Suchergebnisse - "генетический маркер"

  1. 1

    Weitere Verfasser: A. A. Makarova P. M. Melnikova A. D. Rogachev et al.

    Quelle: Vavilov Journal of Genetics and Breeding; Том 28, № 8 (2024); 927-939 ; Вавиловский журнал генетики и селекции; Том 28, № 8 (2024); 927-939 ; 2500-3259 ; 10.18699/vjgb-24-88

    Dateibeschreibung: application/pdf

    Relation: https://vavilov.elpub.ru/jour/article/view/4414/1899; Alexander G.E. Biology of Parkinson’s disease: pathogenesis and pathophysiology of a multisystem neurodegenerative disorder. Dialogues Clin. Neurosci. 2004;6(3):259-280. doi 10.31887/DCNS.2004.6.3/galexander; Ashby E.L., Kierzkowska M., Hull J., Kehoe P.G., Hutson S.M., Conway M.E. Altered expression of human mitochondrial branched chain aminotransferase in dementia with Lewy bodies and vascular dementia. Neurochem. Res. 2017;42(1):306-319. doi 10.1007/s11064-016-1855-7; Binder H., Wirth H., Arakelyan A., Lembcke K., Tiys E.S., Ivanisenko V.A., Kolchanov N.A., Kononikhin A., Popov I., Nikolaev E.N., Pastushkova L.K., Larina I.M. Time-course human urine proteomics in space-flight simulation experiments. BMC Genomics. 2014; 15(S12):S2. doi 10.1186/1471-2164-15-S12-S2; Børglum A.D., Flint T., Hansen L.L., Kruse T.A. Refined localization of the pyruvate dehydrogenase E1α gene (PDHA1) by linkage analysis. Hum. Genet. 1996;99(1):80-82. doi 10.1007/s004390050315; Braak H., Tredici K.D., Rüb U., De Vos R.A.I., Jansen Steur E.N.H., Braak E. Staging of brain pathology related to sporadic Parkinson’s disease. Neurobiol. Aging. 2003;24(2):197-211. doi 10.1016/S0197-4580(02)00065-9; Bragina E.Yu., Tiys E.S., Freidin M.B., Koneva L.A., Demenkov P.S., Ivanisenko V.A., Kolchanov N.A., Puzyrev V.P. Insights into pathophysiology of dystropy through the analysis of gene networks: an example of bronchial asthma and tuberculosis. Immunogenetics. 2014;66(7-8):457-465. doi 10.1007/s00251-014-0786-1; Bragina E.Yu., Tiys E.S., Rudko A.A., Ivanisenko V.A., Freidin M.B. Novel tuberculosis susceptibility candidate genes revealed by the reconstruction and analysis of associative networks. Infect. Genet. Evol. 2016;46:118-123. doi 10.1016/j.meegid.2016.10.030; Bragina E.Yu., Gomboeva D.E., Saik O.V., Ivanisenko V.A., Freidin M.B., Nazarenko M.S., Puzyrev V.P. Apoptosis genes as a key to identification of inverse comorbidity of Huntington’s disease and cancer. Int. J. Mol. Sci. 2023;24(11):9385. doi 10.3390/ijms24119385; Che Mohd Nassir C.M.N., Damodaran T., Yusof S.R., Norazit A., Chilla G., Huen I., Kn B.P., Mohamed Ibrahim N., Mustapha M. Aberrant neurogliovascular unit dynamics in cerebral small vessel disease: a rheological clue to vascular Parkinsonism. Pharmaceutics. 2021;13(8):1207. doi 10.3390/pharmaceutics13081207; Chen C.-H., Joshi A.U., Mochly-Rosen D. The role of mitochondrial aldehyde dehydrogenase 2 (ALDH2) in neuropathology and neurodegeneration. Acta Neurol. Taiwan. 2016;25(4)(4):111-123; Chen Y., Liu Q., Liu J., Wei P., Li B., Wang N., Liu Z., Wang Z. Revealing the modular similarities and differences among Alzheimer’s disease, vascular dementia, and Parkinson’s disease in genomic networks. Neuromol. Med. 2022;24(2):125-138. doi 10.1007/s12017-021-08670-2; Chen Y.-F., Tseng Y.-L., Lan M.-Y., Lai S.-L., Su C.-S., Liu J.-S., Chang Y.-Y. The relationship of leukoaraiosis and the clinical severity of vascular Parkinsonism. J. Neurol. Sci. 2014;346(1-2):255-259. doi 10.1016/j.jns.2014.09.002; Chiu C.-C., Yeh T.-H., Lai S.-C., Wu-Chou Y.-H., Chen C.-H., Mochly-Rosen D., Huang Y.-C., Chen Y.-J., Chen C.-L., Chang Y.-M., Wang H.-L., Lu C.-S. Neuroprotective effects of aldehyde dehydrogenase 2 activation in rotenone-induced cellular and animal models of parkinsonism. Exp. Neurol. 2015;263:244-253. doi 10.1016/j.expneurol.2014.09.016; Dalangin R., Kim A., Campbell R.E. The role of amino acids in neurotransmission and fluorescent tools for their detection. Int. J. Mol. Sci. 2020;21(17):6197. doi 10.3390/ijms21176197; De Holanda Paranhos L., Magalhães R.S.S., De Araújo Brasil A., Neto J.R.M., Ribeiro G.D., Queiroz D.D., Dos Santos V.M., Eleutherio E.C.A. The familial amyotrophic lateral sclerosis-associated A4V SOD1 mutant is not able to regulate aerobic glycolysis. Biochim. Biophys. Acta Gen. Subjt. 2024;1868(8):130634. doi 10.1016/j.bbagen.2024.130634; Demenkov P.S., Ivanisenko T.V., Kolchanov N.A., Ivanisenko V.A. ANDVisio: a new tool for graphic visualization and analysis of literature mined associative gene networks in the ANDSystem. In Silico Biol. 2012;11(3-4):149-161. doi 10.3233/ISB-2012-0449; Dimas P., Montani L., Pereira J.A., Moreno D., Trötzmüller M., Gerber J., Semenkovich C.F., Köfeler H.C., Suter U. CNS myelination and remyelination depend on fatty acid synthesis by oligodendrocytes. eLife. 2019;8:e44702. doi 10.7554/eLife.44702; Ferrari M., Martignoni E., Blandini F., Riboldazzi G., Bono G., Marino F., Cosentino M. Association of UDP-glucuronosyltransferase 1A9 polymorphisms with adverse reactions to catechol-O-methyltransferase inhibitors in Parkinson’s disease patients. Eur. J. Clin. Pharmacol. 2012;68(11):1493-1499. doi 10.1007/s00228-012-1281-y; George G., Singh S., Lokappa S.B., Varkey J. Gene co-expression network analysis for identifying genetic markers in Parkinson’s disease – a three-way comparative approach. Genomics. 2019a;111(4): 819-830. doi 10.1016/j.ygeno.2018.05.005; George G., Valiya Parambath S., Lokappa S.B., Varkey J. Construction of Parkinson’s disease marker-based weighted protein-protein interaction network for prioritization of co-expressed genes. Gene. 2019b;697:67-77. doi 10.1016/j.gene.2019.02.026; Grassi D., Howard S., Zhou M., Diaz-Perez N., Urban N.T., Guerrero-Given D., Kamasawa N., Volpicelli-Daley L.A., LoGrasso P., Lasmézas C.I. Identification of a highly neurotoxic α-synuclein species inducing mitochondrial damage and mitophagy in Parkinson’s disease. Proc. Natl. Acad. Sci. USA. 2018;115(11):E2634-E2643. doi 10.1073/pnas.1713849115; Grünblatt E., Riederer P. Aldehyde dehydrogenase (ALDH) in Alzheimer’s and Parkinson’s disease. J. Neural. Transm. 2016;123(2): 83-90. doi 10.1007/s00702-014-1320-1; Ivanisenko T.V., Saik O.V., Demenkov P.S., Ivanisenko N.V., Savostianov A.N., Ivanisenko V.A. ANDDigest: a new web-based module of ANDSystem for the search of knowledge in the scientific literature. BMC Bioinformatics. 2020;21(S11):228. doi 10.1186/s12859-020-03557-8; Ivanisenko T.V., Demenkov P.S., Kolchanov N.A., Ivanisenko V.A. The new version of the ANDDigest tool with improved ai-based short names recognition. Int. J. Mol. Sci. 2022;23(23):14934. doi 10.3390/ijms232314934; Ivanisenko V.A., Saik O.V., Ivanisenko N.V., Tiys E.S., Ivanisenko T.V., Demenkov P.S., Kolchanov N.A. ANDSystem: an Associative Network Discovery System for automated literature mining in the field of biology. BMC Syst. Biol. 2015;9(Suppl.2):S2. doi 10.1186/1752-0509-9-S2-S2; Ivanisenko V.A., Demenkov P.S., Ivanisenko T.V., Mishchenko E.L., Saik O.V. A new version of the ANDSystem tool for automatic extraction of knowledge from scientific publications with expanded functionality for reconstruction of associative gene networks by considering tissue-specific gene expression. BMC Bioinformatics. 2019; 20(S1):34. doi 10.1186/s12859-018-2567-6; Ivanisenko V.A., Gaisler E.V., Basov N.V., Rogachev A.D., Cheresiz S.V., Ivanisenko T.V., Demenkov P.S., Mishchenko E.L., Khripko O.P., Khripko Yu.I., Voevoda S.M., Karpenko T.N., Velichko A.J., Voevoda M.I., Kolchanov N.A., Pokrovsky A.G. Plasma metabolomics and gene regulatory networks analysis reveal the role of nonstructural SARS-CoV-2 viral proteins in metabolic dysregulation in COVID-19 patients. Sci. Rep. 2022;12(1):19977. doi 10.1038/s41598-022-24170-0; Ivanisenko V.A., Basov N.V., Makarova A.A., Venzel A.S., Rogachev A.D., Demenkov P.S., Ivanisenko T.V., Kleshchev M.A., Gaisler E.V., Moroz G.B., Plesko V.V., Sotnikova Y.S., Patrushev Y.V., Lomivorotov V.V., Kolchanov N.A., Pokrovsky A.G. Gene networks for use in metabolomic data analysis of blood plasma from patients with postoperative delirium. Vavilov J. Genet. Breed. 