Search Results - "апоптоз"
-
1
Source: Клиническая онкогематология, Vol 7, Iss 2 (2025)
-
2
Authors: et al.
Source: Modern Pediatrics. Ukraine; No. 3(147) (2025): Modern pediatrics. Ukraine; 41-46
Modern Pediatrics. Ukraine; № 3(147) (2025): Сучасна педіатрія. Україна; 41-46
Сучасна педіатрія. Україна; № 3(147) (2025): Сучасна педіатрія. Україна; 41-46Subject Terms: IL-6, children, вроджені вади серця, hypoxia, імунітет, TNF-α, апоптоз, гіпоксія, apoptosis, CD95, діти, congenital heart defects, immunity
File Description: application/pdf
Access URL: http://mpu.med-expert.com.ua/article/view/335379
-
3
Source: Modern medical technology; Vol. 17 No. 3 (2025): Modern medical technology; 163-169
Сучасні медичні технології; Том 17 № 3 (2025): Сучасні медичні технології; 163-169Subject Terms: p53, brain, апоптоз, apoptosis, neurodegeneration, neurons, Annexin A5, нейродегенерація, анексин А5, нейрони, мозок
File Description: text/xml; application/pdf
Access URL: https://medtech.mphu.edu.ua/article/view/328261
-
4
Authors: Смолькова, O.В.
Source: Morphologia; Vol. 19 No. 2 (2025); 97-104
Morphologia; Том 19 № 2 (2025); 97-104
Морфологія; Том 19 № 2 (2025); 97-104Subject Terms: cardiac vady occurrence, prenatal ethanol day, teratogenesis, cardiogenesis, apoptosis, epigenetics, myofibrilogenesis, fetal programming, вроджені вади серця, пренатальна дія етанолу, тератогенез, кардіогенез, апоптоз, епігенетика, міофібрилогенез, програмування плоду
File Description: application/pdf
Access URL: http://morphology.dma.dp.ua/article/view/338444
-
5
Source: Family medicine. European practices; No. 2 (2025); 117-121
Семейная медицина; № 2 (2025); 117-121
Сімейна Медицина. Європейські практики; № 2 (2025); 117-121Subject Terms: іschemic heart disease, програмована клітинна смерть, апоптоз, apoptosis, cardiomyocytes, кардіоміоцити, programmed cell death, ішемічна хвороба серця
File Description: application/pdf
-
6
Authors:
Source: Žurnal Grodnenskogo Gosudarstvennogo Medicinskogo Universiteta, Vol 22, Iss 6, Pp 538-543 (2025)
Subject Terms: хронические заболевания почек, апоптоз, гранзим б, аннексин-v, нефропатии, Medicine
File Description: electronic resource
-
7
Authors: et al.
-
8
Source: ScienceRise: Pharmaceutical Science; No. 1 (53) (2025); 123-131
ScienceRise: Pharmaceutical Science; № 1 (53) (2025); 123-131Subject Terms: salicylic acid, життєздатність клітин, apoptosis, purified naftalan oil, psoriasis, псоріаз, human keratinocytes, interleukins, кератиноцити людини, апоптоз, саліцилова кислота, очищена нафталінове масло, cell viability, betamethasone dipropionate, бетаметазону дипропіонат, інтерлейкіни
File Description: application/pdf
-
9
Source: Пролиферативный синдром в биологии и медицине.
-
10
Source: VIII Пущинская конференция «Биохимия, физиология и биосферная роль микроорганизмов».
Subject Terms: ХРОМАТИН, ГИДРОЛАЗЫ, ГОЛОДАНИЕ, ДРОЖЖИ, НЕКРОЗ, РЕГУЛИРУЕМАЯ ГИБЕЛЬ КЛЕТОК, АПОПТОЗ, ПРОГРАММИРУЕМАЯ ГИБЕЛЬ КЛЕТОК
-
11
Source: VII Пущинская конференция «Биохимия, физиология и биосферная роль микроорганизмов», шко- ла-конференция для молодых ученых, аспирантов и студентов «Генетические технологии в микробио- логии и микробное разнообразие».
Subject Terms: апоптоз, аннексин V, эукариоты
-
12
Source: Школа-конференция молодых ученых, аспирантов и студентов «Генетические технологии в микробиологии и микробное разнообразие».
Subject Terms: апоптоз, способ получения, продукция, каспаза-3
-
13
Source: НАУКА И ИННОВАЦИИ-СОВРЕМЕННЫЕ КОНЦЕПЦИИ.
Subject Terms: гепатопротекторы, ФНО-зависимый апоптоз, мелатонин
-
14
Authors:
Source: Медицина в Кузбассе, Vol 23, Iss 4, Pp 90-96 (2024)
Subject Terms: флюороз, морфологические изменения, свободно-радикальное окисление, апоптоз, внутриклеточные сигнальные пути, обзор, Medicine
File Description: electronic resource
-
15
Authors:
Source: Grail of Science
Subject Terms: Indonesia, старіння, мітохондрії, окислювальний стрес, активні форми кисню, антиоксиданти, мітохондріальна дисфункція, апоптоз
File Description: application/pdf
-
16
Authors: et al.
Contributors: et al.
Source: Russian Journal of Infection and Immunity; Vol 15, No 4 (2025); 609-618 ; Инфекция и иммунитет; Vol 15, No 4 (2025); 609-618 ; 2313-7398 ; 2220-7619
Subject Terms: immune dysfunction, immunosuppression, multiple organ failure, apoptosis, innate immunity, adaptive immunity, cytokines, иммунная дисфункция, иммуносупрессия, полиорганная недостаточность, апоптоз, врожденный иммунитет, адаптивный иммунитет, цитокины
File Description: application/pdf
Relation: https://iimmun.ru/iimm/article/view/17885/2234; https://iimmun.ru/iimm/article/view/17885/2327; https://iimmun.ru/iimm/article/downloadSuppFile/17885/139054; https://iimmun.ru/iimm/article/downloadSuppFile/17885/139055; https://iimmun.ru/iimm/article/downloadSuppFile/17885/139089; https://iimmun.ru/iimm/article/downloadSuppFile/17885/139090; https://iimmun.ru/iimm/article/downloadSuppFile/17885/139091; https://iimmun.ru/iimm/article/view/17885
-
17
Authors: et al.
Contributors: et al.
