Výsledky vyhledávání - "ангиогенез"

  1. 1
  2. 2
  3. 3

    Témata: Annotatsiya: maqolada surunkali pielonefrit negizida kechuvchi nefroskleroz mavjud bemorlarni davolash bosqichlarida buyrak tuzilmalarini shikastlanish darajasini bashoratlash uchun markerlarning prognostik ahamiyatini aniqlash to'g'risida to'liq yoritilgan. Kalit so'zlar: surunkali piyelonefrit, buyrak nefrosklerozi, molekulyar biomarkerlar, glomeruloskleroz, vazodilatatsiya, atrofiya, VEGF, THBSN-1, angiogenez regulyatorlari. Аннотация: мақолада сурункали пиэлонефрит негизида кечувчи нефросклероз мавжуд беморларни даволаш босқичларида буйрак тузилмаларини шикастланиш даражасини башоратлаш учун маркерларнинг прогностик аҳамиятини аниқлаш тўғрисида тўлиқ ёритилган. Калит сўзлар: сурункали пиелонефрит, буйрак нефросклерози, молекуляр биомаркерлар, гломерулосклероз, вазодилатация, атрофия, VEGF, THBSN-1, ангиогенез регуляторлари. Abstract: The article provides a comprehensive review of the prognostic markers for the treatment of patients with nephrosclerosis on the background of chronic pyelonephritis. Keywords: chronic pyelonephritis, renal nephrosclerosis, molecular biomarkers, glomerulosclerosis, vasodilation, atrophy, VEGF, THBSN-1, angiogenesis regulators

  4. 4
  5. 5
  6. 6
  7. 7
  8. 8

    Zdroj: Obstetrics, Gynecology and Reproduction; Online First ; Акушерство, Гинекология и Репродукция; Online First ; 2500-3194 ; 2313-7347