2023;27(7): 768-775. doi 10.18699/VJGB-23-89; Jones L.L., McDonald D.A., Borum P.R. Acylcarnitines: role in brain. Prog. Lipid Res. 2010;49(1):61-75. doi 10.1016/j.plipres.2009.08.004; Kanehisa M. KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 2000;28(1):27-30. doi 10.1093/nar/28.1.27; Kasakin M.F., Rogachev A.D., Predtechenskaya E.V., Zaigraev V.J., Koval V.V., Pokrovsky A.G. Targeted metabolomics approach for identification of relapsing-remitting multiple sclerosis markers and evaluation of diagnostic models. Med. Chem. Commun. 2019;10(10): 1803-1809. doi 10.1039/c9md00253g; Korczyn A.D. Vascular Parkinsonism – characteristics, pathogenesis and treatment. Nat. Rev. Neurol. 2015;11(6):319-326. doi 10.1038/nrneurol.2015.61; Larina I.M., Pastushkova L.Kh., Tiys E.S., Kireev K.S., Kononikhin A.S., Starodubtseva N.L., Popov I.A., Custaud M.-A., Dobrokhotov I.V., Nikolaev E.N., Kolchanov N.A., Ivanisenko V.A. Permanent proteins in the urine of healthy humans during the Mars-500 experiment. J. Bioinform. Comput. Biol. 2015;13(01):1540001. doi 10.1142/S0219720015400016; Levin O.S., Bogolepova A.N., Lobzin V.Yu. General mechanisms of the pathogenesis of neurodenerative and cerebrovascular diseases and the possibilities of their correction. Zhurnal Nevrologii i Psikhiatrii Imeni S.S. Korsakova = S.S. Korsakov Journal of Neurology and Psychiatry. 2022;122(5):11-16. doi 10.17116/jnevro202212205111 (in Russian); Lin L., Tao J.-P., Li M., Peng J., Zhou C., Ouyang J., Si Y.-Y. Mechanism of ALDH2 improves the neuronal damage caused by hypoxia/reoxygenation. Eur. Rev. Med. Pharmacol. Sci. 2022;26(8):2712-2720. doi 10.26355/eurrev_202204_28601; Maksoud E., Liao E.H., Haghighi A.P. A neuron-glial trans-signaling cascade mediates LRRK2-induced neurodegeneration. Cell Rep. 2019;26(7):1774-1786.e4. doi 10.1016/j.celrep.2019.01.077; Mercatelli D., Scalambra L., Triboli L., Ray F., Giorgi F.M. Gene regulatory network inference resources: a practical overview. Biochim. Biophys. Acta Gene Regul. Mech. 2020;1863(6):194430. doi 10.1016/j.bbagrm.2019.194430; Michel T.M., Käsbauer L., Gsell W., Jecel J., Sheldrick A.J., Cortese M., Nickl-Jockschat T., Grünblatt E., Riederer P. Aldehyde dehydrogenase 2 in sporadic Parkinson’s disease. Parkinsonism Relat. Disord. 2014;20:S68-S72. doi 10.1016/S1353-8020(13)70018-X; Miki Y., Tanji K., Mori F., Kakita A., Takahashi H., Wakabayashi K. Alteration of mitochondrial protein PDHA1 in Lewy body disease and PARK14. Biochem. Biophys. Res. Commun. 2017;489(4):439-444. doi 10.1016/j.bbrc.2017.05.162; Mor D.E., Sohrabi S., Kaletsky R., Keyes W., Tartici A., Kalia V., Miller G.W., Murphy C.T. Metformin rescues Parkinson’s disease phenotypes caused by hyperactive mitochondria. Proc. Natl. Acad. Sci. USA. 2020;117(42):26438-26447. doi 10.1073/pnas.2009838117; Nalls M.A., Pankratz N., Lill C.M., Do C.B., Hernandez D.G., Saad M., DeStefano A.L., Kara E., Bras J., Sharma M., … Brice A., Scott W.K., Gasser T., Bertram L., Eriksson N., Foroud T., Singleton A.B. Large-scale meta-analysis of genome-wide association data identifies six new risk loci for Parkinson’s disease. Nat. Genet. 2014; 46(9):989-993. doi 10.1038/ng.3043; Narasimhan M., Schwartz R., Halliday G. Parkinsonism and cerebrovascular disease. J. Neurol. Sci. 2022;433:120011. doi 10.1016/j.jns.2021.120011; Narendra D.P., Jin S.M., Tanaka A., Suen D.-F., Gautier C.A., Shen J., Cookson M.R., Youle R.J. PINK1 is selectively stabilized on impaired mitochondria to activate Parkin. PLoS Biol. 2010;8(1):e1000298. doi 10.1371/journal.pbio.1000298; Odongo R., Bellur O., Abdik E., Çakır T. Brain-wide transcriptomebased metabolic alterations in Parkinson’s disease: human inter-region and human-experimental model correlations. Mol. Omics. 2023; 19(7):522-537. doi 10.1039/D2MO00343K; Okui T., Iwashita M., Rogers M.A., Halu A., Atkins S.K., Kuraoka S., Abdelhamid I., Higashi H., Ramsaroop A., Aikawa M., Singh S.A., Aikawa E. CROT (Carnitine O-Octanoyltransferase) is a novel contributing factor in vascular calcification via promoting fatty acid metabolism and mitochondrial dysfunction. Arterioscler. Thromb. Vasc. Biol. 2021;41(2):755-768. doi 10.1161/ATVBAHA.120.315007; Ostrakhovitch E.A., Song E.-S., Macedo J.K.A., Gentry M.S., Quintero J.E., Van Horne C., Yamasaki T.R. Analysis of circulating metabolites to differentiate Parkinson’s disease and essential tremor. Neurosci. Lett. 2022;769:136428. doi10.1016/j.neulet.2021.136428; Pastushkova L.Kh., Kireev K.S., Kononikhin A.S., Tiys E.S., Popov I.A., Starodubtseva N.L., Dobrokhotov I.V., Ivanisenko V.A., Larina I.M., Kolchanov N.A., Nikolaev E.N. Detection of renal tissue and urinary tract proteins in the human urine after space flight. PLoS One. 2013;8(8):e71652. doi 10.1371/journal.pone.0071652; Pastushkova L.Kh., Kashirina D.N., Brzhozovskiy A.G., Kononikhin A.S., Tiys E.S., Ivanisenko V.A., Koloteva M.I., Nikolaev E.N., Larina I.M. Evaluation of cardiovascular system state by urine proteome after manned space flight. Acta Astronaut. 2019;160:594-600. doi 10.1016/j.actaastro.2019.02.015; Pavlú-Pereira H., Florindo C., Carvalho F., Tavares De Almeida I., Vicente J., Morais V., Rivera I. Evaluation of mitochondrial function on pyruvate dehydrogenase complex deficient patient-derived cell lines. Endocr. Metab. Immune Disord. Drug Targets. 2024;24(16):20. doi 10.2174/0118715303280072231004082458; Penney J., Tsurudome K., Liao E.H., Kauwe G., Gray L., Yanagiya A., Calderon M.R., Sonenberg N., Haghighi A.P. LRRK2 regulates retrograde synaptic compensation at the Drosophila neuromuscular junction. Nat. Commun. 2016;7(1):12188. doi 10.1038/ncomms12188; Rappaport N., Twik M., Nativ N., Stelzer G., Bahir I., Stein T.I., Safran M., Lancet D. MalaCards: a comprehensive automaticallymined database of human diseases. Curr. Protoc. Bioinformatics. 2014;47(1):1.24.1-19. doi 10.1002/0471250953.bi0124s47; Rocha E.M., De Miranda B., Sanders L.H. Alpha-synuclein: pathology, mitochondrial dysfunction and neuroinflammation in Parkinson’s disease. Neurobiol. Dis. 2018;109:249-257. doi 10.1016/j.nbd.2017.04.004; Rogachev A.D., Alemasov N.A., Ivanisenko V.A., Ivanisenko N.V., Gaisler E.V., Oleshko O.S., Cheresiz S.V., Mishinov S.V., Stupak V.V., Pokrovsky A.G. Correlation of metabolic profiles of plasma and cerebrospinal fluid of high-grade glioma patients. Metabolites. 2021;11(3):133. doi 10.3390/metabo11030133; Saik O.V., Ivanisenko T.V., Demenkov P.S., Ivanisenko V.A. Interactome of the hepatitis C virus: literature mining with ANDSystem. Virus Res. 2016;218:40-48. doi 10.1016/j.virusres.2015.12.003; Saik O.V., Demenkov P.S., Ivanisenko T.V., Bragina E.Yu., Freidin M.B., Dosenko V.E., Zolotareva O.I., Choynzonov E.L., Hofestaedt R., Ivanisenko V.A. Search for new candidate genes involved in the comorbidity of asthma and hypertension based on automatic analysis of scientific literature. J. Integr. Bioinform. 2018; 15(4):20180054. doi 10.1515/jib-2018-0054; Saik O.V., Nimaev V.V., Usmonov D.B., Demenkov P.S., Ivanisenko T.V., Lavrik I.N., Ivanisenko V.A. Prioritization of genes involved in endothelial cell apoptosis by their implication in lymphedema using an analysis of associative gene networks with ANDSystem. BMC Med. Genomics. 2019;12(S2):47. doi 10.1186/s12920-019-0492-9; Saiki S., Hatano T., Fujimaki M., Ishikawa K.