Source: Biomedical Photonics; Том 14, № 3 (2025); 14-23 ; 2413-9432
Subject Terms: апоптоз, X-ray excited optical luminescence, aqueous colloidal solution of nanocrystals, X-ray induced cytotoxicity, in vitro, fluorescence microscopy, apoptosis, рентгенолюминесценция, водный коллоидный раствор нанокристаллов, рентген-индуциро ванная цитотоксичность, флуоресцентная микроскопия
File Description: application/pdf
Relation: https://www.pdt-journal.com/jour/article/view/730/502; Miwa S., Yano S., Hiroshima Y., Tome Y., Uehara F., Mii S., Efimova E.V., Kimura H., Hayashi K., Tsuchiya H., Hoffman R.M. Imaging UVC-induced DNA damage response in models of minimal cancer // J. Cell. Biochem. – 2013. – Vol. 114(11). – P. 2493-2499.; Müller M., Espinoza S., Jüstel T., Held K.D., Anderson R.R., Purschke M. UVC-Emitting LuPO4 :Pr3+ Nanoparticles Decrease Radiation Resistance of Hypoxic Cancer Cells // Radiat. Res. – 2020. – Vol. 193(1). – P. 82-87.; Squillante M. R., Jüstel T., Anderson R.R., Brecher C., Chartier D., Christian J.F., Cicchetti N., Espinoza S., McAdams D.R., Müller M., Tornifoglio B., Wang Y., Purschke M. Fabrication and characterization of UV-emitting nanoparticles as novel radiation sensitizers targeting hypoxic tumor cells // Opt. Mater. – 2018. – Vol. 80. – P. 197-202.; Espinoza S., Müller M., Jenneboer H., Peulen L., Bradley T., Purschke M., Haase M., Rahmanzadeh R., Jüstel T. Characterization of Micro- and Nanoscale LuPO4 :Pr3+, Nd3+ with Strong UV-C Emission to Reduce X-Ray Doses in Radiation Therapy // Part. Part. Syst. Charact. – 2019. – Vol. 36(10). – P. 1900280.; Espinoza S., Volhard M.-F., Kätker H., Jenneboer H., Uckelmann A., Haase M., Müller M., Purschke M., Jüstel T. Deep Ultraviolet Emitting Scintillators for Biomedical Applications: The Hard Way of Downsizing LuPO4 :Pr3+ // Part. Part. Syst. Charact. – 2018. – Vol. 35(12). – P. 1800282.; Tran T. A., Kappelhoff J., Jüstel T., Anderson R.R., Purschke M.U. V emitting nanoparticles enhance the effect of ionizing radiation in 3D lung cancer spheroids // Int. J. Radiat. Biol. – 2022. – Vol. 98(9). – P. 1484-1494.; Malyy T.S., Vistovskyy V.V., Khapko Z.A., Pushak A.S., Mitina N.E., Zaichenko A.S., Gektin A.V., Voloshinovskii A.S. Recombination luminescence of LaPO4-Eu and LaPO4-Pr nanoparticles // J. Appl. Phys. – 2013. – Vol. 113(22). – P. 224305.; Srivastava A.M., Setlur A.A., Comanzo H.A., Beers W.W., Happek U., Schmidt P. The influence of the Pr3+ 4f15d1 configuration on the 1S0 emission efficiency and lifetime in LaPO4 // Opt. Mater. – 2011. – Vol. 33(3). – P. 292-298.; Okamoto S., Uchino R., Kobayashi K., Yamamoto H. Luminescent properties of Pr3+ -sensitized LaPO4 :Gd3+ ultraviolet-B phosphor under vacuum-ultraviolet light excitation // J. Appl. Phys. – 2009. – Vol. 106(1). – Р. 013522.; Srivastava A.M. Aspects of Pr3+ luminescence in solids // J. Lumin. – 2016. – 169(B). – P. 445–449.; Bagatur’yants A.A., Iskandarova I.M., Knizhnik A.A., Mironov V.S., Potapkin B.V., Srivastava A.M., Sommerer T.J. Energy level structure of 4f5d states and the Stokes shift In LaPO4 :Pr3+: A theoretical study // Phys. Rev. B. – 2008. – Vol. 78(16). – P. 165125.; Hilario E.G., Rodrigues L.C.V., Caiut J.M.A. Spectroscopic study of the 4f5d transitions of LaPO4 doped with Pr3+ or co-doped with Pr3+ and Gd3+ in the vacuum ultra violet region // Nanotechnology. – 2022. – Vol. 33. – P. 305703.; McGahon A.J., Martin S.J., Bissonnette R.P., Mahboubi A., Shi Y., Mogil R.J., Nishioka W.K., Green D.R. The end of the (cell) line: methods for the study of apoptosis in vitro // Methods Cell Biol. – 1995. – Vol. 46. – P. 153-185.; Kusuzaki K., Murata H., Matsubara T., Satonaka H., Wakabayashi T., Matsumine A., Uchida A. Review. Acridine orange could be an innovative anticancer agent under photon energy // In Vivo. – 2007. – Vol. 21(2). – P. 205-214.; Qian H., Chao X., Williams J., Fulte S., Li T., Yang L., Ding W. X. Autophagy in liver diseases: A review // Mol Aspects Med. – 2021. – Vol. 82. – P. 100973.; Xu C. and Qu X. Cerium oxide nanoparticle: a remarkably versatile rare earth nanomaterial for biological applications // NPG Asia Mater. – 2014. – Vol. 6(3). – P. e90-e90.; Goodman C. M., McCusker C. D., Yilmaz T., Rotello V.M. Toxicity of gold nanoparticles functionalized with cationic and anionic side chains // Bioconjugate Chem. – 2004. – Vol. 15(4). – P. 897-900.; Schaeublin N.M., Braydich-Stolle L.K., Schrand A.M., Miller J.M., Hutchison J., Schlager J.J., Hussain S.M. Surface charge of gold nanoparticles mediates mechanism of toxicity // Nanoscale. – 2011. – Vol. 3(2). – P. 410-420.
-
18
Authors: et al.
Contributors: et al.