    Popis souboru: application/pdf

    Relation: https://www.gynecology.su/jour/article/view/2609/1406; Петров И.А., Дмитриева М.Л., Тихоновская О.А. и др. Тканевые и молекулярные основы фолликулогенеза. Механизмы раннего фолликулярного роста. Проблемы репродукции. 2017;23(5):33–41. https://doi.org/10.17116/repro201723533-41.; Pors S.E., Harðardóttir L., Olesen H.Ø. et al. Effect of sphingosine-1-phosphate on activation of dormant follicles in murine and human ovarian tissue. Mol Hum Reprod. 2020;26(5):301–11. https://doi.org/10.1093/molehr/gaaa022.; Zhang Y., Yan Z., Qin Q. et al. Transcriptome landscape of human folliculogenesis reveals oocyte and granulosa cell interactions. Mol Cell. 2018;72(6):1021–1034.e4. https://doi.org/10.1016/j.molcel.2018.10.029.; Hernández-Coronado C.G., Guzmán A., Castillo-Juárez H. et al. Sphingosine-1-phosphate (S1P) in ovarian physiology and disease. Ann Endocrinol (Paris). 2019;80(5–6):263–72. https://doi.org/10.1016/j.ando.2019.06.003.; Pitman M., Oehler M.K., Pitson S.M. Sphingolipids as multifaceted mediators in ovarian cancer. Cell Signal. 2021;81:109949. https://doi.org/10.1016/j.cellsig.2021.109949.; Quinville B.M., Deschenes N.M., Ryckman A.E., Walia J.S. A comprehensive review: sphingolipid metabolism and implications of disruption in sphingolipid homeostasis. Int J Mol Sci. 2021;22(11):5793. https://doi.org/10.3390/ijms22115793.; Sukocheva O., Wadham C., Holmes A. et al. Estrogen transactivates EGFR via the sphingosine 1-phosphate receptor Edg-3: the role of sphingosine kinase-1. J Cell Biol. 2006;173(2):301–10. https://doi.org/10.1083/jcb.200506033.; Chou C.H., Chen M.J. The effect of steroid hormones on ovarian follicle development. Vitam Horm. 2018;107:155–75. https://doi.org/10.1016/bs.vh.2018.01.013.; Zeleznik O.A., Clish C.B., Kraft P. et al. Circulating lysophosphatidylcholines, phosphatidylcholines, ceramides, and sphingomyelins and ovarian cancer risk: a 23-year prospective study. J Natl Cancer Inst. 2020;112(6):628–36. https://doi.org/10.1093/jnci/djz195.; Janneh A.H., Ogretmen B. Targeting sphingolipid metabolism as a therapeutic strategy in cancer treatment. Cancers (Basel). 2022;14(9):2183. https://doi.org/10.3390/cancers14092183.; Gomez-Larrauri A., Das Adhikari U., Aramburu-Nuñez M. et al. Ceramide metabolism enzymes-therapeutic targets against cancer. Medicina (Kaunas). 2021;57(7):729. https://doi.org/10.3390/medicina57070729.; Companioni O., Mir C., Garcia-Mayea Y., LLeonart M.E. Targeting sphingolipids for cancer therapy. Front Oncol. 2021;11:745092. https://doi.org/10.3389/fonc.2021.745092.; Yuan Y., Jia G., Wu C. et al. Structures of signaling complexes of lipid receptors S1PR1 and S1PR5 reveal mechanisms of activation and drug recognition. Cell Res. 2021;31(12):1263–74. https://doi.org/10.1038/s41422-021-00566-x.; Lucki N.C., Sewer M.B. The interplay between bioactive sphingolipids and steroid hormones. Steroids. 2010;75(6):390–9. https://doi.org/10.1016/j.steroids.2010.01.020.; Roth Z. Symposium review: reduction in oocyte developmental competence by stress is associated with alterations in mitochondrial function. J Dairy Sci. 2018;101(4):3642–54. https://doi.org/10.3168/jds.2017-13389.; Протопопов В.А., Секунов А.В., Панов А.В., Брындина И.Г. Взаимосвязь сфинголипидных механизмов с окислительным стрессом и изменениями митохондрий при функциональной разгрузке постуральных мышц. Acta Biomedica Scientifica. 2024;9(2):228–42. https://doi.org/10.29413/ABS.2024-9.2.23.; Kujjo L.L., Perez G.I. Ceramide and mitochondrial function in aging oocytes: joggling a new hypothesis and old players. Reproduction. 2012;143(1):1–10. https://doi.org/10.1530/REP-11-0350.; Zigdon H., Kogot-Levin A., Park J.W. et al. Ablation of ceramide synthase 2 causes chronic oxidative stress due to disruption of the mitochondrial respiratory chain. J Biol Chem. 2013;288(7):4947–56. https://doi.org/10.1074/jbc.M112.402719.; Arora A.S., Jones B.J., Patel T.C. et al. Ceramide induces hepatocyte cell death through disruption of mitochondrial function in the rat. Hepatology. 1997;25(4):958–63. https://doi.org/10.1002/hep.510250428.; Malott K.F., Luderer U. Toxicant effects on mammalian oocyte mitochondria†. Biol Reprod. 2021;104(4):784–93. https://doi.org/10.1093/biolre/ioab002.; Kasapoğlu I., Seli E. Mitochondrial dysfunction and ovarian aging. Endocrinology. 2020;161(2):bqaa001. https://doi.org/10.1210/endocr/bqaa001.; Smits M.A.J., Schomakers B.V., van Weeghel M. et al. Human ovarian aging is characterized by oxidative damage and mitochondrial dysfunction. Hum Reprod. 2023;38(11):2208–20. https://doi.org/10.1093/humrep/dead177.; Lee S., Kang H.G., Jeong P.S. et al. Heat stress impairs oocyte maturation through ceramide-mediated apoptosis in pigs. Sci Total Environ. 2021;755(Pt 1):144144. https://doi.org/10.1016/j.scitotenv.2020.144144.; Hernández-Coronado C.G., Guzmán A., Espinosa-Cervantes R. et al. Sphingosine-1-phosphate and ceramide are associated with health and atresia of bovine ovarian antral follicles. Animal. 2015;9(2):308–12. https://doi.org/10.1017/S1751731114002341.; Kujjo L.L., Acton B.M., Perkins G.A. et al. Ceramide and its transport protein (CERT) contribute to deterioration of mitochondrial structure and function in aging oocytes. Mech Ageing Dev. 2013;134(1–2):43–52. https://doi.org/10.1016/j.mad.2012.12.001.; Morita Y., Tilly J.L. Oocyte apoptosis: like sand through an hourglass. Dev Biol. 1999;213(1):1–17. https://doi.org/10.1006/dbio.1999.9344.; Hernández-Coronado C.G., Guzmán A., Rodríguez A. et al. Sphingosine-1-phosphate, regulated by FSH and VEGF, stimulates granulosa cell proliferation. Gen Comp Endocrinol. 2016;236:1–8. https://doi.org/10.1016/j.ygcen.2016.06.029.; Hao X., Zhang M. Roles of sphingosine-1-phosphate in follicle development and oocyte maturation. Anim Res One Health. 2024;2(3):314–22. https://doi.org/10.1002/aro2.53.; Park J.Y., Su Y.Q., Ariga M. et al. EGF-like growth factors as mediators of LH action in the ovulatory follicle. Science. 2004;303(5658):682–4. https://doi.org/10.1126/science.1092463.; Yamanaka M., Shegogue D., Pei H. et al. Sphingosine kinase 1 (SPHK1) is induced by transforming growth factor-beta and mediates TIMP-1 up-regulation. J Biol Chem. 2004;279(52):53994–4001. https://doi.org/10.1074/jbc.M410144200.; Squecco R., Sassoli C., Nuti F. et al. Sphingosine 1-phosphate induces myoblast differentiation through Cx43 protein expression: a role for a gap junction-dependent and -independent function. Mol Biol Cell. 2006;17(11):4896–910. https://doi.org/10.1091/mbc.e06-03-0243.; Giepmans B.N., Verlaan I., Hengeveld T. et al. Gap junction protein connexin-43 interacts directly with microtubules. Curr Biol. 2001;11(17):1364–8. https://doi.org/10.1016/s0960-9822(01)00424-9.; Hao X., Wang Y., Kong N. et al. Growth factor-mobilized intracellular calcium of cumulus cells decreases natriuretic peptide receptor 2 affinity for natriuretic peptide type C and induces oocyte meiotic resumption in the mouse. Biol Reprod. 2016;95(2):45. https://doi.org/10.1095/biolreprod.116.140137.; Yuan F., Hao X., Cui Y. et al. SphK-produced S1P in somatic cells is indispensable for LH-EGFR signaling-induced mouse oocyte maturation. Cell Death Dis. 2022;13(11):963. https://doi.org/10.1038/s41419-022-05415-2.; Mostafa S., Nader N., Machaca K. Lipid signaling during gamete maturation. Front Cell Dev Biol. 2022;10:814876. https://doi.org/10.3389/fcell.2022.814876.; Birbes H., El Bawab S., Hannun Y.A., Obeid L.M. Selective hydrolysis of a mitochondrial pool of sphingomyelin induces apoptosis. FASEB J. 2001;15(14):2669–79. https://doi.org/10.1096/fj.01-0539com.; Hernández-Corbacho M.J., Salama M.F., Canals D. et al. Sphingolipids in mitochondria. Biochim Biophys Acta Mol Cell Biol Lipids. 2017;1862(1):56–68. https://doi.org/10.1016/j.bbalip.2016.09.019.; Ueda N. Ceramide-induced apoptosis in renal tubular cells: a role of mitochondria and sphingosine-1-phoshate. Int J Mol Sci. 2015;16(3):5076–124. https://doi.org/10.3390/ijms16035076.; Fisher-Wellman K.H., Hagen J.T., Neufer P.D. et al. On the nature of ceramide-mitochondria interactions – dissection using comprehensive mitochondrial phenotyping. Cell Signal. 2021;78:109838. https://doi.org/10.1016/j.cellsig.2020.109838.; Eliyahu E., Shtraizent N., Martinuzzi K. et al. Acid ceramidase improves the quality of oocytes and embryos and the outcome of in vitro fertilization. FASEB J. 2010;24(4):1229–38. https://doi.org/10.1096/fj.09-145508.; Santiquet N.W., Greene A.F, Becker J. et al. A pre-in vitro maturation medium containing cumulus oocyte complex ligand-receptor signaling molecules maintains meiotic arrest, supports the cumulus oocyte complex and improves oocyte developmental competence. Mol Hum Reprod. 2017;23(9):594–606. https://doi.org/10.1093/molehr/gax032.; Eliyahu E., Shtraizent N., Shalgi R., Schuchman E.H. Construction of conditional acid ceramidase knockout mice and in vivo effects on oocyte development and fertility. Cell Physiol Biochem. 2012;30(3):735–48. https://doi.org/10.1159/000341453.; Morita Y., Perez G.I., Paris F. et al. Oocyte apoptosis is suppressed by disruption of the acid sphingomyelinase gene or by sphingosine-1-phosphate therapy. Nat Med. 2000;6(10):1109–14. https://doi.org/10.1038/80442.; Coll O., Morales A., Fernández-Checa J.C., Garcia-Ruiz C. Neutral sphingomyelinase-induced ceramide triggers germinal vesicle breakdown and oxidant-dependent apoptosis in Xenopus laevis oocytes. J Lipid Res. 2007;48(9):1924–35. https://doi.org/10.1194/jlr.M700069-JLR200.; Yuan F., Wang Z., Sun Y. et al. Sgpl1 deletion elevates S1P levels, contributing to NPR2 inactivity and p21 expression that block germ cell development. Cell Death Dis. 2021;12(6):574. https://doi.org/10.1038/s41419-021-03848-9.; Morita Y., Tilly J.L. Sphingolipid regulation of female gonadal cell apoptosis. Ann N Y Acad Sci. 2000;905:209–20. https://doi.org/10.1111/j.1749-6632.2000.tb06551.x.; Knapp P., Chomicz K., Świderska M. et al. Unique roles of sphingolipids in selected malignant and nonmalignant lesions of female reproductive system. Biomed Res Int. 2019;2019:4376583. https://doi.org/10.1155/2019/4376583.; Kreitzburg K.M., van Waardenburg R.C.A.M., Yoon K.J. Sphingolipid metabolism and drug resistance in ovarian cancer. Cancer Drug Resist. 2018;1:181–97. https://doi.org/10.20517/cdr.2018.06.; Rutherford T., Brown W.D., Sapi E. et al. Absence of estrogen receptor-beta expression in metastatic ovarian cancer. Obstet Gynecol. 2000;96(3):417–21. https://doi.org/10.1016/s0029-7844(00)00917-0.; Jeon S.-Y., Hwang K.-A., Choi K.-C. Effect of steroid hormones, estrogen and progesterone, on epithelial mesenchymal transition in ovarian cancer development. J Steroid Biochem Mol Biol. 2016;158:1–8. https://doi.org/10.1016/j.jsbmb.2016.02.005.; Mungenast F., Thalhammer T. Estrogen biosynthesis and action in ovarian cancer. Front Endocrinol (Lausanne). 2014;5:192. https://doi.org/10.3389/fendo.2014.00192.; Giaccari C., Antonouli S., Anifandis G. et al. An update on physiopathological roles of Akt in the reprodAKTive mammalian ovary. Life (Basel). 2024;14(6):722. https://doi.org/10.3390/life14060722.; Yang Y., Lang P., Zhang X. et al. Molecular characterization of extracellular vesicles derived from follicular fluid of women with and without PCOS: integrating analysis of differential miRNAs and proteins reveals vital molecules involving in PCOS. J Assist Reprod Genet. 2023;40(3):537–52. https://doi.org/10.1007/s10815-023-02724-z.; Liu L., Yin T.L., Chen Y. et al. Follicular dynamics of glycerophospholipid and sphingolipid metabolisms in polycystic ovary syndrome patients. J Steroid Biochem Mol Biol. 2019;185:142–9. https://doi.org/10.1016/j.jsbmb.2018.08.008.; Shi Y., Zhao H., Shi Y. et al. Genome-wide association study identifies eight new risk loci for polycystic ovary syndrome. Nat Genet. 2012;44(9):1020–5. https://doi.org/10.1038/ng.2384.; Parasar P., Ozcan P., Terry K.L. Endometriosis: epidemiology, diagnosis and clinical management. Curr Obstet Gynecol Rep. 2017;6(1):34–41. https://doi.org/10.1007/s13669-017-0187-1.; Lee Y.H., Tan C.W., Venkatratnam A. et al. Dysregulated sphingolipid metabolism in endometriosis. J Clin Endocrinol Metab. 2014;99(10):E1913–21. https://doi.org/10.1210/jc.2014-1340.; Zhang Q., Duan J., Liu X., Guo S.W. Platelets drive smooth muscle metaplasia and fibrogenesis in endometriosis through epithelial-mesenchymal transition and fibroblast-to-myofibroblast transdifferentiation. Mol Cell Endocrinol. 2016;428:1–16. https://doi.org/10.1016/j.mce.2016.03.015.; Bernacchioni C., Capezzuoli T., Vannuzzi V. et al. Sphingosine 1-phosphate receptors are dysregulated in endometriosis: possible implication in transforming growth factor β-induced fibrosis. Fertil Steril. 2021;115(2):501–11. https://doi.org/10.1016/j.fertnstert.2020.08.012.; Turathum B., Gao E.M., Grataitong K. et al. Dysregulated sphingolipid metabolism and autophagy in granulosa cells of women with endometriosis. Front Endocrinol (Lausanne). 2022;13:906570. https://doi.org/10.3389/fendo.2022.906570.; Itami N., Shirasuna K., Kuwayama T., Iwata H. Palmitic acid induces ceramide accumulation, mitochondrial protein hyperacetylation, and mitochondrial dysfunction in porcine oocytes. Biol Reprod. 2018;98(5):644–53. https://doi.org/10.1093/biolre/ioy023.; Fucho R., Casals N., Serra D., Herrero L. Ceramides and mitochondrial fatty acid oxidation in obesity. FASEB J. 2017;31(4):1263–72. https://doi.org/10.1096/fj.201601156R.; Torretta E., Barbacini P., Al-Daghri N.M., Gelfi C. Sphingolipids in obesity and correlated co-morbidities: the contribution of gender, age and environment. Int J Mol Sci. 2019;20(23):5901. https://doi.org/10.3390/ijms20235901.; Samad F., Hester K.D., Yang G. et al. Altered adipose and plasma sphingolipid metabolism in obesity: a potential mechanism for cardiovascular and metabolic risk. Diabetes. 2006;55(9):2579–87. https://doi.org/10.2337/db06-0330.; Shibahara H., Ishiguro A., Inoue Y. et al. Mechanism of palmitic acid-induced deterioration of in vitro development of porcine oocytes and granulosa cells. Theriogenology. 2020;141:54–61. https://doi.org/10.1016/j.theriogenology.2019.09.006.; Levi A.J., Raynault M.F., Bergh P.A. et al. Reproductive outcome in patients with diminished ovarian reserve. Fertil Steril. 2001;76(4):666–9. https://doi.org/10.1016/s0015-0282(01)02017-9.; Timur B., Aldemir O., İnan N. et al. Clinical significance of serum and follicular fluid ceramide levels in women with low ovarian reserve. Turk J Obstet Gynecol. 2022;19(3):207–14. https://doi.org/10.4274/tjod.galenos.2022.05760.; Alizadeh J., da Silva Rosa S.C., Weng X. et al. Ceramides and ceramide synthases in cancer: Focus on apoptosis and autophagy. Eur J Cell Biol. 2023;102(3):151337. https://doi.org/10.1016/j.ejcb.2023.151337.; Nakahara T., Iwase A., Nakamura T. et al. Sphingosine-1-phosphate inhibits H2O2-induced granulosa cell apoptosis via the PI3K/Akt signaling pathway. Fertil Steril. 2012;98(4):1001–8.e1. https://doi.org/10.1016/j.fertnstert.2012.06.008.; Valtetsiotis K., Valsamakis G., Charmandari E., Vlahos N.F. Metabolic mechanisms and potential therapeutic targets for prevention of ovarian aging: data from up-to-date experimental studies. Int J Mol Sci. 2023;24(12):9828. https://doi.org/10.3390/ijms24129828.; Li F., Turan V., Lierman S. et al. Sphingosine-1-phosphate prevents chemotherapy-induced human primordial follicle death. Hum Reprod. 2014;29(1):107–13. https://doi.org/10.1093/humrep/det391.; Pascuali N., Scotti L., Di Pietro M. et al. Ceramide-1-phosphate has protective properties against cyclophosphamide-induced ovarian damage in a mice model of premature ovarian failure. Hum Reprod. 2018;33(5):844–59. https://doi.org/10.1093/humrep/dey045.; Абусуева З.А., Мухтарова М.М., Хашаева Т.Х. и др. Компаративная оценка провоспалительных цитокинов у женщин с диагностированными наследственными тромбофилиями различного генеза и их ассоциация с ранними и поздними эмбриональными потерями. Проблемы репродукции. 2022;28(3):10–7. https://doi.org/10.17116/repro20222803110.; Cianci A., Calogero A.E., Palumbo M.A. et al. Relationship between tumour necrosis factor alpha and sex steroid concentrations in the follicular fluid of women with immunological infertility. Hum Reprod. 1996;11(2):265–8. https://doi.org/10.1093/humrep/11.2.265.; Banaras S., Paracha R.Z., Nisar M. et al. System level modeling and analysis of TNF-α mediated sphingolipid signaling pathway in neurological disorders for the prediction of therapeutic targets. Front Physiol. 2022;13:872421. https://doi.org/10.3389/fphys.2022.872421.; Sukocheva O.A., Neganova M.E., Aleksandrova Y/ et al. Signaling controversy and future therapeutical perspectives of targeting sphingolipid network in cancer immune editing and resistance to tumor necrosis factor-α immunotherapy. Cell Commun Signal. 2024;22(1):251. https://doi.org/10.1186/s12964-024-01626-6.; Kolesnick R. The therapeutic potential of modulating the ceramide/sphingomyelin pathway. J Clin Invest. 2002;110(1):3–8. https://doi.org/10.1172/JCI16127.; Di Paolo A., Vignini A., Alia S. et al. Pathogenic role of the sphingosine 1-phosphate (S1P) pathway in common gynecologic disorders (GDs): a possible novel therapeutic target. Int J Mol Sci. 2022;23(21):13538. https://doi.org/10.3390/ijms232113538.; Коваль О.М., Хачанова Н.В., Журавлева М.В. и др. Безопасность воспроизведенного финголимода. Безопасность и риск фармакотерапии. 2018;6(1):23–31. https://doi.org/10.30895/2312-7821-2018-6-1-23-31.; https://www.gynecology.su/jour/article/view/2609

  9. 9
  10. 10

    Přispěvatelé: O. S. Gridasova J. Kh. Khizroeva A. G. Solopova a další

    Zdroj: Obstetrics, Gynecology and Reproduction; Vol 19, No 5 (2025); 727-736 ; Акушерство, Гинекология и Репродукция; Vol 19, No 5 (2025); 727-736 ; 2500-3194 ; 2313-7347

