Výsledky vyhledávání - "белок-белковые взаимодействия"

  • Zobrazuji výsledky 1 - 18 z 18
Upřesnit hledání
  1. 1

    Zdroj: HIV Infection and Immunosuppressive Disorders; Том 16, № 4 (2024); 28-44 ; ВИЧ-инфекция и иммуносупрессии; Том 16, № 4 (2024); 28-44 ; 2077-9828 ; 10.22328/2077-9828-2024-16-4

    Popis souboru: application/pdf

    Relation: https://hiv.bmoc-spb.ru/jour/article/view/961/612; Global HIV & AIDS statistics — Fact sheet / UNAIDS 2023 epidemiological estimates. https://www.unaids.org/en/resources/fact-sheet (access date: 08.05.2024).; Kiertiburanakul S., Sungkanuparph S. Emerging of HIV drug resistance: epidemiology, diagnosis, treatment and prevention // Curr. HIV Res. 2009. Vol. 7, No. 3. Р. 273–278. doi:10.2174/157016209788347976.; Shchemelev A.N., Ostankova Y.V., Zueva E.B., Semenov A.V., Totolian A.A. Detection of Patient HIV-1 Drug Resistance Mutations in Russia’s Northwestern Federal District in Patients with Treatment Failure // Diagnostics (Basel). 2022. Vol. 12, No. 8. Р. 1821. doi:10.3390/diagnostics12081821.; Rana S., Besson G., Cook D.G. et al. Role of CCR5 in infection of primary macrophages and lymphocytes by macrophage-tropic strains of human immunodeficiency virus: resistance to patient-derived and prototype isolates resulting from the delta ccr5 mutation // J. Virol. 1997. Vol. 71, No. 4. Р. 3219–3227. doi:10.1128/JVI.71.4.3219-3227.; Mabuka J.M., Mackelprang R.D., Lohman-Payne B. et al. CCR2–64I polymorphism is associated with lower maternal HIV-1 viral load and reduced vertical HIV-1 transmission // J. Acquir Immune Defic. Syndr. 2009. Vol. 51, No. 2. Р. 235–237. doi:10.1097/QAI.0b013e31819c155b. PMID: 19465829; PMCID: PMC2732713.; Alkhatib G., Berger E.A. HIV coreceptors: from discovery and designation to new paradigms and promise // Eur. J. Med. Res. 2007. Vol. 12, No. 9. Р. 375–384. PMID: 17933717.; Deng H., Liu R., Ellmeier W. et al. Identification of a major co-receptor for primary isolates of HIV-1 // Nature. 1996. Vol. 381, No. 6584. Р. 661– 666. doi:10.1038/381661a0.; Feng Y., Broder C.C., Kennedy P.E., Berger E.A. HIV-1 entry cofactor: functional cDNA cloning of a seven-transmembrane, G protein-coupled receptor // Science. 1996. Vol. 272, No. 5263. Р. 872–877. doi:10.1126/science.272.5263.872.; Kim C.Y., Baek S., Cha J. et al. HumanNet v3: an improved database of human gene networks for disease research // Nucleic Acids Res. 2022. Vol. 50, No. D1. Р. D632–D639. doi:10.1093/nar/gkab1048.; Franz M., Rodriguez H., Lopes C. et al. GeneMANIA update 2018 // Nucleic Acids Res. 2018. Vol. 46, No. W1. Р. W60–W64. doi:10.1093/nar/gky311.; Szklarczyk D., Kirsch R., Koutrouli M. et al. The STRING database in 2023: protein-protein association networks and functional enrichment analyses for any sequenced genome of interest // Nucleic Acids Res. 2023. Vol. 51 (D1), Р. D638–D646. doi:10.1093/nar/gkac1000.; Wang Z., Shang H., Jiang Y. Chemokines and Chemokine Receptors: Accomplices for Human Immunodeficiency Virus Infection and Latency // Front Immunol. 