Source: Obstetrics, Gynecology and Reproduction; Vol 19, No 5 (2025); 759-775 ; Акушерство, Гинекология и Репродукция; Vol 19, No 5 (2025); 759-775 ; 2500-3194 ; 2313-7347
Subject Terms: репродуктивное здоровье, EDC, ovarian toxicity, oxidative stress, apoptosis, epigenetic modifications, folliculogenesis, reproductive health, овариальная токсичность, окислительный стресс, апоптоз, эпигенетические модификации, фолликулогенез
File Description: application/pdf
Relation: https://www.gynecology.su/jour/article/view/2520/1398; Тимофеева Е.В., Высоцкий Ю.А., Бородина Г.Н., Лопатина С.В. Закономерности структурно-клеточного строения яичников в онтогенезе. Acta Biomedica Scientifica. 2016;1(1):56–8. https://doi.org/10.12737/21486.; Сыркашева А.Г., Долгушина Н.В., Яроцкая Е.Л. Влияние антропогенных химических веществ на репродукцию. Акушерство и гинекология. 2018;(3):16–21. https://doi.org/10.18565/aig.2018.3.16-21.; Жирнов И.А., Назмиева К.А., Хабибуллина А.И. и др. Влияние факторов окружающей среды на репродуктивное здоровье женщины. Акушерство, Гинекология и Репродукция. 2024;18(6):858–73. https://doi.org/10.17749/2313-7347/ob.gyn.rep.2024.564.; Адамян Л.В., Макиян З.Н., Глыбина Т.М. и др. Предикторы синдрома поликистозных яичников у юных пациенток (обзор литературы). Проблемы репродукции. 2014;(5):52–6.; Зотов С.В., Лихачева В.В., Мотырева П.Ю. и др. Факторы риска снижения овариального резерва женщин: актуальное состояние проблем. Acta Biomedica Scientifica. 2024;9(3):69–78. https://doi.org/10.29413/ABS.2024-9.3.6.; Андреева Е.Н., Шереметьева Е.В., Адамян Л.В. Этиологические и патогенетические факторы дисфункции яичников у женщин репродуктивного периода. Проблемы репродукции. 2020;26(6):34–43. https://doi.org/10.17116/repro20202606134.; Ткаченко Л.В., Гриценко И.А., Тихаева К.Ю. и др. Оценка факторов риска и прогнозирование преждевременной недостаточности яичников. Акушерство, Гинекология и Репродукция. 2022;16(1):73–80. https://doi.org/10.17749/2313-7347/ob.gyn.rep.2021.273.; Григорян О.Р., Жемайте Н.С., Волеводз Н.Н. и др. Отдаленные последствия синдрома поликистозных яичников. Терапевтический архив. 2017;89(10):75–9. https://doi.org/10.17116/terarkh2017891075-79.; Евтеева А.А., Шеремета М.С., Пигарова Е.А. Эндокринные дисрапторы в патогенезе таких социально значимых заболеваний, как сахарный диабет, злокачественные новообразования, сердечно-сосудистые заболевания, патология репродуктивной системы. Ожирение и метаболизм. 2021;18(3):327–35. https://doi.org/10.14341/omet12757.; Ho S.-M., Cheong A., Adgent M.A. et al. Environmental factors, epigenetics, and developmental origin of reproductive disorders. Reprod Toxicol. 2017;68:85–104. https://doi.org/10.1016/j.reprotox.2016.07.011.; Rattan S., Zhou C., Chiang C. et al. Exposure to endocrine disruptors during adulthood: consequences for female fertility. J Endocrinol. 2017;233(3):R109–R129. https://doi.org/10.1530/JOE-17-0023.; Schug T.T., Janesick A., Blumberg B., Heindel J.J. Endocrine disrupting chemicals and disease susceptibility. J Steroid Biochem Mol Biol. 2011;127(3–5):204–15. https://doi.org/10.1016/j.jsbmb.2011.08.007.; Patel S., Zhou C., Rattan S., Flaws J.A. Effects of endocrine-disrupting chemicals on the ovary. Biol Reprod. 2015;93(1):20. https://doi.org/10.1095/biolreprod.115.130336.; Streifer M., Thompson L.M., Mendez S.A., Gore A.C. Neuroendocrine and developmental impacts of early life exposure to EDCs. J Endocr Soc. 2024;9(1):bvae195. https://doi.org/10.1210/jendso/bvae195.; Thambirajah A.A., Wade M.G., Verreault J. et al. Disruption by stealth – interference of endocrine disrupting chemicals on hormonal crosstalk with thyroid axis function in humans and other animals. Environ Res. 2022;203:111906. https://doi.org/10.1016/j.envres.2021.111906.; Kordowitzki P., Krajnik K., Skowronska A., Skowronski M.T. Pleiotropic effects of IGF1 on the oocyte. Cells. 2022;11(10):1610. https://doi.org/10.3390/cells11101610.; Evangelinakis N., Geladari E.V., Geladari C.V. et al. The influence of environmental factors on premature ovarian insufficiency and ovarian aging. Maturitas. 2024;179:107871. https://doi.org/10.1016/j.maturitas.2023.107871.; Autrup H., Barile F.A., Berry S.C. et al. Human exposure to synthetic endocrine disrupting chemicals (S-EDCs) is generally negligible as compared to natural compounds with higher or comparable endocrine activity. How to evaluate the risk of the S-EDCs? J Toxicol Environ Health A. 2020;83(13–14):485–94. https://doi.org/10.1016/j.cbi.2020.109099.; Kim K. The role of endocrine disruption chemical-regulated aryl hydrocarbon receptor activity in the pathogenesis of pancreatic diseases and cancer. Int J Mol Sci. 2024;25(7):3818. https://doi.org/10.3390/ijms25073818.; Vidal O.S., Deepika D., Schuhmacher M., Kumar V. EDC-induced mechanisms of immunotoxicity: a systematic review. Crit Rev Toxicol. 2021;51(7):634–52. https://doi.org/10.1080/10408444.2021.2009438.; Guarnotta V., Amodei R., Frasca F. et al. Impact of chemical endocrine disruptors and hormone modulators on the endocrine system. Int J Mol Sci. 2022;23(10):5710. https://doi.org/10.3390/ijms23105710.; Pal S., Sahu A., Verma R., Haldar C. BPS-induced ovarian dysfunction: Protective actions of melatonin via modulation of SIRT-1/Nrf2/NFĸB and IR/PI3K/pAkt/GLUT-4 expressions in adult golden hamster. J Pineal Res. 2023;75(1):e12869. https://doi.org/10.1111/jpi.12869.; Zhang X., Zhang Y., Feng X. et al.The role of estrogen receptors (ERs)-Notch pathway in thyroid toxicity induced by Di-2-ethylhexyl phthalate (DEHP) exposure: population data and in vitro studies. Ecotoxicol Environ Saf. 2024;269:115727. https://doi.org/10.1016/j.ecoenv.2023.115727.; Hugues J.N., Durnerin I.C. Impact of androgens on fertility – physiological, clinical and therapeutic aspects. Reprod Biomed Online. 2005;11(5):570–80. https://doi.org/10.1016/s1472-6483(10)61165-0.; Lutz L.B., Jamnongjit M., Yang W.H. et al. Selective modulation of genomic and nongenomic androgen responses by androgen receptor ligands. Mol Endocrinol. 