    Popis souboru: application/pdf

    Relation: https://www.gynecology.su/jour/article/view/2597/1396; van Hinsbergh V.W., Koolwijk P. Endothelial sprouting and angiogenesis: matrix metalloproteinases in the lead. Cardiovasc Res. 2008;78(2):203–12. https://doi.org/10.1093/cvr/cvm102.; Papetti M., Herman I.M. Mechanisms of normal and tumor-derived angiogenesis. Am J Physiol Cell Physiol. 2002;282(5):C947–70. https://doi.org/10.1152/ajpcell.00389.2001.; Abulafia O., Triest W.E., Sherer D.M. Angiogenesis in malignancies of the female genital tract. Gynecol Oncol. 1999;72(2):220–31. https://doi.org/10.1006/gyno.1998.5152.; Рахимбаева Г.С., Собирова Д.С. Клинико-нейроиммунологические корреляции при постинсультной эпилепсии на примере нейронспецифической енолазы и фактора роста эндотелия сосудов. Эпилепсия и пароксизмальные состояния. 2024;16(4):316–26. https://doi.org/10.17749/2077-8333/epi.par.con.2024.205.; Zhang X., Nie D., Chakrabarty S. Growth factors in tumor microenvironment. Front Biosci. 2010;15(1):151–65. https://doi.org/10.2741/3612.; Kut C., Mac Gabhann F., Popel A.S. Where is VEGF in the body? A meta-analysis of VEGF distribution in cancer. Br J Cancer. 2007;97(7):978–85. https://doi.org/10.1038/sj.bjc.6603923.; Charnock-Jones D.S., Sharkey A.M., Rajput-Williams J. et al. Identification and localization of alternately spliced mRNAs for vascular endothelial growth factor in human uterus and estrogen regulation in endometrial carcinoma cell lines. Biol Reprod. 1993;48(5):1120–8. https://doi.org/10.1095/biolreprod48.5.1120.; Dobrzycka B., Mackowiak-Matejczyk B., Kinalski M., Terlikowski S.J. Pretreatment serum levels of bFGF and VEGF and its clinical significance in endometrial carcinoma. Gynecol Oncol. 2013;128(3):454–60. https://doi.org/10.1016/j.ygyno.2012.11.035.; Tal R., Segars J.H. The role of angiogenic factors in fibroid pathogenesis: potential implications for future therapy. Hum Reprod Update. 2014;20(2):194–216. https://doi.org/10.1093/humupd/dmt042.; Vodolazkaia A., Yesilyurt B.T., Kyama C.M. et al. Vascular endothelial growth factor pathway in endometriosis: genetic variants and plasma biomarkers. Fertil Steril. 2016;105(4):988–96. https://doi.org/10.1016/j.fertnstert.2015.12.016.; Hyder S.M., Huang J.C., Nawaz Z. et al. Regulation of vascular endothelial growth factor expression by estrogens and progestins. Environ Health Perspect. 2000;108 Suppl 5:785–90. https://doi.org/10.1289/ehp.00108s5785.; Eatock M.M., Schätzlein A., Kaye S.B. Tumour vasculature as a target for anticancer therapy. Cancer Treat Rev. 2000;26(3):191–204. https://doi.org/10.1053/ctrv.1999.0158.; Lappano R., Todd L.A., Stanic M. et al. Multifaceted interplay between hormones, growth factors and hypoxia in the tumor microenvironment. Cancers (Basel). 2022;14(3):539. https://doi.org/10.3390/cancers14030539.; Heits F., Wiedemann G.J., Jelkmann W. Vascular endothelial growth factor VEGF stimulates angiogenesis in good and bad situations. Dtsch Med Wochenschr. 1998;123(9):259–65. (In German). https://doi.org/10.1055/s-2007-1023947.; Бицадзе В.О., Слуханчук Е.В., Солопова А.Г. и др. Роль микроокружения в росте и распространении опухоли. Акушерство, Гинекология и Репродукция. 2024;18(1):96–111. https://doi.org/10.17749/2313-7347/ob.gyn.rep.2024.489.; Kang Y., Li H., Liu Y., Li Z. Regulation of VEGF-A expression and VEGF-A-targeted therapy in malignant tumors. J Cancer Res Clin Oncol. 2024;150(5):221. https://doi.org/10.1007/s00432-024-05714-5.; Trifanescu O.G., Gales L.N., Tanase B.C. et al. Prognostic role of vascular endothelial growth factor and correlation with oxidative stress markers in locally advanced and metastatic ovarian cancer patients. Diagnostics (Basel). 2023;13(1):166. https://doi.org/10.3390/diagnostics13010166.; Obermair A., Tempfer C., Hefler L. et al. Concentration of vascular endothelial growth factor (VEGF) in the serum of patients with suspected ovarian cancer. Br J Cancer. 1998;77(11):1870–4. https://doi.org/10.1038/bjc.1998.311.; Ferrara N., Davis-Smyth T. The biology of vascular endothelial growth factor. Endocr Rev. 1997;18(1):4–25. https://doi.org/10.1210/edrv.18.1.0287.; Lee C., Kim M.J., Kumar A. et al. Vascular endothelial growth factor signaling in health and disease: from molecular mechanisms to therapeutic perspectives. Signal Transduct Target Ther. 2025;10(1):170. https://doi.org/10.1038/s41392-025-02249-0.; Джалилова Д.Ш., Макарова О.В. HIF-опосредованные механизмы взаимосвязи устойчивости к гипоксии и опухолевого роста (обзор). Биохимия. 2021;86(10):1403–22. https://doi.org/10.31857/S0320972521100018.; Kraft A., Weindel K., Ochs A. et al. Vascular endothelial growth factor in the sera and effusions of patients with malignant and nonmalignant disease. Cancer. 1999;85(1):178–87.; Muz B., de la Puente P., Azab F., Azab A.K. The role of hypoxia in cancer progression, angiogenesis, metastasis, and resistance to therapy. Hypoxia (Auckl). 2015;3:83–92. https://doi.org/10.2147/HP.S93413.; Mao C.L., Seow K.M., Chen K.H. The utilization of bevacizumab in patients with advanced ovarian cancer: a systematic review of the mechanisms and effects. Int J Mol Sci. 2022;23(13):6911. https://doi.org/10.3390/ijms23136911.; Salgado R., Benoy I., Bogers J. et al. Platelets and vascular endothelial growth factor (VEGF): a morphological and functional study. Angiogenesis. 2001;4(1):37–43. https://doi.org/10.1023/a:1016611230747.; Scapini P., Calzetti F., Cassatella M.A. On the detection of neutrophil-derived vascular endothelial growth factor (VEGF). J Immunol Methods. 1999;232(1–2):121–9. https://doi.org/10.1016/s0022-1759(99)00170-2.; Angelo L.S., Kurzrock R. Vascular endothelial growth factor and its relationship to inflammatory mediators. Clin Cancer Res. 2007;13(10):2825–30. https://doi.org/10.1158/1078-0432.CCR-06-2416.; Ташкина Е.А., Леплина О.Ю., Баторов Е.В. и др. Экспрессия рецепторов к сосудисто-эндотелиальному фактору роста-1 (VEGFR-1) и их роль в регуляции пролиферации T-лимфоцитов. Российский иммунологический журнал. 2019;22(2–2):942–4. https://doi.org/10.31857/S102872210006534-2.; Gorenjak V., Vance D.R., Petrelis A.M. et al. Peripheral blood mononuclear cells extracts VEGF protein levels and VEGF mRNA: Associations with inflammatory molecules in a healthy population. PLoS One. 2019;14(8):e0220902. https://doi.org/10.1371/journal.pone.0220902.; Losordo D.W., Isner J.M. Estrogen and angiogenesis: A review. Arterioscler Thromb Vasc Biol. 2001;21(1):6–12. https://doi.org/10.1161/01.atv.21.1.6.; Monteiro R., Teixeira D., Calhau C. Estrogen signaling in metabolic inflammation. Mediators Inflamm. 2014;2014:615917. https://doi.org/10.1155/2014/615917.; Гридасова О.С. Роль личной гигиены в ведении пациенток с вульвовагинальной атрофией. Реабилитология. 2025;3(1):22–8. https://doi.org/10.17749/2949-5873/rehabil.2025.29.; Макацария А.Д., Слуханчук Е.В., Бицадзе В.О. и др. Концепция тромбовоспаления как основы тромботических осложнений, прогрессии опухоли и метастазирования у онкогинекологических больных. Акушерство, Гинекология и Репродукция. 2024;18(4):450–63. https://doi.org/10.17749/2313-7347/ob.gyn.rep.2024.542.; https://www.gynecology.su/jour/article/view/2597

  11. 11

    Zdroj: Medical Immunology (Russia); Online First ; Медицинская иммунология; Online First ; 2313-741X ; 1563-0625 ; 10.15789/1563-0625-0-0

