Suchergebnisse - "выделение"

  1. 1
  2. 2
  3. 3
  4. 4
  5. 5
  6. 6
  7. 7
  8. 8
  9. 9
  10. 10
  11. 11
  12. 12
  13. 13
  14. 14
  15. 15
  16. 16

    Quelle: Science, education, society: trends and prospects; 105-106 ; Наука, образование, общество: тенденции и перспективы развития; 105-106

    Dateibeschreibung: text/html

    Relation: info:eu-repo/semantics/altIdentifier/isbn/978-5-6054968-2-3; https://interactive-plus.ru/e-articles/953/Action953-586126.pdf; Хуторской А.В. Концептуальные основы педагогической диагностики / А.В. Хуторской, А.Г. Бермус // Педагогика. – 2018. – №9. – С. 23–31.; Давыдов Ю.С. Основы психологии познания текста / Ю.С. Давыдов // Психологический журнал. – 2017. – Т. 38. – №5. – С. 64–75.; Масловский О.Н. Развитие читательских компетенций подростков средствами литературного образования / О.Н. Масловский // Современная педагогика. – 2019. – №4. – С.12–20.

  17. 17

    Quelle: Obstetrics, Gynecology and Reproduction; Vol 19, No 2 (2025); 306-311 ; Акушерство, Гинекология и Репродукция; Vol 19, No 2 (2025); 306-311 ; 2500-3194 ; 2313-7347

    Dateibeschreibung: application/pdf

    Relation: https://www.gynecology.su/jour/article/view/2432/1328; Чукалов Н.Н. К вопросу о ведении нормального последового периода. Казанский медицинский журнал. 1922;18(2):29–44. 10.17816/kazmj79791.; Груздев В.С. Курс акушерства и женских болезней. ГИЗ РСФСР Берлин. 1922;1(часть 2): 263–7.; Эпштейн А.А. К ведению последового периода. Журнал акушерства и женских болезней. 1928;31(7–8):899–901.; Савицкий В.Н. К вопросу об удалении отделившегося последа. Гинекология и акушерство. 1931;(6):548–50.; Мамонтов Н.И. О способе удаления последа, отделившегося от стенок матки. Советская медицина. 1939;(6):47–8.; Митлин М.М. Новый метод изгнания последа. Акушерство и гинекология. 1956;(4):71–2.; Жмакин К.Н., Сыроватко Ф.А. Акушерский семинар. М., 1960. 521 с.; Романов М.А., Данилов И.В. Ведение последового периода родов по способу д-ра Роговина. Казанский медицинский журнал. 1935;31(5):626–33.; Малиновский М.С. Оперативное акушерство. М.: Медгиз, 1955. 456 c.; Персианинов Л.С. Акушерский семинар. Ташкент: Медицина, 1973. Том 1. 440 с.; Новиков Ю.И. Ведение последового периода. Большая медицинская энциклопедия. 1974–1983;20(3):546.; https://www.gynecology.su/jour/article/view/2432

  18. 18

    Weitere Verfasser: R. V. Sobolev I. E. Sokolov N. A. Petrov et al.

    Quelle: Food systems; Vol 7, No 4 (2024); 535-542 ; Пищевые системы; Vol 7, No 4 (2024); 535-542 ; 2618-7272 ; 2618-9771 ; 10.21323/2618-9771-2024-7-4