2003;17(6):1106–16. https://doi.org/10.1210/me.2003-0032.; Engel A., Buhrke T., Imber F. et al. Agonistic and antagonistic effects of phthalates and their urinary metabolites on the steroid hormone receptors ERα, ERβ, and AR. Toxicol Lett. 2017;277:54–63. https://doi.org/10.1016/j.toxlet.2017.05.028.; Rehan M., Ahmad E., Sheikh I.A. et al. Androgen and progesterone receptors are targets for bisphenol A (BPA), 4-methyl-2,4-bis-(P-hydroxyphenyl)Pent-1-Ene – a potent metabolite of BPA, and 4-tert-octylphenol: a computational insight. PLoS One. 2015;10(9):e0138438. https://doi.org/10.1371/journal.pone.0138438.; Zhang M., Wang W., Zhang D. et al. Prothioconazole exposure disrupts oocyte maturation and fertilization by inducing mitochondrial dysfunction and apoptosis in mice. Free Radic Biol Med. 2024;213:274–84. https://doi.org/10.1016/j.freeradbiomed.2024.01.027.; Safe S., Jin U.H., Park H. et al. Aryl hydrocarbon receptor (AHR) ligands as selective AHR modulators (SAhRMs). Int J Mol Sci. 2020;21(18):6654. https://doi.org/10.3390/ijms21186654.; Mackowiak B., Hodge J., Stern S., Wang H. The roles of xenobiotic receptors: beyond chemical disposition. Drug Metab Dispos. 2018;46(9):1361–71. https://doi.org/10.1124/dmd.118.081042.; Barroso A., Mahler J.V., Fonseca-Castro P.H., Quintana F.J. The aryl hydrocarbon receptor and the gut-brain axis. Cell Mol Immunol. 2021;18(2):259–68. https://doi.org/10.1038/s41423-020-00585-5.; Tarnow P., Tralau T., Luch A. Chemical activation of estrogen and aryl hydrocarbon receptor signaling pathways and their interaction in toxicology and metabolism. Expert Opin Drug Metab Toxicol. 2019;15(3):219–29. https://doi.org/10.1080/17425255.2019.1569627.; Safe S., Wormke M. Inhibitory aryl hydrocarbon receptor-estrogen receptor alpha cross-talk and mechanisms of action. Chem Res Toxicol. 2003;16(7):807–16. https://doi.org/10.1021/tx034036r.; Hall J.M., Korach K.S. Endocrine disrupting chemicals (EDCs) and sex steroid receptors. Adv Pharmacol. 2021;92:191–235. https://doi.org/10.1016/bs.apha.2021.04.001.; Zhang D., Trudeau V.L. Integration of membrane and nuclear estrogen receptor signaling. Comp Biochem Physiol A Mol Integr Physiol. 2006;144(3):306–15. https://doi.org/10.1016/j.cbpa.2006.01.025.; Gusmao D.O., Vieira H.R., Mansano N.S. et al. Pattern of gonadotropin secretion along the estrous cycle of C57BL/6 female mice. Physiol Rep. 2022;10(17):e15460. https://doi.org/10.14814/phy2.15460.; Yang R., Lu Y., Yin N., Faiola F. Transcriptomic integration analyses uncover cCommon bisphenol A effects across species and tissues primarily mediated by disruption of JUN/FOS, EGFR, ER, PPARG, and P53 pathways. Environ Sci Technol. 2023;57(48):19156–68. https://doi.org/10.1021/acs.est.3c02016.; Stevenson T.J., Hahn T.P, MacDougall-Shackleton S.A., Ball G.F. Gonadotropin-releasing hormone plasticity: a comparative perspective. Front Neuroendocrinol. 2012;33(3):287–300. https://doi.org/10.1016/j.yfrne.2012.09.001.; Gheorghiu M.L. Actualities in mutations of luteinizing hormone (LH) and follicle-stimulating hormone (FSH) receptors. Acta Endocrinol (Buchar). 2019;5(1):139–42. https://doi.org/10.4183/aeb.2019.139.; Menon K.M., Menon B. Structure, function and regulation of gonadotropin receptors - a perspective. Mol Cell Endocrinol. 2012;356(1–2):88–97. https://doi.org/10.1016/j.mce.2012.01.021.; Rogers R.E., Fowler K.A., Pask A.J., Mattiske D.M. Prenatal exposure to diethylstilbestrol has multigenerational effects on folliculogenesis. Sci Rep. 2024;14(1):30819. https://doi.org/10.1038/s41598-024-81093-8.; Park M.A., Choi K.C. Effects of 4-nonylphenol and bisphenol A on stimulation of cell growth via disruption of the transforming growth factor-β signaling pathway in ovarian cancer models. Chem Res Toxicol. 2014;27(1):119–28. https://doi.org/10.1021/tx400365z.; Bhai M.K.P., Binesh A., Shanmugam S.A., Venkatachalam K. Effects of mercury chloride on antioxidant and inflammatory cytokines in zebrafish embryos. J Biochem Mol Toxicol. 2024;38(1):e23589. https://doi.org/10.1002/jbt.23589.; Hannon P.R., Akin J.W., Curry T.E. Exposure to a phthalate mixture disrupts ovulatory progesterone receptor signaling in human granulosa cells in vitro†. Biol Reprod. 2023;109(4):552–65. https://doi.org/10.1093/biolre/ioad091.; D'Arcy M.S. Cell death: a review of the major forms of apoptosis, necrosis and autophagy. Cell Biol Int. 2019;43(6):582–92. https://doi.org/10.1002/cbin.11137.; Gogola J., Hoffmann M., Ptak A. Persistent endocrine-disrupting chemicals found in human follicular fluid stimulate IGF1 secretion by adult ovarian granulosa cell tumor spheroids and thereby increase proliferation of non-cancer ovarian granulosa cells. Toxicol In Vitro. 2020;65:104769. https://doi.org/10.1016/j.tiv.2020.104769.; Kourmaeva E., Sabry R., Favetta L.A. Bisphenols A and F, but not S, induce apoptosis in bovine granulosa cells via the intrinsic mitochondrial pathway. Front Endocrinol (Lausanne). 2022;13:1028438. https://doi.org/10.3389/fendo.2022.1028438.; Wu C., Du X., Liu H. et al. Advances in polychlorinated biphenyls-induced female reproductive toxicity. Sci Total Environ. 2024;918:170543. https://doi.org/10.1016/j.scitotenv.2024.170543.; Sun J., Gan L., Lv S. et al. Exposure to Di-(2-Ethylhexyl) phthalate drives ovarian dysfunction by inducing granulosa cell pyroptosis via the SLC39A5/NF-κB/NLRP3 axis. Ecotoxicol Environ Saf. 2023;252:114625. https://doi.org/10.1016/j.ecoenv.2023.114625.; Xu X., Pan Y., Zhan L. et al. The Wnt/β-catenin pathway is involved in 2,5-hexanedione-induced ovarian granulosa cell cycle arrest. Ecotoxicol Environ Saf. 2023;268:115720. https://doi.org/10.1016/j.ecoenv.2023.115720.; Land K.L., Miller F.G., Fugate A.C., Hannon P.R. The effects of endocrine-disrupting chemicals on ovarian- and ovulation-related fertility outcomes. Mol Reprod Dev. 2022;89(12):608–31. https://doi.org/10.1002/mrd.23652.; Yu Y.S., Sui H.S., Han Z.B. et al. Apoptosis in granulosa cells during follicular atresia: relationship with steroids and insulin-like growth factors. Cell Res. 2004;14(4):341–6. https://doi.org/10.1038/sj.cr.7290234.; Zhang H., Nagaoka K., Usuda K. et al. Estrogenic compounds impair primordial follicle formation by inhibiting the expression of proapoptotic Hrk in neonatal rat ovary. Biol Reprod. 