    Popis souboru: application/pdf

    Relation: https://www.mimmun.ru/mimmun/article/view/3320/2221; https://www.mimmun.ru/mimmun/article/downloadSuppFile/3320/15950; https://www.mimmun.ru/mimmun/article/downloadSuppFile/3320/15951; https://www.mimmun.ru/mimmun/article/downloadSuppFile/3320/15952; https://www.mimmun.ru/mimmun/article/downloadSuppFile/3320/15953; https://www.mimmun.ru/mimmun/article/downloadSuppFile/3320/15954; https://www.mimmun.ru/mimmun/article/downloadSuppFile/3320/15955; https://www.mimmun.ru/mimmun/article/downloadSuppFile/3320/15964; https://www.mimmun.ru/mimmun/article/downloadSuppFile/3320/16015; McNamara K., Alzubaidi H., Jackson J.K. Cardiovascular disease as a leading cause of death: how are pharmacists getting involved? J. Integr. Pharm. Res. Pract., 2019, Vol. 8, pp. 1-11.; Libby P. Inflammation and cardiovascular disease mechanisms. Am. J. Clin. Nutr., 2006, Vol. 83, pp. 456-460.; Alfaddagh A., Martin S.S., Leucker T.M., Michos E.D., Blaha M.J., Lowenstein C.J., Jones S.R., Toth P.P. Inflammation and cardiovascular disease: from mechanisms to therapeutics. Am. J. Prev. Cardiol., 2020, Vol. 4, pp. 100-130.; Sun H.J., Wu Z.Y., Nie X.W., Bian J.S. Role of endothelial dysfunction in cardiovascular diseases: the link between inflammation and hydrogen sulfide. Front. Pharmacol., 2020; Vol. 10, pp. 1568-1583.; Cervantes Gracia K., Llanas-Cornejo D., Husi H. CVD and oxidative stress. J. Clin. Med., 2017, Vol. 6, no. 2, no. 1-22.; Artiach G., Sarajlic P., Bäck M. Inflammation and its resolution in coronary artery disease: a tightrope walk between omega-6 and omega-3 polyunsaturated fatty acids. Kardiol. Pol., 2020, Vol. 78, no. 2, pp. 93-95.; Sarajlic P., Artiach G., Larsson S., Bäck M. Dose-dependent risk reduction for myocardial infarction with eicosapentaenoic acid: a meta-analysis and meta-regression including STRENGTH trial. Cardiovasc. Drugs Ther., 2021, Vol. 35, pp. 1079-1081.; Watson C.J., Webb N.J., Bottomley M.J., Brenchley P.E. Identification of polymorphisms within the vascular endothelial growth factor (VEGF) gene: correlation with variation in VEGF protein production. Cytokine, 2000, Vol. 12, no. 8, pp. 1232-1235. https://doi.org/10.1006/cyto.2000.0692.; Renner W., Kotschan S., Hoffmann C., Obermayer-Pietsch B., Pilger E. A common 936 C/T mutation in the gene for vascular endothelial growth factor is associated with vascular endothelial growth factor plasma levels. Journal of vascular research, 2000, Vol. 37, no. 6, pp. 443-448. https://doi.org/10.1159/000054076.; Pare-Brunet L., Glubb D., Evans P., Berenguer-Llergo A., Etheridge A.S., Skol A.D., et al. Discovery and functional assessment of gene variants in the vascular endothelial growth factor pathway. Human mutation, 2014, Vol. 35, no. 2, pp. 227–235. https://doi.org/10.1002/humu.22475.; Choi S.H., Ruggiero D., Sorice R., Song C., Nutile T., Vernon Smith A., et al. Six Novel Loci Associated with Circulating VEGF Levels Identified by a Meta-analysis of Genome-Wide Association Studies. PLoS Genet., 2016, Vol. 12, no. 2, e1005874. https://doi.org/10.1371/journal.pgen.1005874.; Ku D.D., Zaleski J.K., Liu S., Brock T.A. Vascular endothelial growth factor induces EDRF-dependent relaxation in coronary arteries. Am. J. Physiol. 1993, Vol. 265, no. 2, pp. 586-592.; Ghazizadeh H., Avan A., Fazilati M., Azimi-Nezhad M., Tayefi M., Ghasemi F, et al. Association of rs6921438 A; Eaton C.B., Gramling R., Parker D.R., Roberts M.B., Lu B., Ridker P.M. Prospective association of vascular endothelial growth factor-A (VEGF-A) with coronary heart disease mortality in southeastern New England. Atherosclerosis, 2008, Vol. 200, no. 1, pp, 221-227. https://doi.org/10.1016/j.atherosclerosis.2007.12.027.; Leung D.W., Cachianes G., Kuang W.J., Goeddel D.V., Ferrara N. Vascular endothelial growth factor is a secreted angiogenic mitogen. Science, 1989, Vol. 246, no. 4935, pp. 1306–1309. https://doi.org/10.1126/science.2479986.; Marks E.C.A., Wilkinson T.M., Frampton C.M., Skelton L., Pilbrow A.P., Yandle T.G., et al. Plasma levels of soluble VEGF receptor isoforms, circulating pterins and VEGF system SNPs as prognostic biomarkers in patients with acute coronary syndromes. BMC Cardiovasc. Disord., 2018, Vol. 18, no. 1, pp. 169. https://doi.org/10.1186/s12872-018-0894-1.; Matsumoto K., Ema M. Roles of VEGF-A signalling in development, regeneration, and tumours. J. Biochem., 2014, Vol. 156, no. 1, pp. 1-10. https://doi.org/10.1093/jb/mvu031.; Yla-Herttuala S., Rissanen T.T., Vajanto I., Hartikainen J. Vascular endothelial growth factors: biology and current status of clinical applications in cardiovascular medicine. Journal of the American College of Cardiology, 2007, Vol. 49, no. 10, pp. 1015-1026. https://doi.org/10.1016/j.jacc.2006.09.053.; Han X., Liu L., Niu J., Yang J., Zhang Z. Association between VEGF polymorphisms (936c/t, -460t/c and -634g/c) with haplotypes and coronary heart disease susceptibility. Int. J. Clin. Exp. Pathol., 2015, Vol. 8, no. 1, pp. 922-927.; Kalayi Nia S., Ziaee S., Boroumand M.A., Sotudeh Anvari M., Pourgholi L., Jalali A. The impact of vascular endothelial growth factor +405 C/G polymorphism on long-term outcome and severity of coronary artery disease. J. Clin. Lab. Anal., 2017, Vol. 31, no. 4, pp. 1-8. https://doi.org/10.1002/jcla.22066.; Matsumoto T., Mugishima H. Signal transduction via vascular endothelial growth factor (VEGF) receptors and their roles in atherogenesis. J. Atheroscler. Thromb., 2006, Vol. 13, no. 3, pp. 130-135. https://doi.org/10.5551/jat.13.130,16.; Inoue M., Itoh H., Ueda M., Naruko T., Kojima A., Komatsu R., et al. Vascular endothelial growth factor (VEGF) expression in human coronary atherosclerotic lesions: possible pathophysiological significance of VEGF in progression of atherosclerosis. Circulation, 1998, Vol. 98, no. 20, pp. 2108-2116. https://doi.org/10.1161/01.cir.98.20.2108.; Howell W.M., Ali S., Rose-Zerilli M.J., Ye S. VEGF polymorphisms and severity of atherosclerosis. Journal of medical genetics, 2005, Vol. 42, no. 6, pp. 485-490. https://doi.org/10.1136/jmg.2004.025734.; ErZen B., Silar M., Sabovic M. Stable phase post-MI patients have elevated VEGF levels correlated with inflammation markers, but not with atherosclerotic burden. BMC Cardiovasc Disord. 2014, Vol. 14, p. 166. https://doi.org/10.1186/1471-2261-14-166.; Meier P., Gloekler S., Zbinden R., Beckh S., de Marchi S.F., Zbinden S., et al. Beneficial effect of recruitable collaterals: a 10-year follow-up study in patients with stable coronary artery disease undergoing quantitative collateral measurements. Circulation, 2007, Vol. 116, no. 9, pp. 975-983. https://doi.org/10.1161/CIRCULATIONAHA.107.703959.; Ma W.Q., Wang Y., Han X.Q., Zhu Y, Liu N.F. Association of genetic polymorphisms in vascular endothelial growth factor with susceptibility to coronary artery disease: a meta-analysis. BMC medical genetics, 2018, Vol. 19, no. 1, p. 108. https://doi.org/10.1186/s12881-018-0628-3.; Zhao X., Meng L., Jiang J., Wu X. Vascular endothelial growth factor gene polymorphisms and coronary heart disease: a systematic review and meta-analysis. Growth Factors, 2018, Vol. 36, no. 3-4, pp. 153-63.; Cui Q.T., Li Y., Duan C.H., Zhang W., Guo X.L. Further evidence for the contribution of the vascular endothelial growth factor gene in coronary artery disease susceptibility. Gene, 2013, Vol. 521, no. 2, pp. 217–221. https://doi.org/10.1016/j.gene.2013.03.091; Dong P.P. Association of vascular endothelial growth factor expression and polymorphisms with the risk of gestational diabetes mellitus. J. Clin. Lab. Anal., 2019, Vol. 33, no. 2, e22686. https://doi.org/10.1002/jcla.22686.; Al-Habboubi H.H., Sater M.S., Almawi A.W., Al-Khateeb G.M., Almawi W.Y. Contribution of VEGF polymorphisms to variation in VEGF serum levels in a healthy population. Eur. Cytokine Netw., 2011, Vol. 22, no. 3, pp. 154-158. https://doi.org/10.1684/ecn.2011.0289.; Osadnik T., Strzelczyk J.K., Regula R., Bujak K., Fronczek M., Gonera M., et al. The Relationships between Polymorphisms in Genes Encoding the Growth Factors TGF-beta1, PDGFB, EGF, bFGF and VEGF-A and the Restenosis Process in Patients with Stable Coronary Artery Disease Treated with Bare Metal Stent. PloS one, 2016, Vol. 11, no. 3, e0150500. https://doi.org/10.1371/journal.pone 0150500.; Yadav B.K., Yadav R., Chang H., Choi K., Kim J.T., Park M.S., et al. Genetic Polymorphisms rs699947, rs1570360, and rs3025039 on the VEGF Gene Are Correlated with Extracranial Internal Carotid ArteryStenosis and Ischemic Stroke. Ann. Clin. Lab. Sci., 2017; Vol. 47, no. 2, pp. 144-155.; Liu D., et al. Medicine, 2016, Vol. 95, p. 19, DOI:10.1097/MD.0000000000003413.; Wang E., Wang Z., Liu S., et al. Polymorphisms of VEGF, TGFbeta1, TGFbetaR2 and conotruncal heart defects in a Chinese population. Mol. Biol. Rep., 2014, Vol. 41, pp. 1763-1770.; Griffin H.R., Hall D.H., Topf A., et al. Genetic variation in VEGF does not contribute significantly to the risk of congenital cardiovascular malformation. PLoSOne, 2009, Vol. 4, e4978.; Palmer B.R., Paterson M.A., Frampton C.M., Pilbrow A.P., Skelton L., Pemberton C.J., et al. (2021) Vascular endothelial growth factor-A promoter polymorphisms, circulating VEGF-A and survival in acute coronary syndromes. PLoS ONE, 2021, Vol. 16, no. 7, e0254206. https://doi.org/10.1371/journal.pone.0254206.; Li H., Kantoff P.W., Ma J., Stampfer M.J., George D.J. Prediagnostic plasma vascular endothelial growth factor levels and risk of prostate cancer. Cancer Epidemiol Biomarkers Prev., 2005; Vol. 14, no. 6, pp. 1557-1561. https://doi.org/10.1158/1055-9965.EPI-04-0456.; Carilho R., de Carvalho M., Swash M., Pinto S., Pinto A., Costa J. Vascular endothelial growth factor and amyotrophic lateral sclerosis: the interplay with exercise and noninvasive ventilation. Muscle Nerve, 2014, Vol. 49, no. 4, pp. 545-550. https://doi.org/10.1002/mus.23955.; Eaton C.B., Gramling R., Parker D.R., Roberts M.B., Lu B., Ridker P.M. Prospective association of vascular endothelial growth factor-A (VEGF-A) with coronary heart disease mortality in southeastern New England. Atherosclerosis, 2008, Vol. 200, no. 1, pp. 221-227. https://doi.org/10.1016/j.atherosclerosis.2007.12.027.; Pia Davidsson, Susanna Eketjäll, Niclas Eriksson, Anna Walentinsson, Richard C. Becker, Anders Cavallin, Anna Bogstedt, Anna Collén, Claes Held, Stefan James, Agneta Siegbahn, Ralph Stewart, Robert F. Storey8, Harvey White, and Lars Wallentin. Vascular endothelial growth factor-D plasma levels and VEGFD genetic variants are independently associated with outcomes in patients with cardiovascular disease. Cardiovascular Research, 2023, Vol. 119, pp. 1596-1605. https://doi.org/10.1093/cvr/cvad039.; Gudjonsson A., Gudmundsdottir V., Axelsson G.T., Gudmundsson E.F., Jonsson B.G., Launer L.J., Lamb J.R., Jennings L.L., Aspelund T., Emilsson V., Gudnason V. A genome-wide association study of serum proteins reveals shared loci with common diseases. Nat. Commun., 2022, Vol. 13, no. 1, p. 480.; Meng F., Jing X., Song G., Jie L., Shen F. Prox1 induces new lymphatic vessel formation and promotes nerve reconstruction in a mouse model of sciatic nerve crush injury. J. Anat., 2020, Vol. 237, pp. 933-940.; Ahmed S., Ahmed A., Säleby J., Bouzina H., Lundgren J., Rådegran G. Elevated plasma tyrosine kinases VEGF-D and HER4 in heart failure patients decrease after heart transplantation in association with improved haemodynamics. Heart Vessels, 2020, Vol. 35, no. 6, pp. 786-799.; Mountain D.J., Singh M., Singh K. Downregulation of VEGF-D expression by interleukin-1beta in cardiac microvascular endothelial cells is mediated by MAPKs and PKCalpha/beta1. J. Cell. Physiol., 2008, Vol. 215, pp. 337-343.; Zhao T., Zhao W., Meng W., Liu C., Chen Y., Bhattacharya S.K., Sun Y. Vascular endothelial growth factor-D mediates fibrogenic response in myofibroblasts. Mol. Cell. Biochem. 2016, Vol. 413, pp. 127-135.; Borné Y., Gränsbo K., Nilsson J., Melander O., Orho-Melander M., Smith J.G., Engström G. Vascular endothelial growth factor D, pulmonary congestion, and incidence of heart failure. J. Am. Coll. Cardiol., 2018, Vol. 71, pp. 580-582.; Berntsson J., Smith J.G., Johnson L.S.B., Söderholm M., Borné Y., Melander O., Orho-Melander M., Nilsson J., Engström G. Increased vascular endothelial growth factor D is associated with atrial fibrillation and ischaemic stroke. Heart, 2019, Vol. 105, pp. 553-558.; Säleby J., Bouzina H., Lundgren J., Rådegran G. Angiogenic and inflammatory biomarkers in the differentiation of pulmonary hypertension. Scand. Cardiovasc. J., 2017, Vol. 51, pp. 261-270.; Säleby J., Bouzina H., Ahmed S., Lundgren J., Rådegran G. Plasma receptor tyrosine kinase RET in pulmonary arterial hypertension diagnosis and differentiation. ERJ Open. Res., 2019, Vol. 5, e00037–02019.; Seyama K., Kumasaka T., Souma S., Sato T., Kurihara M., Mitani K., Tominaga S., Fukuchi Y. Vascular endothelial growth factor-D is increased in serum of patients with lymphangioleiomyomatosis. Lymphat. Res. Biol., 2006, Vol. 4, no. 3, pp. 143-152.; https://www.mimmun.ru/mimmun/article/view/3320