    Dateibeschreibung: application/pdf

    Relation: https://www.fsjour.com/jour/article/view/624/354; Food and Agriculture Organization of the United Nations (FAO) (2022). FAOSTAT. Crops and livestock products. Retrieved from https://www.fao.org/faostat/en/#data/QCL Accessed August 30, 2024.; Shim, Youn Young, Gui, B., Arnison, P. G., Wang, Y., Reaney, M. J. T. (2014). Flaxseed (Linum usitatissimum L.) bioactive compounds and peptide nomenclature: A review. Trends in Food Science and Technology, 38(1), 5–20. https://doi.org/10.1016/j.tifs.2014.03.011; Bekhit, A. E.-D. A., Shavandi, A., Jodjaja, T., Birch, J., Teh, S., Mohamed Ahmed, I. A. et al. (2018). Flaxseed: Composition, detoxification, utilization, and opportunities. Biocatalysis and Agricultural Biotechnology, 13, 129–152. https://doi.org/10.1016/j.bcab.2017.11.017; Dzuvor, C. K. O., Taylor, J. T., Acquah, C., Pan, S., Agyei, D. (2018). Bioprocessing of functional ingredients from flaxseed. Molecules, 23(10), Article 2444. https://doi.org/10.3390/molecules23102444; Yang, J., Wen, C., Duan, Y., Deng, Q., Peng, D., Zhang, H. et al. (2021). The composition, extraction, analysis, bioactivities, bioavailability and applications in food system of flaxseed (Linum usitatissimum L.) oil: A review. Trends in Food Science and Technology, 118(Part A), 252–260. https://doi.org/10.1016/j.tifs.2021.09.025; Shim, Y. Y., Song, Z., Jadhav, P. D., Reaney, M. J. T. (2019). Orbitides from flaxseed (Linum usitatissimum L.): A comprehensive review. Trends in Food Science and Technology, 93, 197–211. https://doi.org/10.1016/j.tifs.2019.09.007; Saharan, R., Kumar, S., Khokra, S. L., Singh, S., Tiwari, A., Tiwari, V. et al. (2022). A comprehensive review on therapeutic potentials of natural cyclic peptides. Current Nutrition and Food Science, 18(5), 441–449. https://doi.org/10.2174/1573401318666220114153509; Xiong, Q., Lee, Y.-Y., Li, K.-Y., Li, W.-Z., Du, Y., Liu, X. et al. (2022). Status of linusorbs in cold-pressed flaxseed oil during oxidation and their response toward antioxidants. Food Research International, 161, Article 111861. https://doi.org/10.1016/j.foodres.2022.111861; Fojnica, A., Leis, H.-J., Murkovic, M. (2022). Identification and characterization of the stability of hydrophobic cyclolinopeptides from flaxseed oil. Frontiers in Nutrition, 9, Article 903611. https://doi.org/10.3389/fnut.2022.903611; Mueed, A., Madjirebaye, P., Shibli, S., Deng, Z. (2022). Flaxseed peptides and cyclolinopeptides: A critical review on proteomic approaches, biological activity, and future perspectives. Journal of Agricultural and Food Chemistry, 70(46), 14600–14612. https://doi.org/10.1021/acs.jafc.2c06769; Fojnica, A., Gromilic, Z., Vranic, S., Murkovic, M. (2023). Anticancer potential of the cyclolinopeptides. Cancers, 15(15), Article 3874. https://doi.org/10.3390/cancers15153874; Okinyo-Owiti, D. P., Burnett, P.-G. G., Reaney, M. J. T. (2014). Simulated moving bed purification of flaxseed oil orbitides: Unprecedented separation of cyclolinopeptides C and E. Journal of Chromatography B, 965, 231–237. https://doi.org/10.1016/j.jchromb.2014.06.037; Gui, B., Shim, Y. Y., Reaney, M. J. T. (2012). Distribution of cyclolinopeptides in flaxseed fractions and products. Journal of Agricultural and Food Chemistry, 60(35), 8580–8589. https://doi.org/10.1021/jf3023832; Lang, T., Frank, O., Lang, R., Hofmann, T., Behrens, M. (2022). Activation spectra of human bitter taste receptors stimulated with cyclolinopeptides corresponding to fresh and aged linseed oil. Journal of Agricultural and Food Chemistry, 70(14), 4382–4390. https://doi.org/10.1021/acs.jafc.2c00976; Okinyo-Owiti, D. P., Young, L., Burnett, P.