2016;95(4):78. https://doi.org/10.1095/biolreprod.116.141309.; Zhang R., Wang X.X., Xie J.F. et al. Cypermethrin induces Sertoli cell apoptosis through endoplasmic reticulum-mitochondrial coupling involving IP3R1-GRP75-VDAC1. Reprod Toxicol. 2024;124:108552. https://doi.org/10.1016/j.reprotox.2024.108552.; Zhu M.R., Wang H.R., Han F.X. et al. Polyethylene microplastics cause apoptosis via the MiR-132/CAPN axis and inflammation in carp ovarian. Aquat Toxicol. 2023;265:106780. https://doi.org/10.1016/j.aquatox.2023.106780.; Chen Y., Hong T., Wang S. et al. Epigenetic modification of nucleic acids: from basic studies to medical applications. Chem Soc Rev. 2017;46(10):2844–72. https://doi.org/10.1039/c6cs00599c.; Dura M., Teissandier A., Armand M. et al. DNMT3A-dependent DNA methylation is required for spermatogonial stem cells to commit to spermatogenesis. Nat Genet. 2022;54(4):469–80. https://doi.org/10.1038/s41588-022-01040-z.; Paksa A., Rajagopal J. The epigenetic basis of cellular plasticity. Curr Opin Cell Biol. 2017;49:116–22. https://doi.org/10.1016/j.ceb.2018.01.003.; Ashapkin V., Suvorov A., Pilsner J.R. et al. Age-associated epigenetic changes in mammalian sperm: implications for offspring health and development. Hum Reprod Update. 2023;29(1):24–44. https://doi.org/10.1093/humupd/dmac033.; Zhu Z., Cao F., Li X. Epigenetic programming and fetal metabolic programming. Front Endocrinol (Lausanne). 2019;10:764. https://doi.org/10.3389/fendo.2019.00764.; Tao Y.R., Zhang Y.T., Han X.Y. et al. Intrauterine exposure to 2,3',4,4',5-pentachlorobiphenyl alters spermatogenesis and testicular DNA methylation levels in F1 male mice. Ecotoxicol Environ Saf. 2021;224:112652. https://doi.org/10.1016/j.ecoenv.2021.112652.; Chen S., Zhang Z., Peng H. et al. Histone H3K36me3 mediates the genomic instability of Benzo[a]pyrene in human bronchial epithelial cells. Environ Pollut. 2024;346:123564. https://doi.org/10.1016/j.envpol.2024.123564.; Wang H., Liu B., Chen H. et al. Dynamic changes of DNA methylation induced by benzo(a)pyrene in cancer. Genes Environ. 2023;45(1):21. https://doi.org/10.1186/s41021-023-00278-1.; Yauk C.L., Polyzos A., Rowan-Carroll A. et al. Tandem repeat mutation, global DNA methylation, and regulation of DNA methyltransferases in cultured mouse embryonic fibroblast cells chronically exposed to chemicals with different modes of action. Environ Mol Mutagen. 2008;49(1):26–35. https://doi.org/10.1002/em.20359.; Wan T., Au D.W., Mo J. et al. Assessment of parental benzo[a]pyrene exposure-induced cross-generational neurotoxicity and changes in offspring sperm DNA methylome in medaka fish. Environ Epigenet. 2022;8(1):dvac013. https://doi.org/10.1093/eep/dvac013.; Thangavelu S.K., Mohan M., Ramachandran I., Jagadeesan A. Lactational polychlorinated biphenyls exposure induces epigenetic alterations in the Leydig cells of progeny rats. Andrologia. 2021;53(9):e14160. https://doi.org/10.1111/and.14160.; Zhang L., Chen W.Q., Han X.Y. et al. Benzo(a)pyrene exposure during pregnancy leads to germ cell apoptosis in male mice offspring via affecting histone modifications and oxidative stress levels. Sci Total Environ. 2024;952:175877. https://doi.org/10.1016/j.scitotenv.2024.175877.; Broday L., Peng W., Kuo M.H. et al. Nickel compounds are novel inhibitors of histone H4 acetylation. Cancer Res. 2000;60(2):238–41.; Wei Y.D., Tepperman K., Huang M.Y. et al. Chromium inhibits transcription from polycyclic aromatic hydrocarbon-inducible promoters by blocking the release of histone deacetylase and preventing the binding of p300 to chromatin. J Biol Chem. 2004;279(6):4110–9. https://doi.org/10.1074/jbc.M310800200.; Li F., Yang R., Lu L. et al. Comparative steroidogenic effects of hexafluoropropylene oxide trimer acid (HFPO-TA) and perfluorooctanoic acid (PFOA): regulation of histone modifications. Environ Pollut. 2024;350:124030. https://doi.org/10.1016/j.envpol.2024.124030.; Yan H., Bu P. Non-coding RNA in cancer. Essays Biochem. 2021;65(4):625–39. https://doi.org/10.1042/EBC20200032.; Nouri N., Shareghi-Oskoue O., Aghebati-Maleki L. et al. Role of miRNAs interference on ovarian functions and premature ovarian failure. Cell Commun Signal. 2022;20(1):198. https://doi.org/10.1186/s12964-022-00992-3.; Furlong H.C., Stämpfli M.R., Gannon A.M., Foster W.G. Identification of microRNAs as potential markers of ovarian toxicity. J Appl Toxicol. 2018;38(5):744–52. https://doi.org/10.1002/jat.3583.; Sai L., Qu B., Zhang J. et al. Analysis of long non-coding RNA involved in atrazine-induced testicular degeneration of Xenopus laevis. Environ Toxicol. 2019;34(4):505–12. https://doi.org/10.1002/tox.22704.; Sun Y., Zong C., Liu J. et al. C-myc promotes miR-92a-2-5p transcription in rat ovarian granulosa cells after cadmium exposure. Toxicol Appl Pharmacol. 2021;421:115536. https://doi.org/10.1016/j.taap.2021.115536.; Lv Z., Hu J., Huang M. et al. Molecular mechanisms of cadmium-induced cytotoxicity in human ovarian granulosa cells identified using integrated omics. Ecotoxicol Environ Saf. 2024;272:116026. https://doi.org/10.1016/j.ecoenv.2024.116026.; Fu H., Yang J., Xin B. et al. Accentuated Hippo pathway and elevated miR-132 and miR-195a lead to changes of uteri and ovaries in offspring mice following prenatal exposure to vinclozolin. Reprod Toxicol. 2023;116:108335. https://doi.org/10.1016/j.reprotox.2023.108335.; Mori M.P., Penjweini R., Knutson J.R. et al. Mitochondria and oxygen homeostasis. FEBS J. 2022;289(22):6959–68. https://doi.org/10.1111/febs.16115.; Singh A, Kukreti R, Saso L, Kukreti S. Oxidative stress: a key modulator in neurodegenerative diseases. Molecules. 