-I., Mori A., Oji Y., Okuzumi A., Fukuhara T., Koinuma T., Imamichi Y., Nagumo M., Furuya N., Nojiri S., Amo T., Yamashiro K., Hattori N. Decreased long-chain acylcarnitines from insufficient β-oxidation as potential early diagnostic markers for Parkinson’s disease. Sci. Rep. 2017; 7(1):7328. doi 10.1038/s41598-017-06767-y; Schlaepfer I.R., Joshi M. CPT1A-mediated fat oxidation, mechanisms, and therapeutic potential. Endocrinology. 2020;161(2):bqz046. doi 10.1210/endocr/bqz046; Shortall K., Djeghader A., Magner E., Soulimane T. Insights into aldehyde dehydrogenase enzymes: a structural perspective. Front. Mol. Biosci. 2021;8:659550. doi 10.3389/fmolb.2021.659550; Sohrabi S., Mor D.E., Kaletsky R., Keyes W., Murphy C.T. Highthroughput behavioral screen in C. elegans reveals Parkinson’s disease drug candidates. Commun. Biol. 2021;4(1):203. doi 10.1038/s42003-021-01731-z; Song M., Schnettler E., Venkatachalam A., Wang Y., Feldman L., Argenta P., Rodriguez-Rodriguez L., Ramakrishnan S. Increased expression of collagen prolyl hydroxylases in ovarian cancer is associated with cancer growth and metastasis. Am. J. Cancer Res. 2023;13(12):6051-6062; Thanvi B., Lo N., Robinson T. Vascular parkinsonism – an important cause of parkinsonism in older people. Age Ageing. 2005;34(2): 114-119. doi 10.1093/ageing/afi025; Tomkins J.E., Manzoni C. Advances in protein-protein interaction network analysis for Parkinson’s disease. Neurobiol. Dis. 2021;155: 105395. doi 10.1016/j.nbd.2021.105395; Trabjerg M.S., Andersen D.C., Huntjens P., Mørk K., Warming N., Kullab U.B., Skjønnemand M.-L.N., Oklinski M.K., Oklinski K.E., Bolther L., Kroese L.J., Pritchard C.E.J., Huijbers I.J., Corthals A., Søndergaard M.T., Kjeldal H.B., Pedersen C.F.M., Nieland J.D.V. Inhibition of carnitine palmitoyl-transferase 1 is a potential target in a mouse model of Parkinson’s disease. NPJ Parkinsons Dis. 2023; 9(1):6. doi 10.1038/s41531-023-00450-y; Tukey R.H., Strassburg C.P. Human UDP-glucuronosyltransferases: metabolism, expression, and disease. Annu. Rev. Pharmacol. Toxicol. 2000;40(1):581-616. doi 10.1146/annurev.pharmtox.40.1.581; Urban D., Lorenz J., Meyborg H., Ghosh S., Kintscher U., Kaufmann J., Fleck E., Kappert K., Stawowy P. Proprotein convertase furin enhances survival and migration of vascular smooth muscle cells via processing of pro-nerve growth factor. J. Biochem. 2013;153(2): 197-207. doi 10.1093/jb/mvs137; Vale T.C., Barbosa M.T., Caramelli P., Cardoso F. Vascular Parkinsonism and cognitive impairment: literature review, Brazilian studies and case vignettes. Dement. Neuropsychol. 2012;6(3):137-144. doi 10.1590/S1980-57642012DN06030005; Valente E.M., Abou-Sleiman P.M., Caputo V., Muqit M.M.K., Harvey K., Gispert S., Ali Z., Del Turco D., Bentivoglio A.R., Healy D.G., Albanese A., Nussbaum R., González-Maldonado R., Deller T., Salvi S., Cortelli P., Gilks W.P., Latchman D.S., Harvey R.J., Dallapiccola B., Auburger G., Wood N.W. Hereditary early-onset Parkinson’s disease caused by mutations in PINK1. Science. 2004;304(5674):1158-1160. doi 10.1126/science.1096284; Virmani A., Pinto L., Bauermann O., Zerelli S., Diedenhofen A., Binienda Z.K., Ali S.F., Van Der Leij F.R. The carnitine palmitoyl transferase (CPT) system and possible relevance for neuropsychiatric and neurological conditions. Mol. Neurobiol. 2015;52(2): 826-836. doi 10.1007/s12035-015-9238-7; Vos M., Geens A., Böhm C., Deaulmerie L., Swerts J., Rossi M., Craessaerts K., Leites E.P., Seibler P., Rakovic A., Lohnau T., De Strooper B., Fendt S.-M., Morais V.A., Klein C., Verstreken P. Cardiolipin promotes electron transport between ubiquinone and complex I to rescue PINK1 deficiency. J. Cell Biol. 2017;216(3):695-708. doi 10.1083/jcb.201511044; Wang Mingyue, Xie Y., Qin D. Proteolytic cleavage of proBDNF to mBDNF in neuropsychiatric and neurodegenerative diseases. Brain Res. Bull. 2021;166:172-184. doi 10.1016/j.brainresbull.2020.11.005; Wang Muyun, Wang K., Liao X., Hu H., Chen L., Meng L., Gao W., Li Q. Carnitine palmitoyltransferase system: a new target for antiinflammatory and anticancer therapy? Front. Pharmacol. 2021;12: 760581. doi 10.3389/fphar.2021.760581; Wang Yu, Yu W., Li S., Guo D., He J., Wang Yugang. Acetyl-CoA carboxylases and diseases. Front. Oncol. 2022;12:836058. doi 10.3389/fonc.2022.836058; Wey M.C.-Y., Fernandez E., Martinez P.A., Sullivan P., Goldstein D.S., Strong R. Neurodegeneration and motor dysfunction in mice lacking cytosolic and mitochondrial aldehyde dehydrogenases: implications for Parkinson’s disease. PLoS One. 2012;7(2):e31522. doi 10.1371/journal.pone.0031522; Wichaiyo S., Koonyosying P., Morales N.P. Functional roles of furin in cardio-cerebrovascular diseases. ACS Pharmacol. Transl. Sci. 2024; 7(3):570-585. doi 10.1021/acsptsci.3c00325; Wishart D.S., Guo A., Oler E., Wang F., Anjum A., Peters H., Dizon R., Sayeeda Z., Tian S., Lee B.L., Berjanskii M., Mah R., Yamamoto M., Jovel J., Torres-Calzada C., Hiebert-Giesbrecht M., Lui V.W., Varshavi Dorna, Varshavi Dorsa, Allen D., Arndt D., Khetarpal N., Sivakumaran A., Harford K., Sanford S., Yee K., Cao X., Budinski Z., Liigand J., Zhang L., Zheng J., Mandal R., Karu N., Dambrova M., Schiöth H.B., Greiner R., Gautam V. HMDB 5.0: the human metabolome database for 2022. Nucleic Acids Res. 2022;50(D1): D622-D631. doi 10.1093/nar/gkab1062; Wuolikainen A., Jonsson P., Ahnlund M., Antti H., Marklund S.L., Moritz T., Forsgren L., Andersen P.M., Trupp M. Multi-platform mass spectrometry analysis of the CSF and plasma metabolomes of rigorously matched amyotrophic lateral sclerosis, Parkinson’s di sease and control subjects. Mol. BioSyst. 2016;12(4):1287-1298. doi 10.1039/C5MB00711A; Xu Y., Xia D., Huang K., Liang M. Hypoxia-induced P4HA1 overexpression promotes post-ischemic angiogenesis by enhancing endothelial glycolysis through downregulating FBP1. J. Transl. Med. 2024;22(1):74. doi 10.1186/s12967-024-04872-x; Yakala G.K., Cabrera-Fuentes H.A., Crespo-Avilan G.E., Rattanasopa C., Burlacu A., George B.L., Anand K., Mayan D.C., Corlianò M., Hernández-Reséndiz S., Wu Z., Schwerk A.M.K., Tan A.L.J., Trigueros-Motos L., Chèvre R., Chua T., Kleemann R., Liehn E.A., Hausenloy D.J., Ghosh S., Singaraja R.R. FURIN inhibition reduces vascular remodeling and atherosclerotic lesion progression in mice. Arterioscler. Thromb. Vasc. Biol. 2019;39(3):387-401. doi 10.1161/ATVBAHA.118.311903; Yamada M., Hayashi H., Yuuki M., Matsushima N., Yuan B., Takagi N. Furin inhibitor protects against neuronal cell death induced by activated NMDA receptors. Sci. Rep. 2018;8(1):5212. doi 10.1038/s41598-018-23567-0; Yao V., Kaletsky R., Keyes W., Mor D.E., Wong A.K., Sohrabi S., Murphy C.T., Troyanskaya O.G. An integrative tissue-network approach to identify and test human disease genes. Nat. Biotechnol. 2018;36(11):1091-1099. doi 10.1038/nbt.4246; Zhao H., Wang C., Zhao N., Li W., Yang Z., Liu X., Le W., Zhang X. Potential biomarkers of Parkinson’s disease revealed by plasma metabolic profiling. J. Chromatogr. B. 2018;1081-1082:101-108. doi 10.1016/j.jchromb.2018.01.025; Zijlmans J.C.M., Thijssen H.O.M., Vogels O.J.M., Kremer H.P.H.M.P., Poels P.J.E., Schoonderwaldt H.C., Merx J.L., van’t Hof M.A., Thien Th., Horstink M.W.I.M. MRI in patients with suspected vascular parkinsonism. Neurology. 1995;45(12):2183-2188. doi 10.1212/WNL.45.12.2183; Zolotareva O., Saik O.V., Königs C., Bragina E.Yu., Goncharova I.A., Freidin M.B., Dosenko V.E., Ivanisenko V.A., Hofestädt R. Comorbidity of asthma and hypertension may be mediated by shared genetic dysregulation and drug side effects. Sci. Rep. 2019;9(1): 16302. doi 10.1038/s41598-019-52762-w; https://vavilov.elpub.ru/jour/article/view/4414