2017. Vol. 8. Р. 1274. doi:10.3389/fimmu.2017.01274. PMID: 29085362; PMCID: PMC5650658.; Ajasin D.O., Rao V.R., Wu X. et al. CCL2 mobilizes ALIX to facilitate Gag-p6 mediated HIV-1 virion release // eLife. 2019. Vol. 8. e35546. doi:10.7554/eLife.35546.; Xu H., Lin S., Zhou Z. et al. New genetic and epigenetic insights into the chemokine system: the latest discoveries aiding progression toward precision medicine // Cell Mol. Immunol. 2023. Vol. 20, No. 7. Р. 739–776. doi:10.1038/s41423–023–01032-x. Epub 2023 May 17. PMID: 37198402; PMCID: PMC10189238.; Baltoumas F.A., Theodoropoulou M.C., Hamodrakas S.J. Interactions of the -subunits of heterotrimeric G-proteins with GPCRs, effectors and RGS proteins: a critical review and analysis of interacting surfaces, conformational shifts, structural diversity and electrostatic potentials // J. Struct. Biol. 2013. Vol. 182, No. 3. Р. 209–218. doi:10.1016/j.jsb.2013.03.004.; Lamb T.D., Pugh E.N. G-protein cascades: gain and kinetics // Trends in Neuroscience. 1992. Vol. 15, No. 8. Р. 291–298. doi:10.1016/01662236(92)90079-n.; Langer S., Yin X., Diaz A. et al. The E3 Ubiquitin-Protein Ligase Cullin 3 Regulates HIV-1 Transcription // Cells. 2020. Vol. 9, No. 9. Р. 2010. doi:10.3390/cells9092010.; Dabbagh D., He S., Hetrick B. et al. Identification of the SHREK Family of Proteins as Broad-Spectrum Host Antiviral Factors // Viruses. 2021. Vol. 13, No. 5. Р. 832. doi:10.3390/v13050832. PMID: 34064525; PMCID:PMC8147968.; Lear T., Dunn S.R., McKelvey A.C. et al. RING finger protein 113A regulates C-X-C chemokine receptor type 4 stability and signaling // American Journal of Physiology. Cell Physiology. 2017. Vol. 313, No. 5. Р. C584–C592. doi:10.1152/ajpcell.00193.; Rocha-Perugini V., Gordon-Alonso M., Sánchez-Madrid F. Role of Drebrin at the Immunological Synapse // Advances in Experimental Medicine and Biology. 2017. Vol. 1006. Р. 271–280. doi:10.1007/978-4-431-56550-5_15.; Madlala P., Singh R., An P. et al. Association of Polymorphisms in the Regulatory Region of the Cyclophilin A Gene (PPIA) with Gene Expression and HIV/AIDS Disease Progression // Journal of Acquired Immune Deficiency Syndromes (1999). 2016. Vol. 72, No. 5 Р. 465–473. doi:10.1097/QAI.0000000000001028.; Ding J., Chang T.L. TLR2 activation enhances HIV nuclear import and infection through T cell activation-independent and -dependent pathways // Journal of Immunology (Baltimore, Md.: 1950). 2012. Vol. 188, No. 3. Р. 992–1001. doi:10.4049/jimmunol.1102098.; Li Y., Lefebvre F., Nakku-Joloba E. et al. Upregulation of PTPRC and Interferon Response Pathways in HIV-1 Seroconverters Prior to Infection // The Journal of Infectious Diseases. 