2019;24(8):1583. https://doi.org/10.3390/molecules24081583.; Sies H. Oxidative stress: a concept in redox biology and medicine. Redox Biol. 2015;4:180–3. https://doi.org/10.1016/j.redox.2015.01.002.; Filomeni G., De Zio D., Cecconi F. Oxidative stress and autophagy: the clash between damage and metabolic needs. Cell Death Differ. 2015;22(3):377–88. https://doi.org/10.1038/cdd.2014.150.; Zhong R., He H., Jin M. et al. Genome-wide gene-bisphenol A, F and triclosan interaction analyses on urinary oxidative stress markers. Sci Total Environ. 2022;807(Pt 1):150753. https://doi.org/10.1016/j.scitotenv.2021.150753.; Halliwell B. Understanding mechanisms of antioxidant action in health and disease. Nat Rev Mol Cell Biol. 2024;25(1):13–33. https://doi.org/10.1038/s41580-023-00645-4.; An R., Wang X., Yang L. et al. Polystyrene microplastics cause granulosa cells apoptosis and fibrosis in ovary through oxidative stress in rats. Toxicology. 2021;449:152665. https://doi.org/10.1016/j.tox.2020.152665.; Malott K.F., Luderer U. Toxicant effects on mammalian oocyte mitochondria†. Biol Reprod. 2021;104(4):784–93. https://doi.org/10.1093/biolre/ioab002.; Zhang Y., Zhao W., Xu H. et al. Hyperandrogenism and insulin resistance-induced fetal loss: evidence for placental mitochondrial abnormalities and elevated reactive oxygen species production in pregnant rats that mimic the clinical features of polycystic ovary syndrome. J Physiol. 2019;597(15):3927–50. https://doi.org/10.1113/JP277879.; Wang R., Song B., Wu J. et al. Potential adverse effects of nanoparticles on the reproductive system. Int J Nanomedicine. 2018;13:8487–506. https://doi.org/10.2147/IJN.S170723.; Wang S., Luo C., Guo J. et al. Enhancing therapeutic response and overcoming resistance to checkpoint inhibitors in ovarian cancer through cell cycle regulation. Int J Mol Sci. 2024;25(18):10018. https://doi.org/10.3390/ijms251810018.; Wang Z., Zhang W., Huang D. et al. Cuproptosis is involved in decabromodiphenyl ether-induced ovarian dysfunction and the protective effect of melatonin. Environ Pollut. 2024;352:124100. https://doi.org/10.1016/j.envpol.2024.124100.; Rajaura S., Bhardwaj N., Singh A. et al. Bisphenol A-induced oxidative stress increases the production of ovarian cancer stem cells in mice. Reprod Toxicol. 2024;130:108724. https://doi.org/10.1016/j.reprotox.2024.108724.; Virant-Klun I., Imamovic-Kumalic S., Pinter B. From oxidative stress to male infertility: review of the associations of endocrine-disrupting chemicals (bisphenols, phthalates, and parabens) with human semen quality. Antioxidants (Basel). 2022;11(8):1617. https://doi.org/10.3390/antiox11081617.; Bjørklund G., Mkhitaryan M., Sahakyan E. et al. Linking environmental chemicals to neuroinflammation and autism spectrum disorder: mechanisms and implications for prevention. Mol Neurobiol. 2024;61(9):6328–340. https://doi.org/10.1007/s12035-024-03941-y.; Zhang Y., Meng F., Zhao T. et al. Melatonin improves mouse oocyte quality from 2-ethylhexyl diphenyl phosphate-induced toxicity by enhancing mitochondrial function. Ecotoxicol Environ Saf. 2024;280:116559. https://doi.org/10.1016/j.ecoenv.2024.116559.; Guo L., Zhao Y., Huan Y. Pterostilbene alleviates chlorpyrifos-induced damage during porcine oocyte maturation. Front Cell Dev Biol. 2021;9:803181. https://doi.org/10.3389/fcell.2021.803181.; Li Q., Zhu Q., Tian F. et al. In utero di-(2-ethylhexyl) phthalate-induced testicular dysgenesis syndrome in male newborn rats is rescued by taxifolin through reducing oxidative stress. Toxicol Appl Pharmacol. 2022;456:116262. https://doi.org/10.1016/j.taap.2022.116262.; Li Y., Xiong B,. Miao Y., Gao Q. Silibinin supplementation ameliorates the toxic effects of butyl benzyl phthalate on porcine oocytes by eliminating oxidative stress and autophagy. Environ Pollut. 2023;329:121734. https://doi.org/10.1016/j.envpol.2023.121734.; Sun P., Zhang Y., Sun L. et al. Kisspeptin regulates the proliferation and apoptosis of ovary granulosa cells in polycystic ovary syndrome by modulating the PI3K/AKT/ERK signalling pathway. BMC Womens Health. 2023;23(1):15. https://doi.org/10.1186/s12905-022-02154-6.; Li X., Yang J., Shi E. et al. Riboflavin alleviates fluoride-induced ferroptosis by IL-17A-independent system Xc-/GPX4 pathway and iron metabolism in testicular Leydig cells. Environ Pollut. 2024;344:123332. https://doi.org/10.1016/j.envpol.2024.123332.; Wang J.Y., Zhang F.L., Li X.X. et al. Cyanidin-3-O-glucoside mitigates the ovarian defect induced by zearalenone via p53-GADD45a signaling during primordial follicle assembly. J Agric Food Chem. 2023;71(44):16715-16726. https://doi.org/10.1021/acs.jafc.3c03315.; Zhang T., He H., Wei Y. et al. Vitamin C supplementation rescued meiotic arrest of spermatocytes in Balb/c mice exposed to BDE-209. Ecotoxicol Environ Saf. 2022;242:113846. https://doi.org/10.1016/j.ecoenv.2022.113846.; Martin L., Zhang Y., First O. et al. Lifestyle interventions to reduce endocrine-disrupting phthalate and phenol exposures among reproductive age men and women: A review and future steps. Environ Int. 2022;170:107576. https://doi.org/10.1016/j.envint.2022.107576.; Yang T.C., Jovanovic N., Chong F. et al. Interventions to reduce exposure to synthetic phenols and phthalates from dietary intake and personal care products: a scoping review. Curr Environ Health Rep. 2023;10(2):184-214. https://doi.org/10.1007/s40572-023-00394-8.; De Falco M., Favetta L.A., Meccariello R. et al. Editorial: endocrine disrupting chemicals in reproductive health, fertility, and early development. Front Endocrinol (Lausanne). 2024;15:1478655. https://doi.org/10.3389/fendo.2024.1478655.; Mohajer N., Culty M. IMPACT OF REAL-LIFE ENVIRONMENTAL EXPOSURES ON REPRODUCTION: Impact of human-relevant doses of endocrine-disrupting chemical and drug mixtures on testis development and function. Reproduction. 2025;169(1):e240155. https://doi.org/10.1530/REP-24-0155.; Pan J., Liu P., Yu X. et al. The adverse role of endocrine disrupting chemicals in the reproductive system. Front Endocrinol (Lausanne). 2024;14:1324993. https://doi.org/10.3389/fendo.2023.1324993.; https://www.gynecology.su/jour/article/view/2520
-
19
Authors: et al.