  2. 2

    Quelle: Advances in Molecular Oncology; Том 11, № 3 (2024); 114-125 ; Успехи молекулярной онкологии; Том 11, № 3 (2024); 114-125 ; 2413-3787 ; 2313-805X

    Dateibeschreibung: application/pdf

    Relation: https://umo.abvpress.ru/jour/article/view/713/366; Louis D.N., Perry A., Wesseling P. et al. The 2021 WHO classification of tumors of the central nervous system: a summary. Neuro Oncol 2021;23(8):1231–51. DOI:10.1093/neuonc/noab190; Marien E., Meister M., Muley T. et al. Non-small cell lung cancer is characterized by dramatic changes in phospholipid profiles. Int J Cancer 2015;137(7):1539–48. DOI:10.1002/ijc.29517; Bensaad K., Favaro E., Lewis C.A. et al. Fatty acid uptake and lipid storage induced by HIF-1α contribute to cell growth and survival after hypoxia-reoxygenation. Cell Rep 2014;9(1):349–65. DOI:10.1016/j.celrep.2014.08.056; Guo D., Bell E.H., Chakravarti A. Lipid metabolism emerges as a promising target for malignant glioma therapy. CNS Oncol 2013;2(3):289–99. DOI:10.2217/cns.13.20; El Khayari A., Bouchmaa N., Taib B. et al. Metabolic rewiring in glioblastoma cancer: EGFR, IDH and beyond. Front Oncol 2022;12:901–51. DOI:10.3389/fonc.2022.901951; Zhou J., Ji N., Wang G. et al. Metabolic detection of malignant brain gliomas through plasma lipidomic analysis and support vector machine-based machine learning. BioMedicine 2022;81:104097. DOI:10.1016/j.ebiom.2022.104097; Wu X., Geng F., Cheng X. et al. Lipid droplets maintain energy homeostasis and glioblastoma growth via autophagic release of stored fatty acids. iScience 2020;23(10):1–11. DOI:10.1016/j.isci.2020.101569; Шаршунова М., Шварц В., Михалец Ч. Тонкослойная хроматография в фармации и клинической биохимии: в 2 т. М., Мир, 1980. 295 с.; Кузьмина Е.И., Нелюбин А.С., Щенникова М.К. Применение индуцированной хемилюминесценции для оценки свободно-радикальных реакций в биологических субстратах. В кн.: Межвузовский сборник биохимии и биофизики микроорганизмов. Горький: Волго-Вятское издательство, 1983. С. 179–183.; Горяинова Е.Р., Панков А.Р., Платонова Е.Н. Прикладные методы анализа статистических данных: учеб. пособие для вузов. М.: Издательский дом Высшей школы экономики, 2012. С. 113–151.; Eibinger G., Fauler G., Bernhart E. et al. On the role of 25-hydroxycholesterol synthesis by glioblastoma cell lines. Implications for chemo-tactic monocyte recruitment. Exp Cell Res 2013;319:1828–38. DOI:10.1016/j.yexcr.2013.03.025; Cigliano L., Spagnuolo M.S., Napolitano G. et al. 24S-hydroxychole-sterol affects redox homeostasis in human glial U-87 MG cells. Mol Cell Endocrinol 2019; 486:25–33. DOI:10.1016/j.mce.2019.02.013; Ríos-Marco P., Martín-Fernández M., Soria-Bretones I. et al. Alkylphospholipids deregulate cholesterol metabolism and induce cell-cycle arrest and autophagy in U-87 MG glioblastoma cells. Biochim Biophys Acta 2013;1831(8):1322–34. DOI:10.1016/j.bbalip.2013.05.004; Chang T.Y., Li B.L., Chang C.C., Urano Y. Acyl-coenzyme A: cholesterol acyltransferases. Am J Physiol Endocrinol Metab 2009;297:E1–9. DOI:10.1152/ajpendo.90926.2008; Geng F., Cheng X., Wu X. et al. Inhibition of SOAT1 suppresses glioblastoma growth via blocking SREBP-1-mediated lipogenesis. Clin Cancer Res 2016;22(21):5337–48. DOI:10.1158/1078-0432.ccr-17-0063; Geng F., Guo D. Lipid droplets, potential biomarker and metabolic target in glioblastoma. Intern Med Rev (Wash D C) 2017;3(5):10.18103. DOI:10.18103/imr.v3i5.443; Kou Y., Geng F., Guo D. Lipid metabolism in glioblastoma: from de novo synthesis to storage. Biomedicines 2022;10(8):1943–25. DOI:10.3390/biomedicines10081943; Deligne C., Hachani J., Duban-Deweer S. et al. Development of a human in vitro blood–brain tumor barrier model of diffuse intrinsic pontine glioma to better understand the chemoresistance. Fluids Barriers CNS 2020;17(1):37. DOI:10.1186/s12987-020-00198-0; Abbott N.J. Blood-brain barrier structure and function and the challenges for CNS drug delivery. J Inherit Metab Dis 2013;36(3):437–49. DOI:10.1007/s10545-013-9608-0; Sarkaria J.N., Hu L.S., Parney I.F. et al. Is the blood–brain barrier really disrupted in all glioblastomas? A critical assessment of existing clinical data. Neuro-Oncology 2018;20(2):184–91. DOI:10.1093/neuonc/nox175; Красникова О.В., Кондратьева А.Р., Баду С.К. и др. Потенциальные диагностические биомаркеры глиом в жидких средах организма. Журнал медико-биологических исследований 2022;10(1):52–63. DOI:10.37482/2687-1491-z090; Zhou J., Ji N., Wang G. et al. Metabolic detection of malignant brain gliomas through plasma lipidomic analysis and support vector machine-based machine learning. Articles 2022;81:1–13. DOI:10.1016/j.ebiom.2022.104097; Kao T.-J., Lin Ch.-L., Yang W.-B. et al. Dysregulated lipid metabolism in TMZ-resistant glioblastoma: pathways, proteins, metabolites and therapeutic opportunities. Lipids Health Dis 2023;22(114):1–13. DOI:10.1186/s12944-023-01881-5; Bullwinkel J., Baron-Luehr B., Ludemann A. et al. Ki-67 protein is associated with ribosomal RNA transcription in quiescent and proliferating cells. J Cell Physiol 2006;206(3):624–35. DOI:10.1002/jcp.20494; Theresia E., Malueka R.G., Pranacipta S. et al. Association between Ki-67 labeling index and histopathological grading of glioma in Indonesian population. Asian Pac J Cancer Prev 2020;21(4):1063–8. DOI:10.31557/apjcp.2020.21.4.1063; Yoda R.A., Marxen T., Longo L. et al. Mitotic index thresholds do not predict clinical outcome for IDH-mutant astrocytoma. J Neuropathol Exp Neurol 2019;78(11):1002–10. DOI:10.1093/jnen/nlz082; Dahlrot R.H., Bangsø J.A., Petersen J.K. et al. Prognostic role of Ki-67 in glioblastomas excluding contribution from nonneoplastic cells. Sci Rep 2021;11(1):17918. DOI:10.1038/s41598-021-95958-9; Chen W.J., He D.S., TangR.X. et al. Ki-67 is a valuable prognostic factor in gliomas: evidence from a systematic review and metaanalysis. Asian Pac J Cancer Prev 2015;16(2):411–20. DOI:10.7314/apjcp.2015.16.2.411; Abdul Rashid K., Ibrahim K., Wong J.H.D., Mohd Ramli N. Lipid alterations in glioma: a systematic review. Metabolites 2022;12(12):1280. DOI:10.3390/metabo12121280; Morash S.C., Cook H.W., Spence M.W. Lysophosphatidylcholine as an intermediate in phosphatidylcholine metabolism and glycerophosphocholine synthesis in cultured cells: an evaluation of the roles of 1-acyl- and 2-acyl-lysophosphatidylcholine. Biochim Biophys Acta 1989;1004(2):221–9. DOI:10.1016/0005-2760(89)90271-3; Butler M., Pongor L., Su Y.T. et al. MGMT status as a clinical biomarker in glioblastoma. Trends Cancer 2020;6(5):380–91. DOI:10.1016/j.trecan.2020.02.010; Tano K., Shiota S., Collier J et al. Isolation and structural characterization of a cDNA clone encoding the human DNA repair protein for O6-alkylguanine. Proc Nat Acad Sci USA 1990;87(2):686–90. DOI:10.1073/pnas.87.2.686; Chen X., Zhang M., Gan H. et al. A novel enhancer regulates MGMT expression and promotes temozolomide resistance in glioblastoma. Nat Commun 2018;9(1):2949. DOI:10.1038/s41467-018-05373-4; Pandith A.A., Qasim I., Zahoor W. et al. Concordant association validates MGMT methylation and protein expression as favorable prognostic factors in glioma patients on alkylating chemotherapy (temozolo-mide). Sci Rep 2018;8(1):6704. DOI:10.1038/s41598-018-25169-2; Dahlrot R.H., Larsen P., Boldt H.B. et al. Posttreatment effect of MGMT methylation level on glioblastoma survival. J Neuropathol Exp Neurol 2019;8(7):633–40. DOI:10.1093/jnen/nlz032; Aoki K., Natsume A. Overview of DNA methylation in adult diffuse gliomas. Brain Tumor Pathol 2019;36(2):8491. DOI:10.1007/s10014-019-00339-w; Huang F., Li S., Wang X. et al. Serum lipids concentration on prognosis of high-gradeglioma. Cancer Causes Control 2023;34(9):801–11. DOI:10.1007/s10552-023-01710-1; https://umo.abvpress.ru/jour/article/view/713