2023. Vol. 227, No. 5. Р. 714–719. doi:10.1093/infdis/jiac498.; Rathore A., Iketani S., Wang P. et al. CRISPR-based gene knockout screens reveal deubiquitinases involved in HIV-1 latency in two Jurkat cell models // Scientific Reports. 2020. Vol. 10, No. 1. Р. 5350. doi:10.1038/s41598-020-62375-3.; Parker Z.F., Rux A.H., Riblett A.M. et al. Platelet Factor 4 Inhibits and Enhances HIV-1 Infection in a Concentration-Dependent Manner by Modulating Viral Attachment // AIDS Research and Human Retroviruses. 2016. Vol. 32, No. 7. Р. 705–717. doi:10.1089/AID.2015.0344.; LoPiccolo J., Blumenthal G.M., Bernstein W.B., Dennis P.A. Targeting the PI3K/Akt/mTOR pathway: effective combinations and clinical consid-erations // Drug Resistance Updates: Reviews and Commentaries in Antimicrobial and Anticancer Chemotherapy. 2008. Vol. 11, No. 1–2. Р. 32–50. doi:10.1016/j.drup.2007.11.; Heredia A., Le N., Gartenhaus R.B. et al. Targeting of mTOR catalytic site inhibits multiple steps of the HIV-1 lifecycle and suppresses HIV-1 viremia in humanized mice // Proceedings of the National Academy of Sciences of the United States of America. 2015. Vol. 112, No. 30. Р. 9412–9417. doi:10.1073/pnas.; Chen H., Egan J.O., Chiu J.F. Regulation and activities of alpha-fetoprotein // Critical Reviews in Eukaryotic Gene Expression. 1997. Vol. 7, No. 1–2. Р. 11–41. doi:10.1615/critreveukargeneexpr.v7.i1–2.20.; Yeo Y.H., Lee Y.T., Tseng H.R. et al. Alpha-fetoprotein: Past, present, and future // Hepatology Communications. 2024. Vol. 8, No. 5. e0422. doi:10.1097/HC9.0000000000000422. PMID: 38619448; PMCID: PMC11019827.; Morsica G., Galli L., Messina E. et al. Levels of Alpha-Fetoprotein and Association with Mortality in Hepatocellular Carcinoma of HIV-1-Infected Patients // Journal of Oncology. 2022. Vol. 3586064. doi:10.1155/2022/3586064.; Underhill S.M., Wheeler D.S., Li M. et al. Amphetamine modulates excitatory neurotransmission through endocytosis of the glutamate transporter EAAT3 in dopamine neurons // Neuron. 2014. Vol. 83, No. 2. Р. 404–416. doi:10.1016/j.neuron.2014.05.; Kleinz M.J., Davenport A.P. Emerging roles of apelin in biology and medicine // Pharmacology & Therapeutics. 2005. Vol. 107, No 2. Р. 198– 211. doi:10.1016/j.pharmthera.2005.04.001.; Zou M.X., Liu H.Y., Haraguchi Y. et al. Apelin peptides block the entry of human immunodeficiency virus (HIV) // FEBS Letters. 2000. Vol. 473, No. 1. Р. 15–18. doi:10.1016/s0014-5793(00)01487-3.; Crawford K.S., Volkman B.F. Prospects for targeting ACKR1 in cancer and other diseases // Frontiers in Immunology. 2023. Vol. 14. Р. 1111960. doi:10.3389/fimmu.2023.1111960. PMID: 37006247; PMCID: PMC10050359.; Landires I., Núñez-Samudio V., Thèze J. Short communication: nuclear JAK3 and its involvement in CD4 activation in HIV-infected patients // AIDS Research and Human Retroviruses. 2013. Vol. 29, No. 5. Р. 784–787. doi:10.1089/aid.2012.0249.