Source: ScienceRise: Pharmaceutical Science; No. 1 (53) (2025); 123-131 ; ScienceRise: Pharmaceutical Science; № 1 (53) (2025); 123-131 ; 2519-4852 ; 2519-4844
Subject Terms: purified naftalan oil, salicylic acid, betamethasone dipropionate, psoriasis, human keratinocytes, cell viability, apoptosis, interleukins, очищена нафталінове масло, саліцилова кислота, бетаметазону дипропіонат, псоріаз, кератиноцити людини, життєздатність клітин, апоптоз, інтерлейкіни
File Description: application/pdf
Relation: https://journals.uran.ua/sr_pharm/article/view/324050/314163; https://journals.uran.ua/sr_pharm/article/view/324050
Availability: https://journals.uran.ua/sr_pharm/article/view/324050
-
20
Authors: et al.
Contributors: et al.
Source: Siberian journal of oncology; Том 23, № 6 (2024); 81-88 ; Сибирский онкологический журнал; Том 23, № 6 (2024); 81-88 ; 2312-3168 ; 1814-4861
Subject Terms: апоптоз, ribavirin, chemotherapy, 1,2,4-triazole-3-carboxamides, cell cycle, apoptosis, рибавирин, химиотерапия, 1,2,4-триазол-3-карбоксамид, клеточный цикл
File Description: application/pdf
Relation: https://www.siboncoj.ru/jour/article/view/3357/1301; Состояние онкологической помощи населению России в 2022 году. Под ред. А.Д. Каприна, В.В. Старинского, А.О. Шахзадовой. М., 2023. 252 с.; Ozols R.F., Bundy B.N., Greer B.E., Fowler J.M., Clarke-Pearson D., Burger R.A., Mannel R.S., DeGeest K., Hartenbach E.M., Baergen R.; Gynecologic Oncology Group. Phase III trial of carboplatin and paclitaxel compared with cisplatin and paclitaxel in patients with optimally resected stage III ovarian cancer: a Gynecologic Oncology Group study. J Clin Oncol. 2003; 21(17): 3194–200. doi:10.1200/JCO.2003.02.153.; Gorodnova T.V., Sokolenko A.P., Kuligina E., Berlev I.V., Imyanitov E.N. Principles of clinical management of ovarian cancer. Chin Clin Oncol. 2018; 7(6): 56. doi:10.21037/cco.2018.10.06.; Galmarini C.M., Mackey J.R., Dumontet C. Nucleoside analogues and nucleobases in cancer treatment. Lancet Oncol. 2002; 3(7): 415–24. doi:10.1016/s1470-2045(02)00788-x.; Pfisterer J., Plante M., Vergote I., du Bois A., Hirte H., Lacave A.J., Wagner U., Stähle A., Stuart G., Kimmig R., Olbricht S., Le T., Emerich J., Kuhn W., Bentley J., Jackisch C., Lück H.J., Rochon J., Zimmermann A.H., Eisenhauer E.; AGO-OVAR; NCIC CTG; EORTC GCG. Gemcitabine plus carboplatin compared with carboplatin in patients with platinum-sensitive recurrent ovarian cancer: an intergroup trial of the AGO-OVAR, the NCIC CTG, and the EORTC GCG. J Clin Oncol. 2006; 24(29): 4699–707. doi:10.1200/JCO.2006.06.0913.; Савинкова А.В., Жидкова Е.М., Тилова Л.Р., Лаврова М.Д., Лылова Е.С., Кузин К.А., Портянникова А.Ю., Максимова В.П., Холодова А.В., Власова О.А., Фетисов Т.И., Кирсанов К.И., Белицкий Г.А., Якубовская М.Г., Лесовая Е.А. Варианты и перспективы перепрофилирования лекарственных препаратов для использования в терапии онкологических заболеваний. Сибирский онкологический журнал. 2018; 17(3): 77–87. doi:10.21294/1814-4861-2018-17-3-77-87.; Huq S., Casaos J., Serra R., Peters M., Xia Y., Ding A.S., Ehresman J., Kedda J.N., Morales M., Gorelick N.L., Zhao T., Ishida W., Perdomo-Pantoja A., Cecia A., Ji C., Suk I., Sidransky D., Brait M., Brem H., Skuli N., Tyler B. Repurposing the FDA-Approved Antiviral Drug Ribavirin as Targeted Therapy for Nasopharyngeal Carcinoma. Mol Cancer Ther. 2020; 19(9): 1797–808. doi:10.1158/1535-7163.MCT-19-0572.; Chen J., Xu X., Chen J. Clinically relevant concentration of antiviral drug ribavirin selectively targets pediatric osteosarcoma and increases chemosensitivity. Biochem Biophys Res Commun. 2018; 506(3): 604–10. doi:10.1016/j.bbrc.2018.10.124. Erratum in: Biochem Biophys Res Commun. 2023; 686. doi:10.1016/j.bbrc.2023.09.081.; Teng L., Ding D., Chen Y., Dai H., Liu G., Qiao Z., An R. Anti-tumor effect of ribavirin in combination with interferon-α on renal cell carcinoma cell lines in vitro. Cancer Cell Int. 2014; 14: 63. doi:10.1186/1475-2867-14-63.; Pettersson F., Yau C., Dobocan M.C., Culjkovic-Kraljacic B., Retrouvey H., Puckett R., Flores L.M., Krop I.E., Rousseau C., Cocolakis E., Borden K.L., Benz C.C., Miller W.H. Jr. Ribavirin treatment effects on breast cancers overexpressing eIF4E, a biomarker with prognostic specificity for luminal B-type breast cancer. Clin Cancer Res. 2011; 17(9): 2874–84. doi:10.1158/1078-0432.CCR-10-2334. Erratum in: Clin Cancer Res. 2011; 17(21): 6952. Retrouvay, Hélène [corrected to Retrouvey, Hélène].; Casaos J., Huq S., Lott T., Felder R., Choi J., Gorelick N., Peters M., Xia Y., Maxwell R., Zhao T., Ji C., Simon T., Sesen J., Scotland S.J., Kast R.E., Rubens J., Raabe E., Eberhart C.G., Jackson E.M., Brem H., Tyler B., Skuli N. Ribavirin as a potential therapeutic for atypical teratoid/rhabdoid tumors. Oncotarget. 