-G. G., Reaney, M. J. T. (2014). New flaxseed orbitides: Detection, sequencing, and 15N incorporation. Biopolymers, 102(2), 168–175. https://doi.org/10.1002/bip.22459; Lao, Y. W., Mackenzie, K., Vincent, W., Krokhin, O. V. (2014). Characterization and complete separation of major cyclolinopeptides in flaxseed oil by reversedphase chromatography. Journal of Separation Science, 37(14), 1788–1796. https://doi.org/10.1002/jssc.201400193; Tan, N.-H., Zhou, J. (2006). Plant cyclopeptides. Chemical Reviews, 106(3), 840– 895. https://doi.org/10.1021/cr040699h; Kaufmann, H. P., Tobschirbel, A. (1959). About an oligopeptide from flax seeds. Chemische Berichte, 92(11), 2805–2809. https://doi.org/10.1002/cber.19590921122 (In German); Deng, S., Li, J., Luo, T., Deng, Z. (2022). Flaxseed cyclic peptide [1–9-NαC]- linusorb B3 (CLA) improves oxidative stability of flaxseed oil by chelating metal ions and intermediate oxidative products. Journal of Agricultural and Food Chemistry, 70(50), 15776–15786. https://doi.org/10.1021/acs.jafc.2c06102; Morita, H., Shishido, A., Matsumoto, T., Takeya, K., Itokawa, H., Hirano, T. et al. (1997). A new immunosuppressive cyclic nonapeptide, cyclolinopeptide B from Linum usitatissimum. Bioorganic Medicinal Chemistry Letters, 7(10), 1269–1272. https://doi.org/10.1016/s0960-894x(97)00206-0; Morita, H., Shishido, A., Matsumoto, T., Itokawa, H., Takeya, K. (1999). Cyclolinopeptides B–E, new cyclic peptides from Linum usitatissimum. Tetrahedron, 55(4), 967–976. https://doi.org/10.1016/s0040-4020(98)01086-2; Olivia C. (2013) High Throughput Screeening of Flax (Linum usitatissimum L.) Cyclolinopeptides. Thesis Degree of Master of Science University of Saskatchewan, Saskatoon. Retrieved from https://harvest.usask.ca/items/25362000-bf73–443d80c4–22af6b940f57 Accessed August 21, 2024.; Matsumoto, T., Shishido, A., Morita, H., Itokawa, H., Takeya, K. (2001). Cyclolinopeptides F-I, cyclic peptides from linseed. Phytochemistry, 57(2), 251–260. https://doi.org/10.1016/s0031-9422(00)00442-8; Stefanowicz, P. (2004). Electrospray mass spectrometry and tandem mass spectrometry of the natural mixture of cyclic peptides from linseed. European Journal of Mass Spectrometry, 10(5), 665–671. https://doi.org/10.1255/ejms.657; Stefanowicz, P. (2001). Detection and sequencing of new cyclic peptides from linseed by electrospray ionization mass spectrometry. Acta Biochimica Polonica, 48(4), 1125–1129. https://doi.org/10.18388/abp.2001_3877; Dahiya, R., Dahiya, S., Shrivastava, J., Fuloria, N. K., Gautam, H., Mourya, R. et al. (2021). Natural cyclic polypeptides as vital phytochemical constituents from seeds of selected medicinal plants. Archiv Der Pharmazie — Chemistry in Life Sciences, 354(4), Article 2000446. https://doi.org/10.1002/ardp.202000446; Reaney, M. J., Jia, Y., Shen, J., Schock, C., Tyler, N., Elder. J. et al. (2008). Recovery of hydrophobic peptides from oils. Patent US No. 8383172.; Burnett, P.-G. G., Jadhav, P. D., Okinyo-Owiti, D. P., Poth, A. G., Reaney, M. J. T. (2015). Glycine-containing flaxseed orbitides. Journal of Natural Products, 78(4), 681–688. https://doi.org/10.1021/np5008558; Gui, B., Shim, Y. Y., Datla, R. S. S., Covello, P. S., Stone, S. L., Reaney, M. J. T. (2012). Identification and quantification of cyclolinopeptides in five flaxseed cultivars. Journal of Agricultural and Food Chemistry, 60(35), 8571–8579. https://doi.org/10.1021/jf301847u; Zou, X.