  2. 2

    Zdroj: Bulletin of NSAU (Novosibirsk State Agrarian University); № 1 (2025); 170-176 ; Вестник НГАУ (Новосибирский государственный аграрный университет); № 1 (2025); 170-176 ; 2072-6724

    Popis souboru: application/pdf

    Relation: https://vestngau.elpub.ru/jour/article/view/2531/1110; Molecular forms of BMP15 and GDF9 in mammalian species that differ in litter size / G.W. Swinerd, A.A. Alhussini, S. Sczelecki [et al.] // Sci. Rep. – 2023. – № 13(1). – P. 22428. – DOI:10.1038/s41598-023-49852-1.; Климанова Е.А., Коновалова Т.В. Полиморфизм локуса ВМР-15 у овец романовской породы в условиях Западной Сибири // Вестник НГАУ (Новосибирский государственный аграрный университет). – 2023. – № 2(67). – С. 197–204. – DOI:10.31677/2072-6724-2023-67-2-197-204.; Novel Variants in GDF9 gene affect promoter activity and litter size in Mongolia sheep / B. Tong, J. Wang, Z. Cheng [et al.] // Genes (Basel). – 2020. – № 11(4). – P. 375. – DOI:10.3390/genes11040375.; Eukaryotic expression, Co-IP and MS identify BMPR-1B protein-protein interaction network / J. Jia, J. Jin, Q. Chen [et al.] // Biol. Res. – 2020. – № 53(1). – P. 24. – DOI:10.1186/s40659-020-00290-7.; Климанова Е.А., Коновалова Т.В., Кочнев Н.Н. Полиморфизм локуса ВМРR-IB у овец романовской породы в условиях Кузбасса // Зоотехния. – 2024. – № 1. – С. 15–17. – DOI:10.25708/ZT.2023.56.90.005.; Распределение генотипов по локусу гена дифференциального фактора роста 9 (GDF-9) в популяции овец романовской породы / Е.А. Климанова, Т.В. Коновалова, О.С. Короткевич [и др.] // Вестник НГАУ (Новосибирский государственный аграрный университет). – 2024. – № 3(72). – С. 196–204. – DOI:10.31677/2072-6724-2024-72-3-196-204.; Климанова Е.А. Количество лейкоцитов в крови овец романовской породы с учетом полиморфизма в гене ВМР-15 // Роль аграрной науки в устойчивом развитии сельских территорий: сб. IX Всерос. (нац.) науч. конф. с междунар. участием, Новосибирск, 20 декабря 2024 г. – Новосибирск: ИЦ НГАУ «Золотой колос», 2024. – С. 345–348.; GDF9 concentration in embryo culture medium is linked to human embryo quality and viability / J. Li, C. Li, X. Liu [et al.] // J. Assist. Reprod. Genet. – 2022. – № 39 (1). – P. 117–125. – DOI:10.1007/s10815-021-02368-x.; A 5-methylcytosine site of growth differentiation factor 9 (GDF9) gene affects its tissue-specific expression in sheep / Z. Pan, X. Wang, R. Di [et al.] // Animals (Basel). – 2018. – № 8(11). – P. 200. – DOI:10.3390/ani8110200.; Detection of genetic variations in the GDF9 and BMP15 genes in Kazakh meat-wool sheep / M. Amandykova, Z. Orazymbetova, T. Kapassuly [et al.] // Arch. Anim. Breed. – 2023. – № 66(4). – P. 401–409. – DOI:10.5194/aab-66-401-2023.; Single base editing system mediates site-directed mutagenesis of genes GDF9 and FecB in Ouler Tibetan sheep / Y. Zhao, Y. Zhang, R. Yu [et al.] // Sheng Wu Gong Cheng Xue Bao. – 2023. – № 39(1). – P. 204–216. – DOI:10.13345/j.cjb.220427.; BMP15 regulates the inhibin/activin system independently of ovulation rate control in sheep / A. Estienne, B. Lahoz, P. Jarrier [et al.] // Reproduction. – 2017. – № 153(4). – P. 395–404. – DOI:10.1530/REP-16-0507.; An investigation of the effects of BMPR1B, BMP15, and GDF9 genes on litter size in Ramlıç and Dağlıç sheep / K. Çelikeloğlu, M. Tekerli, M. Erdoğan [et al.] // Arch. Anim. Breed. – 2021. – № 64(1). – P. 223–230. – DOI:10.5194/aab-64-223-2021.; Detection of novel variations related to litter size in BMP15 gene of luzhong mutton sheep (Ovis aries) / R. Di, F. Wang, P. Yu [et al.] // Animals (Basel). – 2021. – № 11(12). – P. 3528. – DOI:10.3390/ani11123528.; Study on the correlation between BMPR1B protein in sheep blood and reproductive performance / X. Zhang, L. Zhang, W. Sun [et al.] // J. Anim. Sci. – 2020. – № 98(5). – P. 100. – DOI:10.1093/jas/skaa100.; Genome-wide survey of human alternative pre-mRNA splicing with exon junction microarrays / J.M. Johnson, J. Castle, P. Garrett-Engele [et al.] // Science. – 2003. – № 302(5653). – P. 2141–2144. – DOI:10.1126/science.1090100.; https://vestngau.elpub.ru/jour/article/view/2531