  3. 3
  4. 4
  5. 5

    Quelle: Cancer Urology; Том 17, № 4 (2021); 76-84 ; Онкоурология; Том 17, № 4 (2021); 76-84 ; 1996-1812 ; 1726-9776

    Dateibeschreibung: application/pdf

    Relation: https://oncourology.abvpress.ru/oncur/article/view/1398/1331; https://oncourology.abvpress.ru/oncur/article/downloadSuppFile/1398/959; Bray F., Ferlay J., Soerjomataram I. et al. Global Cancer Statistics 2018: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J Clin 2018;68(6):394-424. DOI:10.3322/caac.21492.; Аксель Е.М., Матвеев В.Б. Статистика злокачественных новообразований мочевых и мужских половых органов в России и странах бывшего СССР. Онкоурология 2019;15(2):15-24. DOI:10.17650/1726-9776-2019-15-2-15-24.; Zelic R., Garmo H., Zugna D. et al. Predicting prostate cancer death with different pretreatment risk stratification tools: a head-to-head comparison in a nationwide cohort study. Eur Urol 2020;77(2):180-8. DOI:10.1016/j.eururo.2019.09.027.; Ahdoot M., Wilbur A.R., Reese S.E. et al. MRI-targeted, systematic, and combined biopsy for prostate cancer diagnosis. N Engl J Med 2020;382:917-28. DOI:10.1056/NEJMoa1910038.; Robinson D., van Allen E.M., Wu Y.M. et al. Integrative clinical genomics of advanced prostate cancer. Cell 2015;161(5):1215-28. DOI:10.1016/j.cell.2015.05.001.; Wise H.M., Hermida M.A., Leslie N.R. Prostate cancer, PI3K, PTEN and prognosis. Clin Sci 2017;131(3):197-210. DOI:10.1042/CS20160026.; Nyquist M.D., Corella A., Coleman I. et al. Combined TP53 and RB1 loss promotes prostate cancer resistance to a spectrum of therapeutics and confers vulnerability to replication stress. Cell Rep 2020;31(8):107669. DOI:10.1016/j.celrep.2020.107669.; Castro E., Eeles R. The role of BRCA1 and BRCA2 in prostate cancer. Asian J Androl 2012;14(3):409-14. DOI:10.1038/aja.2011.150.; Reichard C.A., Stephenson A.J., Klein E.A. Molecular markers in urologic oncology. Curr Opin Urol 2016;26:225-30. DOI:10.1097/MOU.0000000000000273.; Матвеев В.Б., Киричек А.А., Савинкова А.В. и др. Влияние герминальных мутаций в гене CHEK2 на выживаемость до биохимического рецидива и безметастатическую выживаемость после радикального лечения у больных раком предстательной железы. Онкоурология 2018;14(4):53-67. DOI:10.17650/1726-9776-2018-14-4-53-67.; Eggener S.E., Rumble R.B., Armstrong A.J. et al. Molecular biomarkers in localized prostate cancer: ASCO Guideline. J Clin Oncol 2020;38(13):1474-94. DOI:10.1200/JCO.19.02768.; National Comprehensive Cancer Network. Prostate Cancer (Version 3.2020). Available at: https://www.nccn.org/professionals/physician_gls/pdf/prostate.pdf.; Cairns P., Okami K., Halachmi S. et al. Frequent inactivation of PTEN/MMAC1 in primary prostate cancer. Cancer Res 1997;57(22):4997-5000.; Ракул С.А., Камилова Т.А., Голота А.С., Щербак С.Г. Прогностические и предиктивные биомаркеры рака предстательной железы (обзор литературы). Онкоурология 2017;13(4):111-21. DOI:10.17650/1726-9776-2017-13-4111-121.; Wang Y., Dai B. PTEN genomic deletion defines favorable prognostic biomarkers in localized prostate cancer: a systematic review and meta-analysis. Int J Clin Exp Med 2015;8:5430-7.; Lotan T.L., Carvalho F.L., Peskoe S.B. et al. PTEN loss is associated with upgrading of prostate cancer from biopsy to radical prostatectomy. Mod Pathol 2015;28(1):128-37. DOI:10.1038/modpathol.2014.85.; Thangavel C., Boopathi E., Liu Y. et al. RB loss promotes prostate cancer metastasis. Cancer Res 2017;77:982-95. DOI:10.1158/0008-5472.CAN-16-1589.; Ku S.Y., Rosario S., Wang Y. et al. RB1 and TRP53 cooperate to suppress prostate cancer lineage plasticity, metastasis, and antiandrogen resistance. Science 2017;355(6320):78-83. DOI:10.1126/science.aah4199.; Pritchard C.C., Mateo J., Walsh M.F. et al. Inherited DNA-repair gene mutations in men with metastatic prostate cancer. N Engl J Med 2016;375:443-53. DOI:10.1056/NEJMoa1603144.; Castro E., Goh C., Olmos D. et al. Germline BRCA mutations are associated with higher risk of nodal involvement, distant metastasis, and poor survival outcomes in prostate cancer. J Clin Oncol 2013;31:1748-57. DOI:10.1200/JCO.2012.43.1882.; Князев Е.Н., Фомичева К.А., Нюшко К.М. и др. Актуальные вопросы молекулярной диагностики рака предстательной железы. Онкоурология 2014;10(4):14-22. DOI:10.17650/1726-9776-2014-10-4-14-22.; https://oncourology.abvpress.ru/oncur/article/view/1398

  6. 6

    Quelle: Cancer Urology; Том 17, № 4 (2021); 115-123 ; Онкоурология; Том 17, № 4 (2021); 115-123 ; 1996-1812 ; 1726-9776