  12. 12

    Zdroj: Drug development & registration; Том 14, № 1 (2025); 103-111 ; Разработка и регистрация лекарственных средств; Том 14, № 1 (2025); 103-111 ; 2658-5049 ; 2305-2066

    Popis souboru: application/pdf

    Relation: https://www.pharmjournal.ru/jour/article/view/2035/1373; https://www.pharmjournal.ru/jour/article/downloadSuppFile/2035/2739; Thomson R. H., Naturally occurring quinones. 4th ed. London, New York: Blackie Academic & Professional; 1997. 746 p.; Shen X., Liang X., He C., Yin L., Xu F., Li H., Tang H., Lv C. Structural and pharmacological diversity of 1,4-naphthoquinone glycosides in recent 20 years. Bioorganic Chemistry. 2023;138:106643. DOI:10.1016/j.bioorg.2023.106643.; Aminin D., Polonik S. 1,4-Naphthoquinones: Some Biological Properties and Application. Chemical and Pharmaceutical Bulletin. 2020;68(1):46–57. DOI:10.1248/cpb.c19-00911.; Mahmoud I.S., Hatmal M.M., Abuarqoub D., Esawi E., Zalloum H., Wehaibi S., Nsairat H., Alshaer W. 1,4-Naphthoquinone Is a Potent Inhibitor of IRAK1 Kinases and the Production of Inflammatory Cytokines in THP-1 Differentiated Macrophages. ACS Omega. 2021;6(39):25299–25310. DOI:10.1021/acsomega.1c03081.; Ravichandiran P., Sheet S., Premnath D., Kim A. R., Yoo D. J. 1,4-Naphthoquinone Analogues: Potent Antibacterial Agents and Mode of Action Evaluation. Molecules. 2019;24(7):1437. DOI:10.3390/molecules24071437.; Kayashima T., Mori M., Yoshida H., Mizushina Y., Matsubara K. 1,4-Naphthoquinone is a potent inhibitor of human cancer cell growth and angiogenesis. Cancer Letters. 2009;278(1):34–40. DOI:10.1016/j.canlet.2008.12.020.; Tripathi S. K., Panda M., Biswal B. K. Emerging role of plumbagin: Cytotoxic potential and pharmaceutical relevance towards cancer therapy. Food and Chemical Toxicology. 2019;125:566–582. DOI:10.1016/j.fct.2019.01.018.; Yadav S., Sharma A., Nayik G. A., Cooper R., Bhardwaj G., Singh Sohal H., Mutreja V., Kaur R., Areche F. O., AlOudat M., Shaikh A. M., Kovács B., Ahmed A. E. M. Review of Shikonin and Derivatives: Isolation, Chemistry, Biosynthesis, Pharmacology and Toxicology. Frontiers in Pharmacology. 2022;13:905755. DOI:10.3389/fphar.2022.905755.; Mendes Miranda S. E., de Alcântara Lemos J., Salgado Fernandes R., de Oliveira Silva J., Ottoni F. M., Townsend D. M., Rubello D., Alves R. J., Cassali G. D., Miranda Ferreira L. A., Branco de Barros A. L. Enhanced antitumor efficacy of lapachol-loaded nanoemulsion in breast cancer tumor model. Biomedicine & Pharmacotherapy. 2021;133:110936. DOI:10.1016/j.biopha.2020.110936.; Muggia F. M., Green M. D. New anthracycline antitumor antibiotics. Critical Reviews in Oncology/Hematology. 1991;11(1):43–64. DOI:10.1016/1040-8428(91)90017-7.; Liu Y., Cai Y., He C., Chen M., Li H. Anticancer Properties and Pharmaceutical Applications of Plumbagin: A Review. The American Journal of Chinese Medicine. 2017;45(3):423–441. DOI:10.1142/S0192415X17500264.; Yan C., Li Q., Sun Q., Yang L., Liu X., Zhao Y., Shi M., Li X., Luo K. Promising Nanomedicines of Shikonin for Cancer Therapy. International Journal of Nanomedicine. 2023;18:1195–1218. DOI:10.2147/IJN.S401570.; Thakor N., Janathia B. Plumbagin: A Potential Candidate for Future Research and Development. Current Pharmaceutical Biotechnology. 2022;23(15):1800–1812. DOI:10.2174/1389201023666211230113146.; Deniz N. G., Ibis C., Gokmen Z., Stasevych M., Novikov V., Komarovska-Porokhnyavets O., Ozyurek M., Guclu K., Karakas D., Ulukaya E. Design, Synthesis, Biological Evaluation, and Antioxidant and Cytotoxic Activity of Heteroatom-Substituted 1,4-Naphthoand Benzoquinones. Chemical & Pharmaceutical Bulletin. 2015;63(12):1029–1039. DOI:10.1248/cpb.c15-00607.; Golmakaniyoon S., Askari V.R., Abnous K., Zarghi A., Ghodsi R. Synthesis, Characterization and In-vitro Evaluation of Novel Naphthoquinone Derivatives and Related Imines: Identification of New Anticancer Leads. Iranian Journal of Pharmaceutical Research. 2019;18(1):16–29.; Xu X., Lai Y., Hua Z.-C. Apoptosis and apoptotic body: disease message and therapeutic target potentials. Bioscience Reports. 2019;39(1):BSR20180992. DOI:10.1042/BSR20180992.; Newton K., Strasser A., Kayagaki N., Dixit V. M. Cell death. Cell. 2024;187(2):235–256. DOI:10.1016/j.cell.2023.11.044.; Thornberry N. A., Lazebnik Yu. Caspases: enemies within. Science. 1998;281(5381):1312–1316. DOI:10.1126/science.281.5381.1312.; Asadi M., Taghizadeh S., Kaviani E., Vakili O., Taheri-Anganeh M., Tahamtan M., Savardashtaki A. Caspase-3: Structure, function, and biotechnological aspects. Biotechnology and Applied Biochemistry. 2022;69(4):1633–1645. DOI:10.1002/bab.2233.; Lamkanfi M., Kanneganti T.-D. Caspase-7: a protease involved in apoptosis and inflammation. The International Journal of Biochemistry & Cell Biology. 2010;42(1):21–24. DOI:10.1016/j.biocel.2009.09.013.; Pistritto G., Trisciuoglio D., Ceci C., Garufi A., D'Orazi G. Apoptosis as anticancer mechanism: function and dysfunction of its modulators and targeted therapeutic strategies. Aging. 2016;8(4):603–619. DOI:10.18632/aging.100934.; Chipuk J. E., Green D. R. How do BCL-2 proteins induce mitochondrial outer membrane permeabilization? Trends in Cell Biology. 2008;18(4):157–164. DOI:10.1016/j.tcb.2008.01.007.; Kim H., Rafiuddin-Shah M., Tu H.-C., Jeffers J. R., Zambetti G. P., Hsieh J. J.-D., Cheng E. H.-Y. Hierarchical regulation of mitochondrion-dependent apoptosis by BCL-2 subfamilies. Nature Cell Biology. 2006;8(12):1348–1358. DOI:10.1038/ncb1499.; Zhang W., Liu H. T. MAPK signal pathways in the regulation of cell proliferation in mammalian cells. Cell Research. 2002;12:9–18. DOI:10.1038/sj.cr.7290105.; Wu Q., Wu W., Fu B., Shi L., Wang X., Kuca K. JNK signaling in cancer cell survival. Medicinal Research Reviews. 2019;39(6):2082–2104. DOI:10.1002/med.21574.; Davis R. J. Signal transduction by the JNK group of MAP kinases. Cell. 2000;103(2):239–252. DOI:10.1016/s0092-8674(00)00116-1.; Schepetkin I. A., Karpenko A. S., Khlebnikov A. I., Shibinska M. O., Levandovskiy I. A., Kirpotina L. N., Danilenko N. V., Quinn M. T. Synthesis, anticancer activity, and molecular modeling of 1,4-naphthoquinones that inhibit MKK7 and Cdc25. European Journal of Medicinal Chemistry. 2019;183:111719. DOI:10.1016/j.ejmech.2019.111719.; Lavecchia A., Coluccia A., Di Giovanni C., Novellino E. Cdc25B phosphatase inhibitors in cancer therapy: latest developments, trends and medicinal chemistry perspective. Anti-Cancer Agents in Medicinal Chemistry. 2008;8(8):843–856. DOI:10.2174/187152008786847783.; Kristjánsdóttir K., Rudolph J. Cdc25 phosphatases and cancer. Chemistry & Biology. 2004;11(8):1043–1051. DOI:10.1016/j.chembiol.2004.07.007.; Kim B.-H., Yi E. H., Ye S.-K. Signal transducer and activator of transcription 3 as a therapeutic target for cancer and the tumor microenvironment. Archives of Pharmacal Research. 2016;39(8):1085–1099. DOI:10.1007/s12272-016-0795-8.; Hu Y., Dong Z., Liu K. Unraveling the complexity of STAT3 in cancer: molecular understanding and drug discovery. Journal of Experimental & Clinical Cancer Research. 2024;43(1):23. DOI:10.1186/s13046-024-02949-5.; Fruehauf J. P., Meyskens F. L. Reactive oxygen species: a breath of life or death? Clinical Cancer Research. 2007;13(3):789–794. DOI:10.1158/1078-0432.CCR-06-2082.; Schumacker P. T. Reactive oxygen species in cancer cells: live by the sword, die by the sword. Cancer Cell. 2006;10(3):175–176. DOI:10.1016/j.ccr.2006.08.015.; Kumar N., Shukla A., Kumar S., Ulasov I., Singh R. K., Kumar S., Patel A., Yadav L., Tiwari R., Paswan R., Mohanta S. P., Kaushalendra, Antil J., Acharya A. FNC (4'-azido-2'-deoxy-2'-fluoro(arbino)cytidine) as an Effective Therapeutic Agent for NHL: ROS Generation, Cell Cycle Arrest, and Mitochondrial-Mediated Apoptosis. Cell Biochemistry and Biophysics. 2024;82:623–639. DOI:10.1007/s12013-023-01193-6.; Wang Y., Luo Y.-H., Piao X.-J., Shen G.-N., Meng L.-Q., Zhang Y., Wang J.-R., Li J.-Q., Wang H., Xu W.-T., Liu Y., Zhang Y., Zhang T., Wang S.-N., Sun H.-N., Han Y.-H., Jin M.-H., Zang Y.-Q., Zhang D.-J., Jin C.-H. Novel 1,4-naphthoquinone derivatives induce reactive oxygen species-mediated apoptosis in liver cancer cells. Molecular Medicine Reports. 2019;19(3):1654–1664. DOI:10.3892/mmr.2018.9785.; Wang H., Luo Y.-H., Shen G.-N., Piao X.-J., Xu W.-T., Zhang Y., Wang J.-R., Feng Y.-C., Li J.-Q., Zhang Y., Zhang T., Wang S.-N., Xue H., Wang H.-X., Wang C.-Y., Jin C.-H. Two novel 1,4-naphthoquinone derivatives induce human gastric cancer cell apoptosis and cell cycle arrest by regulating reactive oxygen species-mediated MAPK/Akt/STAT3 signaling pathways. Molecular Medicine Reports. 2019;20(3):2571–2582. DOI:10.3892/mmr.2019.10500.; Dyshlovoy S. A., Pelageev D. N., Jakob L. S., Borisova K. L., Hauschild J., Busenbender T., Kaune M., Khmelevskaya E. A., Graefen M., Bokemeyer C., Anufriev V. P., von Amsberg G. Activity of New Synthetic (2-Chloroethylthio)-1,4-naphthoquinones in Prostate Cancer Cells. Pharmaceuticals. 2021;14(10):949. DOI:10.3390/ph14100949.; Ravichandiran P., Subramaniyan S. A., Kim S.-Y., Kim J.-S., Park B.-H., Shim K. S., Yoo D. J. Synthesis and Anticancer Evaluation of 1,4-Naphthoquinone Derivatives Containing a Phenylaminosulfanyl Moiety. ChemMedChem. 2019;14(5):532–544. DOI:10.1002/cmdc.201800749.; Liu Y., Luo Y.-H., Li S.-M., Shen G.-N., Wang J.-R., Zhang Y., Feng Y.-C., Xu W.-T., Zhang Y., Zhang T., Xue H., Wang H.-X., Cui Y., Wang Y., Jin C.-H. 2-(Naphthalene-2-thio)-5,8-dimethoxy-1,4-naphthoquinone induces apoptosis via ROS-mediated MAPK, AKT, and STAT3 signaling pathways in HepG2 human hepatocellular carcinoma cells. Drug and Chemical Toxicology. 2022;45(1):33–43. DOI:10.1080/01480545.2019.1658767.; Robinson A. G. J., Kanaan Y. M., Copeland R. L. Combinatorial Cytotoxic Effects of 2,3-Dichloro-5,8-dimethoxy-1,4-naphthoquinone and 4-hydroxytamoxifen in Triple-negative Breast Cancer Cell Lines. Anticancer Research. 2020;40(12):6623–6635. DOI:10.21873/anticanres.14687.; Copeland R. L. (Jr.), Das J. R., Bakare O., Enwerem N. M., Berhe S., Hillaire K., White D., Beyene D., Kassim O. O., Kanaan Y. M. Cytotoxicity of 2,3-dichloro-5,8-dimethoxy-1,4-naphthoquinone in androgen-dependent and -independent prostate cancer cell lines. Anticancer Research. 2007;27:1537–1546.; Tremblay G. B., Bergeron D., Giguere V. 4-Hydroxytamoxifen is an isoform-specific inhibitor of orphan estrogen-receptor-related (ERR) nuclear receptors β and γ. Endocrinology. 2001;142(10):4572–4575. DOI:10.1210/endo.142.10.8528.; Austin D., Hamilton N., Elshimali Y., Pietras R., Wu Y., Vadgama J. Estrogen receptor-beta is a potential target for triple negative breast cancer treatment. Oncotarget. 2018;9(74):33912–33930. DOI:10.18632/oncotarget.26089.; De Sousa Portilho A. J., da Silva E. L., Austregésilo Bezerra E. C., Borges de Souza Moraes Rego Gomes C., Ferreira V., Amaral de Moraes M. E., Rodrigues da Rocha D., Rodriguez Burbano R. M., Aquino Moreira-Nunes C., Carvalho Montenegro R. 1,4-Naphthoquinone (CNN1) Induces Apoptosis through DNA Damage and Promotes Upregulation of H2AFX in Leukemia Multidrug Resistant Cell Line. International Journal of Molecular Sciences. 2022;23(15):8105. DOI:10.3390/ijms23158105.; Podhorecka M., Skladanowski A., Bozko P. H2AX Phosphorylation: Its Role in DNA Damage Response and Cancer Therapy. Journal of Nucleic Acids. 2010;2010:920161. DOI:10.4061/2010/920161.; Kadela-Tomanek M., Krzykawski K., Halama A., Kubina R. Hybrids of 1,4-Naphthoquinone with Thymidine Derivatives: Synthesis, Anticancer Activity, and Molecular Docking Study. Molecules. 2023;28(18):6644. DOI:10.3390/molecules28186644.; Patel S. A., Nilsson M. B., Le X., Cascone T., Jain R. K., Heymach J. V. Molecular Mechanisms and Future Implications of VEGF/VEGFR in Cancer Therapy. Clinical Cancer Research. 2023;29(1):30–39. DOI:10.1158/1078-0432.CCR-22-1366.; Murota H., Shinya T., Nishiuchi A., Sakanaka M., Toda K.-I., Ogata T., Hayama N., Kimachi T., Takahashi S. Inhibition of angiogenesis and tumor growth by a novel 1,4-naphthoquinone derivative. Drug Development Research. 2019;80(3):395–402. DOI:10.1002/ddr.21513.; Hsu M.-J., Chen H.-K., Lien J.-C., Huang Y.-H., Huang S.-W. Suppressing VEGF-A/VEGFR-2 Signaling Contributes to the Anti-Angiogenic Effects of PPE8, a Novel Naphthoquinone-Based Compound. Cells. 2022;11(13):2114. DOI:10.3390/cells11132114.; https://www.pharmjournal.ru/jour/article/view/2035