  3. 3
  4. 4
  5. 5
  6. 6

    Zdroj: Vavilov Journal of Genetics and Breeding; Том 23, № 2 (2019); 168-173 ; Вавиловский журнал генетики и селекции; Том 23, № 2 (2019); 168-173 ; 2500-3259

    Popis souboru: application/pdf

    Relation: https://vavilov.elpub.ru/jour/article/view/1929/1195; Baxley R.M., Bullard J.D., Klein M.W., Fell A.G., Morales-Rosa- do J.A., Duan T., Geyer P.K. Deciphering the DNA code for the function of the Drosophila polydactyl zinc finger protein Suppres-sor of Hairy-wing. Nucleic Acids Res. 2017;45(8):4463-4478. DOI 10.1093/nar/gkx040.; Bonchuk A., Denisov S., Georgiev P., Maksimenko O. Drosophila BTB/POZ domains of “ttk group” can form multimers and selec-tively interact with each other. J. Mol. Biol. 2011;412(3):423-436. DOI 10.1016/jjmb.2011.07.052.; Bonchuk A., Maksimenko O., Kyrchanova O., Ivlieva T., Mogila V, Deshpande G., Wolle D., Schedl P., Georgiev P. Functional role of dimerization and CP190 interacting domains of CTCF protein in Drosophila melanogaster. BMC Biol. 2015; 13:63. DOI 10.1186/ s12915-015-0168-7.; Dorn R., Krauss V The modifier of mdg4 locus in Drosophila: function¬al complexity is resolved by trans splicing. Genetica. 2003;117(2-3): 165-177.; Gerasimova T.I., Gdula D.A., Gerasimov D.V., Simonova O., Cor- ces V.G. A Drosophila protein that imparts directionality on a chro¬matin insulator is an enhancer of position-effect variegation. Cell. 1995;82(4):587-597.; Golovnin A., Biryukova I., Romanova O., Silicheva M., Parshikov A., Savitskaya E., Pirrotta V, Georgiev P. An endogenous Su(Hw) insu-lator separates the yellow gene from the Achaete-scute gene com¬plex in Drosophila. Development. 2003;130(14):3249-3258. Golovnin A., Gause M., Georgieva S., Gracheva E., Georgiev P. The su(Hw) insulator can disrupt enhancer-promoter interactions when located more than 20 kilobases away from the Drosophila achaete- scute complex. Mol Cell. Biol. 1999;19(5):3443-3456.; Golovnin A., Mazur A., Kopantseva M., Kurshakova M., Gulak P.V., Gilmore B., Whitfield W.G., Geyer P, Pirrotta V., Georgiev P. Integ¬rity of the Mod(mdg4)-67.2 BTB domain is critical to insulator func¬tion in Drosophila melanogaster. Mol. Cell. Biol. 2007;27(3):963- 974. DOI 10.1128/MCB.00795-06.; Golovnin A., Melnick E., Mazur A., Georgiev P. Drosophila Su(Hw) insulator can stimulate transcription of a weakened yellow promoter over a distance. Genetics. 2005; 170(3): 1133-1142. DOI 10.1534/ genetics.104.034587.; Golovnin A., Melnikova L., Shapovalov I., Kostyuchenko M., Geor-giev P. EAST organizes Drosophila insulator proteins in the inter-chromosomal nuclear compartment and modulates CP190 binding to chromatin. PLoS One. 2015;10(10):e0140991. DOI 10.1371/ journal.pone.0140991.; Golovnin A., Melnikova L., Volkov I., Kostuchenko M., Galkin A.V., Georgiev P. ‘Insulator bodies’ are aggregates of proteins but not of insulators. EMBO Rep. 2008;9(5):440-445. DOI 10.1038/embor. 