C) Evidence. American Journal of Science 308 (3), 351–378. https://doi.org/10.2475/03.2008.07.; Wang Ch., Foley S.F., Liu Y., Wang Y., Xu Y.-G., 2023. Origin of Carbonate Melts in Orogenic Belts by Anatexis of Downthrust Carbonate Sediments. Earth and Planetary Science Letters 619, 18303. https://doi.org/10.1016/j.epsl.2023.118303.; Warr L.N., 2021. IMA–CNMNC Approved Mineral Symbols. Mineralogical Magazine 85 (3), 291–320. https://doi.org/10.1180/mgm.2021.43.; Watkinson D.H., Wyllie P.J., 1971. Experimental Study of the Composition Join NaAlSiO4–CaCO3–H2O and the Genesis of Alkalic Rock-Carbonatite Complexes. Journal of Petrology 12 (2), 357–378. https://doi.org/10.1093/petrology/12.2.357.; Wickramasinghe W.A.G.K., Madugalla T.B.N.S., Athurupana B., Zhao L., Zhai M., Li X., Pitawala H.M.T.G.A., 2024. An Unusual Occurrence of Carbonatites Derived from the Crust in the UHT Granulite Facies Metamorphic Terrain of Sri Lanka. Precambrian Researches 450, 107502. https://doi.org/10.1016/j.precamres.2024.107502.; Wu H., Zhu W., Ge R., 2022. Evidence for Carbonatite Derived from the Earth’s Crust: The Late Paleoproterozoic Carbonate-Rich Magmatic Rocks in the Southeast Tarim Craton, Northwest China. Precambrian Research 369 (5), 106425. https://doi.org/10.1016/j.precamres.2021.106425.; Wyllie P.J., Tuttle O.F., 1960. The System CaO-CO2-H2O and the Origin of Carbonatites. Journal of Petrology 1 (1), 1–46. https://doi.org/10.1093/petrology/1.1.1.; Yang J.Q., Wan Y.S., Liu Y.S., Xin H.T., Zhang S.R., Li M.Z., 2012. Discovery of Paleoproterozoic Crustally Derived Carbonatite in the Northern Altyn Tagh. Earth Science 37 (5), 929–936. DOI:10.3799/dqkx.2012.101.; Yarmolyuk V.V., Kuzmin M.I., Vorontsov A.A., 2013. West Pacific-Type Convergent Boundaries and Their Role in the Formation of the Central Asian Fold Belt. Russian Geology and Geophysics 54 (12), 1427–1441. https://doi.org/10.1016/j.rgg.2013.10.012.; Yaxley G.M., Brey G.P., 2004. Phase Relations of Carbonate-Bearing Eclogite Assemblages from 2.5 to 5.5 GPa: Implications for Petrogenesis of Carbonatites. Contributions to Mineralogy and Petrology 146, 606–619. https://doi.org/10.1007/s00410-003-0517-3.

  16. 16

    Popis souboru: text

    Relation: http://repo.kscnet.ru/4887/1/art93_2025.pdf; Калачева Е.Г. , Сергеева А.В. , Волошина Е.В. , Эрдниева Д.Ю. , Богатко Н.П. , Мельников Д.В. ORCID logoorcid:0000-0001-6882-3124 (2025) Пепел вулкана Шивелуч (п-ов Камчатка): эколого-геохимическая характеристика водных вытяжек // Вулканизм и связанные с ним процессы. Материалы XXVIII ежегодной научной конференции, посвященной Дню вулканолога, 24-29 марта 2025 г. Петропавловск-Камчатский: ИВиС ДВО РАН. С. 362-365.

  17. 17

    Popis souboru: text

    Relation: http://repo.kscnet.ru/4886/1/art75_2025.pdf; Мельников Д.В. ORCID logoorcid:0000-0001-6882-3124 , Калачева Е.Г. , Таран Ю.А. (2025) Первые данные о диффузионном почвенном потоке CO2 в районе Нижне-Щапинских термальных источников (Камчатка) // Вулканизм и связанные с ним процессы. Материалы XXVIII ежегодной научной конференции, посвященной Дню вулканолога, 24-29 марта 2025 г. Петропавловск-Камчатский: ИВиС ДВО РАН. С. 297-300.

  18. 18
  19. 19
  20. 20