  13. 13
  14. 14

    Přispěvatelé: I. R. Magdieva T. V. Abakumova D. R. Dolgova a další

    Zdroj: Advances in Molecular Oncology; Том 11, № 1 (2024); 99-104 ; Успехи молекулярной онкологии; Том 11, № 1 (2024); 99-104 ; 2413-3787 ; 2313-805X

    Popis souboru: application/pdf

    Relation: https://umo.abvpress.ru/jour/article/view/652/341; deVivar Chevez A.R., Finke J., Bukowski R. The role of inflammation in kidney cancer. Inflammation and Cancer. Adv Exp Med Biol 2014;816:197–234. DOI:10.1007/978-3-0348-0837-8_9; Zhao H., Wu L., Yan G. et al. Inflammation and tumor progression: signaling pathways and targeted intervention. Signal Transduct Target Ther 2021;6(1):263. DOI:10.1038/s41392-021-00658-5; Крамарь Т.В. Патофизиологические аспекты воспалительного и невоспалительного неоангиогенеза. Крымский журнал экспериментальной и клинической медицины 2020;3:59–63.; Долгушин И.И. Нейтрофильные гранулоциты: новые лица старых знакомых. Бюллетень сибирской медицины 2019;18(1):30–7. DOI:10.20538/1682-0363-2019-1-30-37; Kowanetz M., Wu X., Lee J. et al. Granulocyte-colony stimulating factor promotes lung metastasis through mobilization of Ly6G+Ly6C+ granulocytes. Proc Nat Acad Sci USA 2020;107(50):21248–55. DOI:10.1073/pnas.1015855107; Ozel I., Duerig I., Domnich M. et al. The good, the bad, and the ugly: neutrophils, angiogenesis, and cancer. Cancers (Basel) 2022;14(3):536. DOI:10.3390/cancers14030536; Apte R.S., Chen D.S., Ferrara N. VEGF in signaling and disease: beyond discovery and development. Cell 2019;176(6):1248–64. DOI:10.1016/j.cell.2019.01.021; Purohit A., Saxena S., Varney M. et al. Host Cxcr2-dependent regulation of pancreatic cancer growth, angiogenesis, and metastasis. Am J Pathol 2021;191(4):759–71. DOI:10.1016/j.ajpath.2021.01.002; Ben Khadhra H., Rose-Robert F., Herpe Y.E. et al. ARCHITECT® urine-neutrophil gelatinase-associated lipocalin (u-NGAL) assay as new prognostic marker for clear cell Renal Cell Carcinoma (ccRCC) (preliminary results). Int Urol Nephrol 2020;53(1):59–67. DOI:10.1007/s11255-020-02604-w; Chakraborty S., Kaur S., Guha S., Batra S.K. The multifaceted roles of neutrophil gelatinase associated lipocalin (NGAL) in inflammation and cancer. Biochim Biophys Acta 2012;1826(1):129–69. DOI:10.1016/j.bbcan.2012.03.008; Zhu S., Li S., Yi M. et al. Roles of microvesicles in tumor progression and clinical applications. Int J Nanomed 2021;16: 7071–90. DOI:10.2147/IJN.S325448; Maskarinec S.A., McKelvy M., Boyle K. et al. Neutrophil functional heterogeneity is a fixed phenotype and is associated with distinct gene expression profiles. J Leukoc Biol 2022;112(6):1485–95. DOI:10.1002/JLB.4A0322-164R; Mantovani A., Cassatella M.A., Costantini C., Jaillon S. Neutrophils in the activation and regulation of innate and adaptive immunity. Nat Rev Immunol 2011;11(8):519–31. DOI:10.1038/nri3024; Liu K., Sun E., Wang L. et al. Gene expression in human polymorphonuclear neutrophils (PMNs) stimulated by bacillus Calmette–Guérin (BCG). Inflammation 2020;43(6):2098–108. DOI:10.1007/s10753-020-01277-y; Ramezani A. CtNorm: realtime PCR cycle of threshold (Ct) normalization algorithm. J Microbiol Methods 2021;187:106267. DOI:10.1016/j.mimet.2021.106267; Mir S.U., Jin L., Craven R.J. Neutrophil gelatinase-associated lipocalin (NGAL) expression is dependent on the tumor-associated sigma-2 receptor S2RPgrmc1. J Biol Chem 2012;287(18): 14494–501. DOI:10.1074/jbc.M111.324921; Zhang Q., Lu D., Liu W. et al. Effects of KIF2A on the prognosis of nasopharyngeal carcinoma and nasopharyngeal carcinoma cells. Oncol Lett 2019;18(3):2718–23. DOI:10.3892/ol.2019.10597; Sofia V., Nasrul E., Manjas M., Revilla G. Analysis of the relationship between RELA gene expression and MMP-13 gene expression in synoviocyte cells after mesenchymal stem cell wharton jelly. Open Access Maced J Med Sci 2019;7(4):543–8. DOI:10.3889/oamjms.2019.135; Iravani Saadi M., Salami J., Abdi H. et al. Expression of interleukin 1, interleukin 27, and TNF-α genes in patients with ischemic cardiomyopathy versus idiopathic dilated cardiomyopathy: a case-control study. Health Sci Rep 2022;5(4):e701. DOI:10.1002/hsr2.701; Varricchi G., Galdiero M.R., Marone G. et al. Controversial role of mast cells in skin cancers. Exp Dermatol 2017;26:11–7. DOI:10.1111/exd.13107; Chen D.S., Mellman I. Elements of cancer immunity and the cancer-immune set point. Nature 2017;541(7637):321–30. DOI:10.1038/nature21349; Jablonska J., Leschner S., Westphal K. et al. Neutrophils responsive to endogenous IFN-β regulate tumor angiogenesis and growth in a mouse tumor model. J Clin Investig 2010;120(4):1151–64. DOI:10.1172/JCI37223; Zhao Y., Huang X., Ding T.W., Gong Z. Enhanced angiogenesis, hypoxia and neutrophil recruitment during Myc-induced liver tumorigenesis in zebrafish. Sci Rep 2016;6:31952. DOI:10.1038/srep31952; Lee W.S., Yang H., Chon H.J., Kim C. Combination of antiangiogenic therapy and immune checkpoint blockade normalizes vascular-immune crosstalk to potentiate cancer immunity. Exp Mol Med 2020;52(9):1475–85. DOI:10.1038/s12276-020-00500-y; Shah M., Huang D., Blick T. et al. An MMP13-selective inhibitor delays primary tumor growth and the onset of tumorassociated osteolytic lesions in experimental models of breast cancer. PLoS One 2012;7(1):e29615. DOI:10.1371/journal.pone.0029615; Li S., Pritchard D.M., Yu L.G. Regulation and function of matrix metalloproteinase-13 in cancer progression and metastasis. Cancers (Basel) 2022;14(13):3263.DOI:10.3390/cancers14133263.; Roli L., Pecoraro V., Trenti T. Can NGAL be employed as prognostic and diagnostic biomarker in human cancers? A systematic review of current evidence. Int J Biol Markers 2017;32(1):e53–61. DOI:10.5301/jbm.5000245; Спирина Л.В., Кондакова И.В., Усынин Е.А. и др. Влияние транскрипционных факторов, VEGF и протеиназ на прогрессирование рака почки. Сибирский онкологический журнал 2018;17(4):67–74. DOI:10.21294/1814-4861-2018-17-4-67-74; https://umo.abvpress.ru/jour/article/view/652