2008.32.; Golovnin A., Volkov I., Georgiev P. SUMO conjugation is required for the assembly of Drosophila Su(Hw) and Mod(mdg4) into insula¬tor bodies that facilitate insulator complex formation. J. Cell Sci. 2012;125:2064-2074. DOI 10.1242/jcs.100172.; Harrison D.A., Gdula D.A., Coyne R.S., Corces V.G. A leucine zip¬per domain of the suppressor of Hairy-wing protein mediates its re-pressive effect on enhancer function. Genes Dev. 1993;7(10):1966- 1978.; Kim J., Shen B., Rosen C., Dorsett D. The DNA-binding and enhancer¬blocking domains of the Drosophila suppressor of Hairy-wing pro¬tein. Mol. Cell. Biol. 1996;16(7):3381-3392.; Krivega M., Savitskaya E., Krivega I., Karakozova M., Parshikov A., Golovnin A., Georgiev P. Interaction between a pair of gypsy in-sulators or between heterologous gypsy and Wari insulators modu¬lates Flp site-specific recombination in Drosophila melanogaster. Chromosoma. 2010;119(4):425-434. DOI 10.1007/s00412-010- 0268-7.; Kuhn-Parnell E.J., Helou C., Marion D.J., Gilmore B.L., Parnell T.J., Wold M.S., Geyer P.K. Investigation of the properties of non-gypsy suppressor of hairy-wing-binding sites. Genetics. 2008;179(3):1263- 1273. DOI 10.1534/genetics.108.087254.; Kyrchanova O., Chetverina D., Maksimenko O., Kullyev A., Geor- giev P. Orientation-dependent interaction between Drosophila in-sulators is a property of this class of regulatory elements. Nucleic Acids Res. 2008;36(22):7019-7028. DOI 10.1093/nar/gkn781.; Lei E.P., Corces V.G. RNA interference machinery influences the nuc¬lear organization of a chromatin insulator. Nat. Genet. 2006;38(8): 936-941. DOI 10.1038/ng1850.; Maksimenko O., Bartkuhn M., Stakhov V., Herold M., Zolotarev N., Jox T., Buxa M.K., Kirsch R., Bonchuk A., Fedotova A., Kyrcha-nova O., Renkawitz R., Georgiev P. Two new insulator proteins, Pita and ZIPIC, target CP190 to chromatin. Genome Res. 2015;25(1): 89-99. DOI 10.1101/gr.174169.114.; Melnikova L., Kostyuchenko M., Molodina V., Parshikov A., Geor-giev P., Golovnin A. Multiple interactions are involved in a high¬ly specific association of the Mod(mdg4)-67.2 isoform with the Su(Hw) sites in Drosophila. Open Biol. 2017a;7(10):pii: 170150. DOI 10.1098/rsob.170150.; Melnikova L., Kostyuchenko M., Molodina V., Parshikov A., Geor-giev P., Golovnin A. Interactions between BTB domain of CP190 and two adjacent regions in Su(Hw) are required for the insula¬tor complex formation. Chromosoma. 2018a;127(1):59-71. DOI 10.1007/s00412-017-0645-6.; Melnikova L., Kostyuchenko M., Parshikov A., Georgiev P., Golov-nin A. Role of Su(Hw) zinc finger 10 and interaction with CP190 and Mod(mdg4) proteins in recruiting the Su(Hw) complex to chro¬matin sites in Drosophila. PLoS One. 2018b;13(2):e0193497. DOI 10.1371/journal.pone.0193497.; Melnikova L., Shapovalov I., Kostyuchenko M., Georgiev P., Golov-nin A. EAST affects the activity of Su(Hw) insulators by two differ¬ent mechanisms in Drosophila melanogaster. Chromosoma. 2017b; 126(2):299-311. DOI 10.1007/s00412-016-0596-3.; Muravyova E., Golovnin A., Gracheva E., Parshikov A., Belenkaya T., Pirrotta V., Georgiev P. Loss of insulator activity by paired Su(Hw) chromatin insulators. Science. 