    Dateibeschreibung: application/pdf

    Relation: https://oncourology.abvpress.ru/oncur/article/view/1510/1324; EAU Guidelines. European Association of Urology, 2021.; Boormans J.L., De Jong J.J., Liu V.Y.T. et al. Luminal primary muscle-invasive bladder cancer patients are less likely to benefit from platinum-based neoadjuvant chemotherapy. Eur Urol 2021; 79(S 1):S1156.; Necchi A., DeJong J.J., Raggi D. Molecular characterization of residual bladder cancer after pembrolizumab. Eur Urol 2021;80(2):149-59. DOI:10.1016/j.eururo.2021.03.014.; De Wit R., Kulkarni G.S., Uchio E. et al. Pembrolizumab for high-risk (HR) nonmuscle invasive bladder cancer (NMIBC) unresponsive to bacillus Calmette-Guerin (BCG): phase II KEYNOTE-057 Trial. ESMO 2018. Abstr. 3575.; De Wit R., Kulkarni G.S., Uchio E. et al. Health-related quality of life (HRQoL) and updated follow-up from KEYNOTE-057: phase 2 study of pembrolizumab (pembro) for patients (pts) with high-risk (HR) non-muscle invasive bladder cancer (NMIBC) unresponsive to bacillus Calmette-Guerin (BCG). ESMO 2019. Abstr. 2829.; Balar A.V., Kamat A.M., Kulkarni G.S. et al. Pembrolizumab for the treatment of patients with high-risk (HR) nonmuscle-invasive bladder cancer (NMIBC) unresponsive to bacillus Calmette-Guerin: extended follow-up of KEYNOTE-057 cohort A. ASCO GU 2021. Abstr. 451.; Flegar L., Baunacke M., Groeben C., Borkowetz A. Treatment trends for muscle-invasive bladder cancer in Germany from 2006 to 2018: Increasing case numbers facilitate more high-volume centers. Eur Urol 2021;79(S 1):S1148-50. DOI:10.1016/S0302-2838(21)01201-X.; Bajorin D.F., Witjes J.A., Gschwend J., Schenker M. First results from the phase 3 CheckMate 274 trial of adjuvant nivolumab vs placebo in patients who underwent radical surgery for high-risk muscle-invasive urothelial carcinoma (MIUC). J Clin Oncol 2021;39(6_suppl):391. DOI:10.1200/JCO.2021.39.6_suppl.391.; Van Hoogstraten L.M.C., Witjes J.A., Meijer R.P., Ripping T.M. Characteristics and survival of untreated versus treated patients with non-metastatic muscle invasive bladder cancer. Eur Urol 2021;79:S1166. DOI:10.1016/S0302-2838(21)01210-0.; Khanna A., Zganjar A., Paras Shah P. et al. Is there value to routine oncologic surveillance after radical cystectomy? Comparative outcomes of symptomatic versus asymptomatic recurrence. J Clin Oncol 2021;39(6_suppl):421. DOI:10.1200/JCO.2021.39.6_suppl.421.; Tural D., Olmez O.F., Sumbul A.T. et al. Association of response to first-line chemotherapy with the efficacy of atezolizumab in patients with metastatic urothelial carcinoma. J Clin Oncol 2021;39(6_suppl):409. DOI:10.1200/JCO.2021.39.6_suppl.409.; Powles Т., Rosenberg J.E., Sonpavde G. et al. Primary results of EV-301: A phase III trial of enfortumab vedotin versus chemotherapy in patients with previously treated locally advanced or metastatic urothelial carcinoma. J Clin Oncol 2021;39(6_suppl):393. DOI:10.1200/JCO.2021.39.6_suppl.393.; Viswambaram P., Moe A., Chien Hern Liow E., Redfern A.D. Sub-urothelial durvalumab injection-1 (SUBDUE-1): a novel approach to immunotherapy for bladder cancer. J Clin Oncol 2021; 39(6_suppl):TPS503. DOI: /10.1200/JCO.2021.39.6_suppl. TPS503.; Powles T., Meeks J.J., Galsky M.D., van der Heijden M. A phase III, randomized, open-label, multicenter, global study of efficacy and safety of durvalumab in combination with gemcitabine plus cisplatin for neoadjuvant treatment followed by durvalumab alone for adjuvant treatment in muscle-invasive bladder cancer (NIAGARA). J Clin Oncol 2021;39(6_suppl):TPS505. DOI:10.1200/JCO.2021.39.6_suppl.TPS505.; Catto J.W.F., Downing А., Mason S. et al. Quality of life after bladder cancer: a cross-sectional survey of patient-reported outcomes. Eur Urol 2021;79(5):621-32. DOI:10.1016/j.eururo.2021.01.032.; Wallis C.J.D., Catto J.W.F., Finelli A. et al. The Impact of the COVID-19 pandemic on genitourinary cancer care: re-envisioning the future. Eur Urol 2020;78(5):731-42. DOI:10.1016/j.eururo.2020.08.030.; https://oncourology.abvpress.ru/oncur/article/view/1510

  7. 7

    Quelle: Bulletin of Siberian Medicine; Том 21, № 1 (2022); 133-143 ; Бюллетень сибирской медицины; Том 21, № 1 (2022); 133-143 ; 1819-3684 ; 1682-0363 ; 10.20538/1682-0363-2022-21-1