  15. 15

    Přispěvatelé: I. P. Mikhailov N. V. Borovkova B. V. Kozlovsky a další

    Zdroj: Russian Sklifosovsky Journal "Emergency Medical Care"; Том 12, № 4 (2023); 676-682 ; Журнал им. Н.В. Склифосовского «Неотложная медицинская помощь»; Том 12, № 4 (2023); 676-682 ; 2541-8017 ; 2223-9022

    Popis souboru: application/pdf

    Relation: https://www.jnmp.ru/jour/article/view/1732/1366; https://www.jnmp.ru/jour/article/view/1732/1426; Червяков Ю.В., Власенко О.Н., Ха Х.Н. Пятилетние результаты консервативной терапии больных с атеросклерозом артерий нижних конечностей в стадии критической ишемии. Пермский медицинский журнал. 2017;34(5):20–27. URL: https://cyberleninka.ru/article/n/pyatiletnie-rezultaty-konservativnoy-terapii-bolnyh-s-aterosklerozom-arteriy-nizhnih-konechnostey-v-stadii-kriticheskoy-ishemii?ysclid=lrq9arfc87588830317; Козловский Б.В., Михайлов И.П., Исаев Г.А., Кудряшова Н.Е., Лещинская О.В. Оценка эффективности оперативного лечения больных с хронической критической ишемией нижних конечностей в стадии трофических осложнений. Журнал им. Н.В. Склифосовского. Неотложная медицинская помощь. 2020;9(4):545–550. doi:10.23934/2223-9022-2020-9-4-545-550; Зубова Е.С., Вавилов В.Н., Артюшин Б.С., Мовчан К.Н., Крутиков А. Н., Романенков Н.С., и др. Возможности применения гемопоэтических клеток моноцитарного ряда в лечении больных критической ишемией нижних конечностей. Современные проблемы науки и образования. 2019;(3). URL: https://science-education.ru/ru/article/view?id=28990 [Дата обращения 02 ноября 2022 г.]; Reinecke H, Unrath M, Freisinger E, Bunzemeier H, Meyborg M, Lüders F, et al. Peripherial arterial desiase and critical limb ischaemia: still poor outcomes and lack of guideline adherence. Eur Heart J. 2015;36(15):932–938. PMID: 25650396 doi:10.1093/eurheartj/ehv006; Kret MR, Perrone KH, Azarbal AF, Mitchell EL, Liem TK, Landry GJ, et al. Medical comorbidities but not interventions adversely affect survival in patients with intermittent Claudication. J Vasc Surg. 2013;58(6):1540–1546. PMID: 23972525 doi:10.1016/j.jvs.2013.07.012; Conte MS, Bradbury AW, Kolh P, White JV, Dick F, Fitridge R, et al. Global vascular guidelines on the management of chronic limb-threatening ischemia. Eur J Vasc Endovasc Surg. 2019;58(1S):S1–S109. PMID: 31182334 doi:10.1016/j.ejvs.2019.05.006; Суковатых Б.С., Орлова А.Ю. Стимуляция ангиогенеза клетками костного мозга при экспериментальной ишемии конечности. Ангиология и сосудистая хирургия. 2017;23(1):43–50.; Martínez CE, Smith PC, Alvarado VAP. The influence of platelet-derived products on angiogenesis and tissue repair: a concise update. Front Physiol. 2015;6:290. PMID: 26539125 doi:10.3389/fphys.2015.00290; Суковатых Б.С., Орлова А.Ю., Артюшкова Е.Б. Влияние плазмы, обогащённой тромбоцитами, и препарата «Миелопептид» на течение острой и хронической ишемии нижних конечностей. Новости хирургии. 2012;20(2):41–48.; Драгунов А.Г., Александров Ю.В., Хрипунов С.А. Применение внутритканевого введения аутоплазмы, обогащённой тромбоцитами (АОТ), при лечении ишемии нижних конечностей. Ангиология и сосудистая хирургия. 2008;14(4):17–21.; Goshchynsky V, Migenko B, Lugoviy O, Migenko L. Perspectives on Using Platelet-Rich Plasma and Platelet-Rich Fibrin for Managing Patients with Critical Lower Limb Ischemia After Partial Foot Amputation. J Med Life. 2020;13(1):45–49. PMID: 32341700 doi:10.25122/jml-2020-0028; https://www.jnmp.ru/jour/article/view/1732

  16. 16

    Zdroj: Ophthalmology in Russia; Том 21, № 2 (2024); 270-275 ; Офтальмология; Том 21, № 2 (2024); 270-275 ; 2500-0845 ; 1816-5095 ; 10.18008/1816-5095-2024-2

    Popis souboru: application/pdf

    Relation: https://www.ophthalmojournal.com/opht/article/view/2356/1212; Larsen CS, Johansen M, Harboe E. Sustained‑release prodrugs comprising inflammation inhibitors linked to polysaccharides Eur. Pat. Appl. EP 331471 A1 19890906.; Kubota T, Okabe H, Hisatomi T, Yamakiri K, Sakamoto T, Tawara A. Ultrastructure of the trabecular meshwork in secondary glaucoma eyes after intravitreal triamcinolone acetonide. J Glaucoma. 2006 Apr;15(2):117–119. doi:10.1097/00061198200604000‑00007.; Тульцева C.Н., Астахов Ю.С. Окклюзии вен сетчатки. СПб.: Изд «Н‑Л», 2017. 101 c.; Zarifa R, Shaikh S, Kester E. Peristence of triamcinolone crystals after intravitreal injection: benign crystalline hyaloidopathy. Indian J Ophthalmol. 2013 Apr;61(4):18–23. doi:10.4103/0301‑4738.112166.; Morla S. Glycosaminoglycans and Glycosaminoglycan Mimetics in Cancer and Inflammation. Int J Mol Sci. 2019 Apr 22;20(8):1963. doi:10.3390/ijms20081963.; Bass MD, Humphries MJ. Cytoplasmic interactions of syndecan‑4 orchestrate adhesion receptor and growth factor receptor signalling. Biochem J. 2002 Nov 15;368(Pt 1):1–15. doi:10.1042/BJ20021228.; Moore KL, Patel KD, Bruehl RE, Li F, Johnson DA, Lichenstein HS, Cummings RD, Bainton DF, McEver RP. P‑selectin glycoprotein ligand‑1 mediates rolling of human neutrophils on P‑selectin. J Cell Biol. 1995 Feb;128(4):661–671. doi:10.1083/jcb.128.4.661.; Webb LM, Ehrengruber MU, Clark‑Lewis I, Baggiolini M, Rot A. Binding to heparan sulfate or heparin enhances neutrophil responses to interleukin 8. Proc. Natl. Acad. Sci. USA. 1993;90:7158–7162. doi:10.1073/pnas.90.15.7158.; Götte M. Syndecans in inflammation. FASEB J. 2003 Apr;17(6):575–591. doi:10.1096/fj.02‑0739rev.; Oschatz C, Maas C, Lecher B, Jansen T, Björkqvist J, Tradler T, Sedlmeier R, Burfeind P, Cichon S, Hammerschmidt S, Müller‑Esterl W, Wuillemin WA, Nilsson G, Renné T. Mast cells increase vascular permeability by heparin‑initiated bradykinin formation in vivo. Immunity. 2011 Feb 25;34(2):258–268. doi:10.1016/j.immuni.2011.02.008.; Pretorius D, Richter RP, Anand N, Cardenas JC, Richter JR. Alterations in heparan sulfate proteoglycan synthesis and sulfation and the impact on vascular endothelial function. Published online 2022 Sep 7. doi:10.1016/j.mbplus.2022.100121.; Alexopoulou AN, Multhaupt HA, Couchman JR. Syndecans in wound healing, inflammation and vascular biology. Int J Biochem Cell Biol. 2007;39(3):505–528. doi:10.1016/j.biocel.2006.10.014.; Sezgin E, Levental I, Mayor S, Eggeling C. The mystery of membrane organization: composition, regulation and roles of lipid rafts. Nat Rev Mol Cell Biol. 2017 Jun;18(6):361–374. doi:10.1038/nrm.2017.16.; Schmidt EP, Yang Y, Janssen WJ, Gandjeva A, Perez MJ, Barthel L, Zemans RL, Bowman JC, Koyanagi DE, Yunt ZX, Smith LP, Cheng SS, Overdier KH, Thompson KR, Geraci MW, Douglas IS, Pearse DB, Tuder RM. The pulmonary endothelial glycocalyx regulates neutrophil adhesion and lung injury during experimental sepsis. Nat Med. 2012 Aug;18(8):1217–1223. doi:10.1038/nm.2843.; Гветадзе А.А., Королева И.А. Возрастная макулярная дегенерация. Современный взгляд на проблему (обзор литературы). Клиническая офтальмология. 2015;16(1):125–128.; Gallagher JT. Multiprotein signalling complexes: regional assembly on heparan sulphate. Biochem Soc Trans. 2006 Jun;34(Pt 3):438–441. doi:10.1042/BST0340438.; Buczek‑Thomas JA, Rich CB, Nugent MA. Hypoxia Induced Heparan Sulfate Primes the Extracellular Matrix for Endothelial Cell Recruitment by Facilitating VEGF‑Fibronectin Interactions. Int J Mol Sci. 2019 Oct 12;20(20):5065. doi:10.3390/ijms20205065.; Tkachenko E, Rhodes JM, Simons M. Syndecans: new kids on the signaling block. Circ. Res. 2005;96(5):488–500. doi:10.1161/01.RES.0000159708.71142.c8.; Шацких А.В., Тахчиди Х.П., Тахчиди Е.Х., Горбунова К.С. Перспективность использования естественных регуляторов для профилактики избыточного рубцевания при антиглаукомных операциях. Практическая медицина. 2012;1(40):150–153.; Анисимов С.И. Основные механизмы протекции тканей глаза с применением сульфатированных гликозаминогликанов. Экспериментальные исследования. Глаукома. 2007;2:23–27.; Копаенко А.И., Расин О.Г., Расина О.О. Эффективность применения баларпана у пациентов после трансэпителиальной фоторефракционной кератэктомии, Таврический медико‑биологический вестник, 2016;19(1):123–124.; Канюков В.Н., Стадников А.А., Трубина О.М., Рахматуллин Р.Р., Яхина О.М. Гистоэквивалент биопластического материала в офтальмологии. Оренбург, 2014. 191 с.; Серов В.В., Шехтер А.Б. Соединительная ткань. М., 1981. 321 с. Serov VV, Shehter AB. Connective tissue. Moscow, 1981. 321 p. (In Russ.).; Терещенко А.В., Белый Ю.А., Тахчиди Е.Х., Новиков С.В., Майчук Н.В., Усанова Г.Ю. Экспериментальное обоснование применения раствора сульфатированных гликозаминогликанов (сГАГ) в лечении токсической эрозии роговицы у кроликов. Практическая медицина. 2016;1(2):108–112.; Regatieri CV, Dreyfuss JL, Melo GB, Lavinsky D, Hossaka SK, Rodrigues EB, Farah ME, Maia M, Nader HB. Quantitative evaluation of experimental choroidal neovascularization by confocal scanning laser ophthalmoscopy: fluorescein angiogram parallels heparan sulfate proteoglycan expression. Braz J Med Biol Res. 2010 Jul;43(7):627–633. doi:10.1590/s0100‑879x2010007500043.; Новиков С.В., Кислицына Н.М., Веселкова М.П. Композиция для ингибирования и комплексного лечения интраоперационного макулярного отека. Патент RU 2587779. 20.06.2016.; Веселкова М.П., Новиков С.В., Кислицына Н.М., Петерсен Е.В., Трусова И.А., Дух А.С. Экспериментальное исследование влияния сульфатированных гликозаминогликанов на культуру клеток пигментного эпителия сетчатки человека при воздействии ультразвука (предварительные результаты). Современные технологии в офтальмологии 2015;3; Тахчиди Е.Х., Горбунова К.С. Применение сульфатированных гликозаминогликанов в офтальмологии. Вестник Оренбургского государственного университета. 2012;12(148):201–204.; https://www.ophthalmojournal.com/opht/article/view/2356