2001;291(5503):495-498. DOI 10.1126/science.291.5503.495.; Parkhurst S.M., Corces V.G. Mutations at the suppressor of forked lo¬cus increase the accumulation of gypsy-encoded transcripts in Drosophila melanogaster. Mol. Cell. Biol. 1986;6(6):2271-2274.; Parkhurst S.M., Harrison D.A., Remington M.P., Spana C., Kelley R.L., Coyne R.S., Corces V.G. The Drosophila su(Hw) gene, which con¬trols the phenotypic effect of the gypsy transposable element, en¬codes a putative DNA-binding protein. Genes Dev. 1988;2(10): 1205-1215.; Parnell T.J., Kuhn E.J., Gilmore B.L., Helou C., Wold M.S., Geyer P.K. Identification of genomic sites that bind the Drosophila suppressor of Hairy-wing insulator protein. Mol. Cell. Biol. 2006;26(16):5983- 5993. DOI 10.1128/MCB.00698-06.; Parnell T.J., Viering M.M., Skjesol A., Helou C., Kuhn E.J., Geyer P.K. An endogenous suppressor of hairy-wing insulator separates regu¬latory domains in Drosophila. Proc. Natl. Acad. Sci. USA. 2003; 100(23):13436-13441. DOI 10.1073/pnas.2333111100.; Plevock K.M., Galletta B.J., Slep K.C., Rusan N.M. Newly charac-terized region of CP190 associates with microtubules and mediates proper spindle morphology in Drosophila stem cells. PLoS One. 2015;10(12):e0144174. DOI 10.1371/journal.pone.0144174.; Schwartz Y.B., Linder-Basso D., Kharchenko P.V., Tolstorukov M.Y., Kim M., Li H.B., Gorchakov A.A., Minoda A., Shanower G., Alekseyenko A.A., Riddle N.C., Jung Y.L., Gu T., Plachetka A., Elgin S.C.R., Kuroda M.I., Park P.J., Savitsky M., Karpen G.H., Pirrotta V. Nature and function of insulator protein binding sites in the Drosophila genome. Genome Res. 2012;22(11):2188-2198. DOI 10.1101/gr.138156.112.; Scott K.C., Taubman A.D., Geyer P.K. Enhancer blocking by the Dro-sophila gypsy insulator depends upon insulator anatomy and enhan¬cer strength. Genetics. 1999;153(2):787-798.; Smith P.A., Corces V.G. The suppressor of Hairy-wing protein regulates the tissue-specific expression of the Drosophila gypsy retrotranspo- son. Genetics. 1995;139(1):215-228.; Soshnev A.A., Baxley R.M., Manak J.R., Tan K., Geyer P.K. The insulator protein Suppressor of Hairy-wing is an essential tran-scriptional repressor in the Drosophila ovary. Development. 2013; 140(17):3613-3623. DOI 10.1242/dev.094953.; Soshnev A.A., Ishimoto H., McAllister B.F., Li X., Wehling M.D., Kitamoto T., Geyer P.K. A conserved long noncoding RNA affects sleep behavior in Drosophila. Genetics. 2011;189(2):455-468. DOI 10.1534/genetics.111.131706.; Wasser M., Chia W. The EAST protein of Drosophila controls an ex-pandable nuclear endoskeleton. Nat. Cell Biol. 2000;2(5):268-275. DOI 10.1038/35010535.; Wei W., Brennan M.D. The gypsy insulator can act as a promoter-spe-cific transcriptional stimulator. Mol. Cell. Biol. 2001;21(22):7714- 7720. DOI 10.1128/MCB.21.22.7714-7720.2001; https://vavilov.elpub.ru/jour/article/view/1929

  7. 7
  8. 8
  9. 9
  10. 10
  11. 11
  12. 12
  13. 13
  14. 14
  15. 15
  16. 16
  17. 17
  18. 18