    Dateibeschreibung: application/pdf

    Relation: https://bulletin.tomsk.ru/jour/article/view/4709/3165; https://bulletin.tomsk.ru/jour/article/view/4709/3188; Zaman S., Goldberger J.J., Kovoor P. Sudden death risk-stratification in 2018–2019: the old and the new. Heart, Lung and Circ. 2019;28(1):57–64. DOI:10.1016/j.hlc.2018.08.027.; Wong C.X., Brown A., Lau D.H., Chugh S.S., Albert C.M., Kalman J.M. et al. Epidemiology of sudden cardiac death: global and regional perspectives. Heart, Lung and Circ. 2019;28(1):6–14. DOI:10.1016/j.hlc.2018.08.026.; Бойцов С.А., Никулина Н.Н., Якушин С.С., Акинина С.А., Фурменко Г.И. Внезапная сердечная смерть у больных ишемической болезнью сердца по результатам Российского многоцентрового эпидемиологического исследования заболеваемости, смертности, качества диагностики и лечения острых форм ИБС (РЕЗОНАНС). Российский кардиологический журнал. 2011;2(5):9–64.; Линчак Р.М., Недбайкин А.М., Семенцова Е.В., Юсова И.А., Струкова В.В. Частота и структура внезапной сердечной смертности трудоспособного населения Брянской области. Данные регистра ГЕРМИНА (регистр внезапной сердечной смертности трудоспособного населения Брянской области). Рациональная фармакотерапия в кардиологии. 2016;12(1):45–50.; Adabag A.S., Luepker R.V., Roger V.L., Gersh B.J. Sudden cardiac death: epidemiology and risk factors. Nat. Rev. Cardiol. 2010;7(4):216–225. DOI:10.1038/nrcardio.2010.3.; Zheng Z.J., Croft J.B., Giles W.H., Mensah G.A. Sudden cardiac death in the United States, 1989 to 1998. Circulation. 2001;104:2158–2163. DOI:10.1161/hc4301.098254.; Ghobrial J., Heckbert S.R., Bartz T.M., Lovasi G., Wallace E., Lemaitre R.N. et al. Ethnic differences in sudden cardiac arrest resuscitation. Heart. 2016;102(17):1363–1370. DOI:10.1136/heartjnl-2015-308384.; Вайханская Т.Г., Фролов А.В., Мельникова О.П., Воробьев А.П., Гуль Л.М., Севрук Т.В. и др. Риск-стратификация пациентов с кардиомиопатией с учетом предикторов электрической нестабильности миокарда. Кардиология в Беларуси. 2013;5(30):59–73.; Hayashi M., Shimizu W., Albert C.M. The Spectrum of epidemiology underlying sudden cardiac death. Circ. Res. 2015;116 (12):1887–1906. DOI:10.1161/CIRCRESAHA.116.304521.; Kuriachan V.P., Sumner G.L., Mitchell L.B. Sudden cardiac death. Curr. Probl. Cardiol. 2015;40(4):133–200. DOI:10.1016/j.cpcardiol.2015.01.002.; Gray B., Ackerman M.J., Semsarian C., Behr E.R. Evaluation after sudden death in the young: a global approach. Circ. Arrhythm. Electrophysiol. 2019;12(8):e007453. DOI:10.1161/CIRCEP.119.007453.; Jayaraman R., Reinier K., Nair S., Aro A.L., Uy-Evanado A., Rusinaru C. et al. Risk factors of sudden cardiac death in the young: multiple-year community-wide assessment. Circulation. 2018;137(15):1561–1570. DOI:10.1161/CIRCULATIONAHA.117.031262.; Chen L.Y., Sotoodehnia N., Bůžková P., Lopez F.L., Yee L.M., Heckbert S.R. et al. Atrial Fibrillation and the Risk of Sudden Cardiac Death: The Atherosclerosis Risk in Communities (ARIC) Study and Cardiovascular Health Study (CHS). JAMA Intern. Med. 2013;173(1):29–35. DOI:10.1001/2013.jamainternmed.744.; Deo R., Norby F.L., Katz R., Sotoodehnia N., Adabag S., DeFilippi C.R. et al. Development and validation of a sudden cardiac death prediction model for the general population. Circulation. 2016;134(11):806–816. DOI:10.1161/CIRCULATIONAHA.116.023042.; Gami A.S., Olson E.J., Shen W.K., Wright R.S., Ballman K.V., Hodge D.O. et al. Obstructive Sleep Apnea and the Risk of Sudden Cardiac Death: A Longitudinal Study of 10,701 Adults. J. Am. Coll. Cardiol. 2013;62(7):610–616. DOI:10.1016/j.jacc.2013.04.080.; Friedlander Y., Siscovick D.S., Weinmann S., Austin M.A., Psaty B.M., Lemaitre R.N. et al. Family history as a risk factor for primary cardiac arrest. Circulation. 1998;97(2):155–160. DOI:10.1161/01.cir.97.2.155.; Bai R., Napolitano C., Bloise R., Monteforte N., Priori S.G. Yield of genetic screening in inherited cardiac channelopathies: how to prioritize access to genetic testing. Circ. Arrhythm. Electrophysiol. 2009;2(1):6–15. DOI:10.1161/CIRCEP.108.782888.; Ackerman M.J., Priori S.G., Willems S., Berul C., Brugada R., Calkins H. et al. HRS/EHRA expert consensus statement on the state of genetic testing for the channelopathies and cardiomyopathies this document was developed as a partnership between the Heart Rhythm Society (HRS) and the European Heart Rhythm Association (EHRA). Heart Rhythm. 2011;8(8):1308–1339. DOI:10.1016/j.hrthm.2011.05.020.; Crotti L., Marcou C.A., Tester D.J., Castelletti S., Giudicessi J.R., Torchio M. et al. Spectrum and prevalence of mutations involving BrS1- through BrS12-susceptibility genes in a cohort of unrelated patients referred for Brugada syndrome genetic testing: implications for genetic testing. J. Am. Coll. Cardiol. 2012;60(15):1410–1408. DOI:10.1016/j.jacc.2012.04.037.; Van Driest S.L., Ommen S.R., Tajik A.J., Gersh B.J., Ackerman M.J. Yield of genetic testing in hypertrophic cardiomyopathy. Mayo Clin. Proc. 2005;80(6):739–744. DOI:10.1016/S0025-6196(11)61527-9.; Giudicessi J.R., Noseworthy P.A., Ackerman M.J. The QT interval. Circulation. 2019;139:2711–2713. DOI:10.1161/CIRCULATIONAHA.119.039598.; Arking D.E., Pulit S.L., Crotti L., van der Harst P., Munroe P.B., Koopmann T.T. et al. Genetic association study of QT interval highlights role for calcium signaling pathways in myocardial repolarization. Nat. Genet. 2014;46(8):826–836. DOI:10.1038/ng.3014.; Garcia-Elias A., Benito B. Ion channel disorders and sudden cardiac death. J. Mol. Sci. 2018;19(3):692. DOI:10.3390/ijms19030692.; Schwartz P.J., Crotti L., Insolia R. Long QT syndrome: from genetics to management. Circ. Arrhythm. Electrophysiol. 2012;5(4):868–877. DOI:10.1161/CIRCEP.111.962019.; Vandenberk B., Vandael E., Robyns T., Vandenberghe J., Garweg C., Foulon V. et al. Which QT correction formulae to use for QT monitoring? J. Am. Heart Assoc. 2016;5(6):e003264. DOI:10.1161/JAHA.116.003264.; Smulyan H. QT interval: Bazett’s Correction corrected. J. Electrocardiol. 2018;51(6):1009–1010. DOI:10.1016/j.jelectrocard.2018.08.013.; Neira V., Enriquez A., Simpson C., Baranchuk A. Update on long QT syndrome. J. Cardiovasc. Electrophysiol. 2019;30(12):3068–3078. DOI:10.1111/jce.14227.; Marschall C., Moscu-Gregor A., Klein H.G. Variant panorama in 1,385 index patients and sensitivity of expanded next-generation sequencing panels in arrhythmogenic disorders. Cardiovasc. Diagn. Ther. 2019:S292–298. DOI:10.21037/cdt.2019.06.06.; Wallace E., Howard L., Liu M., O’Brien T., Ward D., Shen S. et al. Long QT syndrome: genetics and future perspective. Pediatr. Cardiol. 2019;40(7):1419–1430. DOI:10.1007/s00246-019-02151-x.; Priori S.G., Blomström-Lundqvist C., Mazzanti A., Blom N., Borggrefe M., Camm J. et al. ESC Scientific Document Group. 2015 ESC Guidelines for the management of patients with ventricular arrhythmias and the prevention of sudden cardiac death. Eur. Heart J. 2015;36(41):2793–2867. DOI:10.1093/eurheartj/ehv316.; Schwartz P.J., Ackerman M.J., George A.L. Jr., Wilde A.A.M. Impact of genetics on the clinical management of channelopathies. J. Am. Coll. Cardiol. 2013;62(3):169–180. DOI:10.1016/j.jacc.2013.04.044.; Ohno S., Ozawa J., Fukuyama M., Makiyama T., Horie M. An NGS-based genotyping in LQTS; minor genes are no longer minor. J. Hum. Genet. 2020;65(12):1083–1091. DOI:10.1038/s10038-020-0805-z.; Mizusawa Y., Horie M., Wilde A.A. Genetic and clinical advances in congenital long QT syndrome. Circ. J. 2014;78(12):2827–2833. DOI:10.1253/circj.CJ-14-0905.; Lahrouchi N., Tadros R., Crotti L., Mizusawa Y., Postema P.G., Beekman L. et al. Transethnic Genome-Wide Association Study Provides Insights in the Genetic Architecture and Heritability of Long QT Syndrome. Circulation. 2020;142(4):324–338. DOI:10.1161/CIRCULATIONAHA.120.045956.; Giudicessi J.R., Wilde A.A.M., Ackerman M.J. The genetic architecture of long QT syndrome: A critical reappraisal. Trends Cardiovasc. Med. 2018;(7):453–464. DOI:10.1016/j.tcm.2018.03.003.; Bjerregaard P. Diagnosis and management of short QT syndrome. Heart Rhythm. 2018;15(8):1261–1267. DOI:10.1016/j.hrthm.2018.02.034.; Campuzano O., Fernandez-Falgueras A., Lemus X., Sarquella-Brugada G., Cesar S., Coll M. et al. Short QT syndrome: a comprehensive genetic interpretation and clinical translation of rare variants. J. Clin. Med. 2019;8(7):1035. DOI:10.3390/jcm8071035.; Perike S., McCauley M.D. Molecular insights into short QT syndrome. J. Innov. Card. Rhythm Manag. 2018;9(3):3065-3070. DOI:10.19102/icrm.2018.090302.; Hancox J.C., Whittaker D.G., Du C., Stuart A.G., Zhang H. Emerging therapeutic targets in the short QT syndrome. Expert. Opin. Ther. Targets. 2018;22(5):439–451. DOI:10.1080/14728222.2018.1470621.; Newton-Cheh C., Eijgelsheim M., Rice K.M., de Bakker P.I., Yin X., Estrada K. et al. Common variants at ten loci influence myocardial repolarization: the QTGEN consortium. Nat. Genet. 2009;41(4):399–406. DOI:10.1038/ng.364; Earle N., Yeo Han D., Pilbrow A., Crawford J., Smith W., Shelling A.N. et al. Single nucleotide polymorphisms in arrhythmia genes modify the risk of cardiac events and sudden death in long QT syndrome. Heart Rhythm. 2014;11(1):76–82. DOI:10.1016/j.hrthm.2013.10.005.; Gouas L., Nicaud V., Chaouch S., Berthet M., Forhan A., Tichet J. et al. Confirmation of associations between ion channel gene SNPs and QTc interval duration in healthy subjects. Eur. J. Hum. Genet. 2007;15(9):974–979. DOI:10.1038/sj.ejhg.5201866.; Qureshi S.F., Ali A., John P., Jadhav A.P., Venkateshwari A., Rao H. et al. Mutational analysis of SCN5A gene in long QT syndrome. Meta Gene. 2015;6:26–35. DOI:10.1016/j.mgene.2015.07.010; Bihlmeyer N.A., Brody J.A., Smith A.V., Warren H.R., Lin H., Isaacs A. et al. ExomeChip-Wide analysis of 95 626 individuals identifies 10 novel loci associated with QT and JT intervals. Circ. Genom. Precis. Med. 2018;11(1):e001758. DOI:10.1161/CIRCGEN.117.001758.; https://bulletin.tomsk.ru/jour/article/view/4709

  8. 8
  9. 9
  10. 10

    Quelle: Cancer Urology; Том 16, № 4 (2020); 82-88 ; Онкоурология; Том 16, № 4 (2020); 82-88 ; 1996-1812 ; 1726-9776

    Dateibeschreibung: application/pdf

    Relation: https://oncourology.abvpress.ru/oncur/article/view/1352/1217; Bray F., Ferlay J., Soerjomataram I. et al. Global Cancer Statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 2018;68(6):394-424. DOI:10.3322/caac.21492.; Duffy M.J. Biomarkers for prostate cancer: prostate-specific antigen and beyond. Clin Chem Lab Med 2020;58(3):326-39. DOI: https://doi.org/10.1515/cclm-2019-0693.; Van Hoof A., Bunn W., Klein A., Albala D. Role of molecular diagnostics in prostate cancer. Surg Proced Core Urol Trainees 2018:151-77. DOI:10.1007/978-3-319-57442-4_17.; Kearns J.T., Lin D.W. Improving the specificity of PSA screening with serum and urine markers. Curr Urol Rep 2018;19(10):80. DOI:10.1007/s11934-018-0828-6.; Tomlins S.A., Aubin S.M.J., Siddiqui J. et al. Urine TMPRSS2:ERG fusion transcript stratifies prostate cancer risk in men with elevated serum PSA. Sci Transl Med 2011;3(94):94ra72. DOI:10.1126/scitranslmed.3001970.; Yang Z., Yu L., Wang Z. PCA3 and TMPRSS2-ERG gene fusions as diagnostic biomarkers for prostate cancer. Chin J Cancer Res 2016;28(1):65-71. DOI:10.3978/j.issn.1000-9604.2016.01.05.; Koo K.M., Mainwaring P.N., Tomlins S.A., Trau M. Merging new-age biomarkers and nanodiagnostics for precision prostate cancer management. Nat Rev Urol 2019;16(5):302-17. DOI:10.1038/s41585-019-0178-2.; Hendriks R.J., van Oort I.M., Schalken J.A. Blood-based and urinary prostate cancer biomarkers: a review and comparison of novel biomarkers for detection and treatment decisions. Prostate Cancer Prostatic Dis 2017;20(1):12-9. DOI:10.1038/pcan.2016.59.; Raja N., Russell C.M., George A.K. Urinary markers aiding in the detection and risk stratification of prostate cancer. Transl Androl Urol 2018;7(Suppl 4):S436-42. DOI:10.21037/tau.2018.07.01.; Hessels D., Schalken J.A. The use of PCA3 in the diagnosis of prostate cancer. Nat Rev Urol 2009;6(5):255-61. DOI:10.1038/nrurol.2009.40.; Тороповский А.Н., Никитин А.Г., Гордиев М.Г. и др. Результаты испытания набора реагентов для выявления мРНК гена PCA3 и определения уровня его экспрессии методом двустадийной ОТ-ПЦР-РВ (Проста-Тест) для диагностики рака предстательной железы in vitro в клинической практике. Вестник медицинского института «РЕАВИЗ» 2018;(1):126-36.; Mottet N., Bastian P., Bellmunt J. et al. EAU-EANM-ESTRO-ESUR-SIOG: Guidelines on Prostate Cancer. Eur Assoc Urol 2020.; Sokoll L.J., Ellis W., Lange P. et al. A multicenter evaluation of the PCA3 molecular urine test: Preanalytical effects, analytical performance, and diagnostic accuracy. Clin Chim Acta 2008;389(1-2):1-6. DOI:10.1016/j.cca.2007.11.003.; Paliksa S., Gagilas J., Lopeta M. et al. Diagnostic performance of PCA3 and TMPRSS2:ERG biomarkers in prostate cancer patients urine collected with and without prostate massage. Eur Urol 2019;18:e2427-8. DOI:10.1016/S1569-9056(19)32142-6.; Cui Y., Cao W., Li Q. et al. Evaluation of prostate cancer antigen 3 for detecting prostate cancer: a systematic review and meta-analysis. Sci Rep 2016;6:25776. DOI:10.1038/srep25776.; Аполихин О.И., Сивков А.В., Ефремов Г.Д. и др. РСА3 и TMPRSS2:ERG в диагностике рака предстательной железы: первый опыт применения комбинации маркеров в России. Экспериментальная клиническая урология 2015;(2):30-5.; https://oncourology.abvpress.ru/oncur/article/view/1352