2018; 9(8): 8054–67. doi:10.18632/oncotarget.23883.; Shen X., Zhu Y., Xiao Z., Dai X., Liu D., Li L., Xiao B. Antiviral Drug Ribavirin Targets Thyroid Cancer Cells by Inhibiting the eIF4E-β-Catenin Axis. Am J Med Sci. 2017; 354(2): 182–89. doi:10.1016/j.amjms.2017.03.025.; Ochiai Y., Sano E., Okamoto Y., Yoshimura S., Makita K., Yamamuro S., Ohta T., Ogino A., Tadakuma H., Ueda T., Nakayama T., Hara H., Yoshino A., Katayama Y. Efficacy of ribavirin against malignant glioma cell lines: Follow-up study. Oncol Rep. 2018; 39(2): 537–44. doi:10.3892/or.2017.6149.; Dominguez-Gomez G., Cortez-Pedroza D., Chavez-Blanco A., Taja-Chayeb L., Hidalgo-Miranda A., Cedro-Tanda A., Beltran-Anaya F., Diaz-Chavez J., Schcolnik-Cabrera A., Gonzalez-Fierro A., Dueñas-Gonzalez A. Growth inhibition and transcriptional effects of ribavirin in lymphoma. Oncol Rep. 2019; 42(3): 1248–56. doi:10.3892/or.2019.7240.; Urtishak K.A., Wang L.S., Culjkovic-Kraljacic B., Davenport J.W., Porazzi P., Vincent T.L., Teachey D.T., Tasian S.K., Moore J.S., Seif A.E., Jin S., Barrett J.S., Robinson B.W., Chen I.L., Harvey R.C., Carroll M.P., Carroll A.J., Heerema N.A., Devidas M., Dreyer Z.E., Hilden J.M., Hunger S.P., Willman C.L., Borden K.L.B., Felix C.A. Targeting EIF4E signaling with ribavirin in infant acute lymphoblastic leukemia. Oncogene. 2019; 38(13): 2241–62. doi:10.1038/s41388-018-0567-7.; Kökény S., Papp J., Weber G., Vaszkó T., Carmona-Saez P., Oláh E. Ribavirin acts via multiple pathways in inhibition of leukemic cell proliferation. Anticancer Res. 2009; 29(6): 1971–80.; Li W., Shen F., Weber G. Ribavirin and quercetin synergistically downregulate signal transduction and are cytotoxic in human ovarian carcinoma cells. Oncol Res. 1999; 11(5): 243–7.; Wambecke A., Laurent-Issartel C., Leroy-Dudal J., Giffard F., Cosson F., Lubin-Germain N., Uziel J., Kellouche S., Carreiras F. Evaluation of the potential of a new ribavirin analog impairing the dissemination of ovarian cancer cells. PLoS One. 2019; 14(12). doi:10.1371/journal.pone.0225860.; De la Cruz-Hernandez E., Medina-Franco J.L., Trujillo J., Chavez-Blanco A., Dominguez-Gomez G., Perez-Cardenas E., Gonzalez-Fierro A., Taja-Chayeb L., Dueñas-Gonzalez A. Ribavirin as a tri-targeted antitumor repositioned drug. Oncol Rep. 2015; 33(5): 2384–92. doi:10.3892/or.2015.3816.; Kentsis A., Topisirovic I., Culjkovic B., Shao L., Borden K.L. Ribavirin suppresses eIF4E-mediated oncogenic transformation by physical mimicry of the 7-methyl guanosine mRNA cap. Proc Natl Acad Sci U S A. 2004; 101(52): 18105–10. doi:10.1073/pnas.0406927102.; Pettersson F., Del Rincon S.V., Miller W.H. Jr. Eukaryotic translation initiation factor 4E as a novel therapeutic target in hematological malignancies and beyond. Expert Opin Ther Targets. 2014; 18(9): 1035–48. doi:10.1517/14728222.2014.937426.; Zheng J., Li X., Zhang C., Zhang Y. eIF4E Overexpression Is Associated with Poor Prognoses of Ovarian Cancer. Anal Cell Pathol (Amst). 2020. doi:10.1155/2020/8984526.; Zhidkova E., Stepanycheva D., Grebenkina L., Mikhina E., Maksimova V., Grigoreva D., Matveev A., Lesovaya E. Synthetic 1,2,4-triazole-3-carboxamides Induce Cell Cycle Arrest and Apoptosis in Leukemia Cells. Curr Pharm Des. 2023; 29(43): 3478–87. doi:10.2174/0113816128275084231202153602.; da Costa A.A.B.A., Chowdhury D., Shapiro G.I., D'Andrea A.D., Konstantinopoulos P.A. Targeting replication stress in cancer therapy. Nat Rev Drug Discov. 2023; 22(1): 38–58. doi:10.1038/s41573-022-00558-5.; Tan H., He L., Cheng Z. Inhibition of eIF4E signaling by ribavirin selectively targets lung cancer and angiogenesis. Biochem Biophys Res Commun. 2020; 529(3): 519–25. doi:10.1016/j.bbrc.2020.05.127.; Lim S., Kaldis P. Cdks, cyclins and CKIs: roles beyond cell cycle regulation. Development. 2013; 140(15): 3079–93. doi:10.1242/dev.091744.; Taylor W.R., DePrimo S.E., Agarwal A., Agarwal M.L., Schönthal A.H., Katula K.S., Stark G.R. Mechanisms of G2 arrest in response to overexpression of p53. Mol Biol Cell. 1999; 10(11): 3607–22. doi:10.1091/mbc.10.11.3607.; https://www.siboncoj.ru/jour/article/view/3357
Nájsť tento článok vo Web of Science
Full Text Finder