-G., Chen, X.-L., Hu, J.-N., Wang, Y.-F., Gong, D.-M., Zhu, X.-M. et al. (2017). Comparisons of proximate compositions, fatty acids profile and micronutrients between fiber and oil flaxseeds (Linum usitatissimum L.). Journal of Food Composition and Analysis, 62, 168–176. https://doi.org/10.1016/j.jfca.2017.06.001; Wang, D. (2014). Extraction of Orbitides from Flaxseed. Thesis Degree of Master of Science University of Saskatchewan, Saskatoon. Retrieved from http://hdl.handle.net/10388/ETD2014-02-1435 Accessed August 30, 2024.; Aladedunye, F., Sosinska, E., Przybylski, R. (2013). Flaxseed cyclolinopeptides: Analysis and storage stability. Journal of the American Oil Chemists’ Society, 90(3), 419–428. https://doi.org/10.1007/s11746-012-2173-0; Burnett, P.-G. G., Olivia, C. M., Okinyo-Owiti, D. P., Reaney, M. J. T. (2016). Orbitide composition of the flax core collection (FCC). Journal of Agricultural and Food Chemistry, 64(25), 5197–5206. https://doi.org/10.1021/acs.jafc.6b02035; Cai, Z.-Z., Xu, C.-X., Song, Z.-L., Li, J.-L., Zhang, N., Zhao, J.-H. et al. (2024). A two-step method of cyclolinopeptide (linusorb) preparation from flaxseed cake via dry-screening. Food Chemistry, 449, Article 139243. https://doi.org/10.1016/j.foodchem.2024.139243; Zou, X.-G., Li, J., Sun, P.-L., Fan, Y.-W., Yang, J.-Y., Deng, Z.-Y. (2020). Orbitides isolated from flaxseed induce apoptosis against SGC7901 adenocarcinoma cells. International Journal of Food Sciences and Nutrition, 71(8), 929–939. https://doi.org/10.1080/09637486.2020.1750573; Zou, X.-G., Hu, J.-N., Zhu, X.-M., Wang, Y.-F., Deng, Z.-Y. (2018). Methionine sulfone-containing orbitides, good indicators to evaluate oxidation process of flaxseed oil. Food Chemistry, 250, 204–212. https://doi.org/10.1016/j.foodchem.2018.01.030; Zeng, J., Xiao, T., Ni, X., Wei, T., Liu, X., Deng, Z.-Y. et al. (2022). The comparative analysis of different oil extraction methods based on the quality of flaxseed oil. Journal of Food Composition and Analysis, 107, Article 104373. https://doi.org/10.1016/j.jfca.2021.104373; Kaneda, T., Nakajima, Y., Koshikawa, S., Nugroho, A. E., Morita, H. (2019). Cyclolinopeptide F, a cyclic peptide from flaxseed inhibited RANKLinduced osteoclastogenesis via downergulation of RANK expression. Journal of Natural Medicines, 73(3), 504–512. https://doi.org/10.1007/s11418-019-01292-w; Brühl, L., Bonte, A., N’Diaye, K., Matthäus, B. (2022). Oxidation of cyclo-lino peptides in linseed oils during storage. European Journal of Lipid Science and Technology, 124(12), Article 2200137. https://doi.org/10.1002/ejlt.202200137; Liu, X., Cai, Z.-Z., Lee, W. J., Lu, X.-X., Reaney, M. J. T., Zhang, J.-P. et al. (2021). A practical and fast isolation of 12 cyclolinopeptides (linusorbs) from flaxseed oil via preparative HPLC with phenyl-hexyl column. Food Chemistry, 351, Article 129318. https://doi.org/10.1016/j.foodchem.2021.129318; Brühl, L., Matthäus, B., Fehling, E., Wiege, B., Lehmann, B., Luftmann, H. et al. (2007). Identification of bitter off-taste compounds in the stored cold pressed linseed oil. Journal of Agricultural and Food Chemistry, 55(19), 7864–7868. https://doi.org/10.1021/jf071136k; https://www.fsjour.com/jour/article/view/624