  11. 11

    Quelle: Cancer Urology; Том 16, № 2 (2020); 65-73 ; Онкоурология; Том 16, № 2 (2020); 65-73 ; 1996-1812 ; 1726-9776 ; 10.17650/1726-9776-2020-16-2

    Dateibeschreibung: application/pdf

    Relation: https://oncourology.abvpress.ru/oncur/article/view/1013/1175; Bray F., Ferlay J., Soerjomataram I. et al. Global Cancer Statistics 2018: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J Clin 2018. DOI:10.3322/caac.21492.; Mottet N., Bellmunt J., Bolla M. et al. EAU-ESTRO-SIOG Guidelines on Prostate Cancer. Part 1: Screening, Diagnosis, and Local Treatment with Curative Intent. Eur Urol 2017;71(4):618—29. DOI:10.1016/j.eururo.2016.08.003.; Leyten G.H., Hessels D., Jannink S.A. et al. Prospective multicentre evaluation of PCA3 and TMPRSS2:ERG gene fusions as diagnostic and prognostic urinary biomarkers for prostate cancer. Eur Urol 2014;65(3):534—42. DOI:10.1016/j.eururo.2012.11.014.; Hendriks R.J., Van Oort I.M., Schalken J.A. Blood-based and urinary prostate cancer biomarkers: A review and comparison of novel biomarkers for detection and treatment decisions. Prostate Cancer Prostatic Dis 2017;20(1):12—9. DOI:10.1038/pcan.2016.59.; Scattoni V., Lazzeri M., Lughezzani G. et al. Head-to-head comparison of prostate health index and urinary PCA3 for predicting cancer at initial or repeat biopsy. J Urol 2013;190(2):496—501. DOI:10.1016/j.juro.2013.02.3184.; Yang Z., Yu L., Wang Z. PCA3 and TMPRSS2:ERG gene fusions as diagnostic biomarkers for prostate cancer. Chinese J Cancer Res 2016;28(1):65—71. DOI:10.3978/j.issn.1000-9604.2016.01.05.; Zhou F., Gao S., Han D. et al. TMPRSS2:ERG activates NO-cGMP signaling in prostate cancer cells. Oncogene 2019;38(22):4397-411. DOI:10.1038/s41388-019-0730-9.; Martignano F., Rossi L., Maugeri A. et al. Urinary RNA-based biomarkers for prostate cancer detection. Clin Chim Acta 2017;473:96-105. DOI:10.1016/j.cca.2017.08.009.; Catalona W.J., Partin A.W., Sanda M.G. et al. A multicenter study of [-2]pro-prostate specific antigen combined with prostate specific antigen and free prostate specific antigen for prostate cancer detection in the 2.0 to 10.0 ng/ml prostate specific antigen range. J Urol 2011;185(5):1650-5. DOI:10.1016/j.juro.2010.12.032.; Koo K.M., Mainwaring P.N., Tomlins S.A., Trau M. Merging new-age biomarkers and nanodiagnostics for precision prostate cancer management. Nat Rev Urol 2019;16(5):302-17. DOI:10.1038/s41585-019-0178-2.; Carroll P.H., Mohler J.L. NCCN Guidelines Updates: Prostate Cancer and Prostate Cancer Early Detection. J Natl Compr Cancer Netw J Natl Compr Canc Netw 2018;16:620-3. DOI:10.6004/jnccn.2018.0036.; Cui Y., Cao W., Li Q. et al. Evaluation of prostate cancer antigen 3 for detecting prostate cancer: a systematic review and meta-analysis. Sci Rep 2016;6:25776. DOI:10.1038/srep25776.; Тороповский А.Н., Никитин А.Г., Гордиев М.Г и др. Результаты испытания набора реагентов для выявления мРНК гена РСА3 и определения уровня его экспрессии методом двустадийной ОТ-ПЦР-РВ (Проста-Тест) для диагностики рака предстательной железы in vitro в клинической практике. Вестник медицинского института «РЕАВИЗ» 2018;1:126-36.; Павлов К.А., Шкопоров А.Н., Хохлова Е.В. и др. Разработка диагностической тест-системы для ранней неинвазивной диагностики рака простаты, основанной на количественной детекции мРНК гена PCA3 в осадке мочи методом ОТ-ПЦР в режиме реального времени. Вестник РАМН 2013;(5):45—51.; Merola R., Tomao L., Antenucci A. et al. PCA3 in prostate cancer and tumor aggressiveness detection on 407 high-risk patients: A National Cancer Institute experience. J Exp Clin Cancer Res 2015;34(1):15. DOI:10.1186/s13046-015-0127-8.; Аполихин О.И., Сивков А.В., Ефремов ГД. и др. РСА3 и TMPRSS2:ERG в диагностике рака предстательной железы: первый опыт применения комбинации маркеров в России. Экспериментальная клиническая урология 2015;(2):30—5.; Park K., Dalton J.T., Narayanan R. et al. TMPRSS2:ERG gene fusion predicts subsequent detection of prostate cancer in patients with high-grade prostatic intraepithelial neoplasia. J Clin Oncol 2014;32(3):206-11. DOI:10.1200/JCO.2013.49.8386.; Wang Z., Wang Y., Zhang J. et al. Significance of the TMPRSS2:ERG gene fusion in prostate cancer. Mol Med Rep 2017;16(4):5450-8. DOI:10.3892/mmr.2017.7281.; Fujita K., Nonomura N. Urinary biomarkers of prostate cancer. Int J Urol 2018;25(9):770-9. DOI:10.1111/iju.13734.; Sanda M.G., Feng Z., Howard D.H. et al. Association between combined TMPRSS2:ERG and PCA3 RNA urinary testing and detection of aggressive prostate cancer. JAMA Oncol 2017;3(8):1085-93. DOI:10.1001/jamaoncol.2017.0177.; Van Hoof A., Bunn W., Klein A., Albala D. Role of molecular diagnostics in prostate cancer. Surg Proced Core Urol Trainees 2018:151-77. DOI:10.1007/978-3-319-57442-4_17.; Perdona S., Bruzzese D., Ferro M. et al. Prostate health index (phi) and prostate cancer antigen 3 (PCA3) significantly improve diagnostic accuracy in patients undergoing prostate biopsy. Prostate 2013;73(3):227-35. DOI:10.1002/pros.22561.; De la Calle C., Patil D., Wei J.T. et al. Multicenter evaluation of the prostate health index to detect aggressive prostate cancer in biopsy Naive men. J Urol 2015;194(1):65-72. DOI:10.1016/j.juro.2015.01.091.; https://oncourology.abvpress.ru/oncur/article/view/1013

  12. 12

    Quelle: Pathologia; Vol. 16 No. 1 (2019): Pathologia ; Патология; Том 16 № 1 (2019): Патологія ; Патологія; Том 16 № 1 (2019): Патологія ; 2310-1237 ; 2306-8027

    Dateibeschreibung: application/pdf

  13. 13

    Dateibeschreibung: application/pdf

    Relation: Бордуков Б. О. Взаємозв'язок генетичних маркерів з швидкістю реакції та типом темпераменту легкоатлетів : презентація / наук. кер. А. А. Бєсєдіна; Сумський державний університет. Електр. текст. дані (25 слайдів). Суми, 2023.; https://essuir.sumdu.edu.ua/handle/123456789/91144

  14. 14
  15. 15
  16. 16
  17. 17
  18. 18
  19. 19
  20. 20