  19. 19

    Quelle: Fine Chemical Technologies; Vol 20, No 2 (2025); 107-118 ; Тонкие химические технологии; Vol 20, No 2 (2025); 107-118 ; 2686-7575 ; 2410-6593

    Dateibeschreibung: application/pdf

    Relation: https://www.finechem-mirea.ru/jour/article/view/2234/2108; https://www.finechem-mirea.ru/jour/article/view/2234/2109; Becker T., Elbahesh H., Reperant L.A., Rimmelzwaan G.F., Osterhaus A.D.M.E. Influenza Vaccines: Successes and Continuing Challenges. J. Infect. Dis. 2021;224(12 Suppl. 2): S405–S419. https://doi.org/10.1093/infdis/jiab269; Lim M.L., Komarasamy T.V., Adnan N.A.A.B., Radhakrishnan A.K., Balasubramaniam V.R.M.T. Recent Advances, Approaches and Challenges in the Development of Universal Influenza Vaccines. Influenza Other Respir. Viruses. 2024;18(3):e13276. https://doi.org/10.1111/irv.13276; Jang Y.H., Seong B.L. The Quest for a Truly Universal Influenza Vaccine. Front. Cell. Infect. Microbiol. 2019;9:344. https://doi.org/10.3389/fcimb.2019.00344; Sautto G.A., Kirchenbaum G.A., Ross T.M. Towards a universal influenza vaccine: different approaches for one goal. Virol. J. 2018;15(1):17. https://doi.org/10.1186/s12985-017-0918-y; Wang W.-C., Sayedahmed E.E., Sambhara S., Mittal S.K. Progress towards the Development of a Universal Influenza Vaccine. Viruses. 2022;14(8):1684. https://doi.org/10.3390/v14081684; Цыбалова Л.М., Степанова Л.А., Котляров Р.Ю., Блохина Е.А., Шуклина М.А., Марданова Е.С., Коротков А.В., Потапчук М.В., Равин Н.В. Усиление эффективности кандидатной вакцины против гриппа сочетанием консервативных последовательностей гемагглютинина и М2 белка. Эпидемиология и Вакцинопрофилактика. 2017;16(3):65–70. https://doi.org/10.31631/2073-3046-2017-16-3-65-70; Сычев И.А., Копейкин П.М., Цветкова Е.В., Чередова К.В., Мильман Б.Л., Шамова О.В., Исакова-Сивак И.Н., Дешева Ю.А. Индукция перекрестно-реактивных антител у мышей, иммунизированных консервативными линейными В-клеточными эпитопами нейраминидазы вируса гриппа А. Инфекция и иммунитет. 2021;11(3):463–472. https://doi.org/10.15789/10.15789/2220-7619-IOC-1343; Croset A., Delafosse L., Gaudry J.-P., Arod C., Glez L., Losberger C., Begue D., Krstanovic A., Robert F., Vilbois F., Chevalet L., Antonsson B. Differences in the glycosylation of recombinant proteins expressed in HEK and CHO cells. J. Biotechnol. 2012;161(3):336–348. https://doi.org/10.1016/j.jbiotec.2012.06.038; Schütz A., Bernhard F., Berrow N., Buyel J.F., Ferreira-daSilva F., Haustraete J., van den Heuvel J., Hoffmann J.-E., de Marco A., Peleg Y., Suppmann S., Unger T., Vanhoucke M., Witt S., Remans K. A concise guide to choosing suitable gene expression systems for recombinant protein production. STAR Protoc. 2023;4(4):102572. https://doi.org/10.1016/j.xpro.2023.102572; Tan E., Chin C.S.H., Lim Z.F.S., Ng S.K. HEK293 Cell Line as a Platformto Produce Recombinant Proteins and Viral Vectors. Front. Bioeng. Biotechnol. 2021;9:796991. https://doi.org/10.3389/fbioe.2021.796991; Young L., Dong Q. Two-step total gene synthesis method. Nucleic Acids Res. 2004;32(7):e59. https://doi.org/10.1093/nar/gnh058; Седова Е.С., Щербинин Д.Н., Банделюк А.С., Верховская Л.В., Вискова Н.Ю., Авдонина Е.Д., Прокофьев В.В., Рябова Е.И., Есмагамбетов И.Б., Первойкина К.А., Богачева Е.А., Лысенко А.А., Шмаров М.М. Способ получения рекомбинантных антител, продуцируемых клеточной линией, трансдуцированной рекомбинантными аденовирусами. Тонкие химические технологии. 2023;18(1):48–64. https://doi.org/10.32362/2410-6593-2023-18-1-48-64.

  20. 20