  17. 17

    Přispěvatelé: P. V. Kralichkin D. Yu. Kachanov A. V. Pshonkin a další

    Zdroj: Russian Journal of Pediatric Hematology and Oncology; Том 11, № 2 (2024); 61-66 ; Российский журнал детской гематологии и онкологии (РЖДГиО); Том 11, № 2 (2024); 61-66 ; 2413-5496 ; 2311-1267

    Popis souboru: application/pdf

    Relation: https://journal.nodgo.org/jour/article/view/1040/909; Lefrancais E., Ortiz-Munoz G., Caudrillier A., Mallavia B., Liu F., Sayah D.M. The lung is a site of platelet biogenesis and a reservoir for haematopoietic progenitors. Nature. 2017;544(7648):105–9. doi:10.1038/nature21706.; Holinstat M. Normal platelet function. Cancer Metastasis Rev. 2017;36:195–8. doi:10.1007/s10555-017-9677-x.; Holinstat M., Tourdot B.E. Coronary heart disease risk factors take a disproportional toll on women. Arterioscler Thromb Vasc Biol. 2015;35(4):750–1. doi:10.1161/ATVBAHA.115.305466.; Koupenova M., Mick E., Mikhalev E., Benjamin E.J., Tanriverdi K., Freedman J.E. Sex diff erences in platelet toll-like receptors and their association with cardiovascular risk factors. Arterioscler Thromb Vasc Biol. 2015;35(4):1030–7. doi:10.1161/ATVBAHA.114.304954.; Clemetson K.J. Platelets and pathogens. Cell Mol Life Sci. 2010;67(4):495–8. doi:10.1007/s00018-009-0204-2.; Stark R.J., Aghakasiri N., Rumbaut R.E. Platelet-derived Toll-like receptor 4 (Tlr-4) is suffi cient to promote microvascular thrombosis in endotoxemia. PLoS One. 2012;7(7):e41254. doi:10.1371/journal.pone.0041254.; Cox D., Kerrigan S.W., Watson S.P. Platelets and the innate immune system: mechanisms of bacterial-induced platelet activation. J Thromb Haemost. 2011;9(6):1097–107. doi:10.1111/j.1538-7836.2011.04264.x.; Elgueta R., Benson M.J., de Vries V.C., Wasiuk A., Guo Y., Noelle R.J. Molecular mechanism and function of CD40/CD40L engagement in the immune system. Immunol Rev. 2009;229(1):152–72. doi:10.1111/j.1600-065X.2009.00782.x.; Danese S., Katz J.A., Saibeni S., Papa A., Gasbarrini A., Vecchi M., Fiocchi C. Activated platelets are the source of elevated levels of soluble CD40 ligand in the circulation of infl ammatory bowel disease patients. Gut. 2003;52(10):1435–41. doi:10.1136/gut.52.10.1435.; Yacoub D., Hachem A., Théorêt J.F., Gillis M.A., Mourad W., Merhi Y. Enhanced levels of soluble CD40 ligand exacerbate platelet aggregation and thrombus formation through a CD40-dependent tumor necrosis factor receptor-associated factor-2/Rac1/p38 mitogen-activated protein kinase signaling pathway. Arterioscler Thromb Vasc Biol. 2010;30(12):2424–33. doi:10.1161/ATVBAHA.110.216143.; Semple J.W., Italiano J.E. Jr, Freedman J. Platelets and the immune continuum. Nat Rev Immunol. 2011;11(4):264–74. doi:10.1038/nri2956.; Youssefi an T., Drouin A., Massé J.M., Guichard J., Cramer E.M. Host defense role of platelets: engulfment of HIV and Staphylococcus aureus occurs in a specifi c subcellular compartment and is enhanced by platelet activation. Blood. 2002;99(11):4021–9. doi:10.1182/blood-2001-12-0191.; Maouia A., Rebetz J., Kapur R., Semple J.W. The Immune Nature of Platelets Revisited. Transfus Med Rev. 2020;34(4):209–20. doi:10.1016/j.tmrv.2020.09.005.; Wong C.H., Jenne C.N., Petri B., Chrobok N.L., Kubes P. Nucleation of platelets with blood-borne pathogens on Kupff er cells precedes other innate immunity and contributes to bacterial clearance. Nat Immunol. 2013;14(8):785–92. doi:10.1038/ni.2631.; Mishan M.A., Ahmadiankia N., Bahrami A.R. CXCR4 and CCR7: Two eligible targets in targeted cancer therapy. Cell Biol Int. 2016;40(9):955–67. doi:10.1002/cbin.10631.; Seyfried T.N., Huysentruyt L.C. On the origin of cancer metastasis. Crit Rev Oncog. 2013;18(1–2):43–73. doi:10.1615/critrevoncog.v18.i1-2.40.; Gay L.J., Felding-Habermann B. Contribution of platelets to tumour metastasis. Nat Rev Cancer. 2011;11(2):123–34. doi:10.1038/nrc3004.; Elaskalani O., Berndt M.C., Falasca M., Metharom P. Targeting Platelets for the Treatment of Cancer. Cancers (Basel). 2017;9(7):94. doi:10.3390/cancers9070094.; Melki I., Tessandier N., Zuff erey A., Boilard E. Platelet microvesicles in health and disease. Platelets. 2017;28(3):214–21. doi:10.1080/09537104.2016.1265924.; Naderi-Meshkin H., Ahmadiankia N. Cancer metastasis versus stem cell homing: Role of platelets. J Cell Physiol. 2018;233(12):9167–78. doi:10.1002/jcp.26937.; Reneman R.S., Hoeks A.P. Wall shear stress as measured in vivo: consequences for the design of the arterial system. Med Biol Eng Comput. 2008;46(5):499–507. doi:10.1007/s11517-008-0330-2.; Erpenbeck L., Schön M.P. Deadly allies: the fatal interplay between platelets and metastasizing cancer cells. Blood. 2010;115(17):3427–36. doi:10.1182/blood-2009-10-247296.; Gay L.J., Felding-Habermann B. Platelets alter tumor cell attributes to propel metastasis: programming in transit. Cancer Cell. 2011;20(5):553–4. doi:10.1016/j.ccr.2011.11.001.; Kitamura T., Qian B.Z., Pollard J.W. Immune cell promotion of metastasis. Nat Rev Immunol. 2015;15(2):73–86. doi:10.1038/nri3789.; Palumbo J.S., Degen J.L. Mechanisms linking tumor cell-associated procoagulant function to tumor metastasis. Thromb Res. 2007;120 Suppl 2: S22–8. doi:10.1016/S0049-3848(07)70127-5.; Borsig L. The role of platelet activation in tumor metastasis. Expert Rev Anticancer Ther. 2008;8(8):1247–55. doi:10.1586/14737140.8.8.1247.; Placke T., Örgel M., Schaller M., Jung G., Rammensee H.G., Kopp H.G., Salih H.R. Platelet-derived MHC class I confers a pseudonormal phenotype to cancer cells that subverts the antitumor reactivity of natural killer immune cells. Cancer Res. 2012;72(2):440–8. doi:10.1158/0008-5472.CAN-11-1872.; Gabrilovich D., Ishida T., Oyama T., Ran S., Kravtsov V., Nadaf S., Carbone D.P. Vascular endothelial growth factor inhibits the development of dendritic cells and dramatically aff ects the diff erentiation of multiple hematopoietic lineages in vivo. Blood. 1998;92(11):4150–66. PMID: 9834220.; Laxmanan S., Robertson S.W., Wang E., Lau J.S., Briscoe D.M., Mukhopadhyay D. Vascular endothelial growth factor impairs the functional ability of dendritic cells through Id pathways. Biochem Biophys Res Commun. 2005;334(1):193–8. doi:10.1016/j.bbrc.2005.06.065.; Reddig P.J., Juliano R.L. Clinging to life: cell to matrix adhesion and cell survival. Cancer Metastasis Rev. 2005;24(3):425–39. doi:10.1007/s10555-005-5134-3.; Alfano D., Iaccarino I., Stoppelli M.P. Urokinase signaling through its receptor protects against anoikis by increasing BCL-xL expression levels. J Biol Chem. 2006;281(26):17758–67. doi:10.1074/jbc.M601812200.; Douma S., Van Laar T., Zevenhoven J., Meuwissen R., Van Garderen E., Peeper D.S. Suppression of anoikis and induction of metastasis by the neurotrophic receptor TrkB. Nature. 2004;430(7003):1034–9. doi:10.1038/nature02765.; Golebiewska E.M., Poole A.W. Platelet secretion: From haemostasis to wound healing and beyond. Blood Rev. 2015;29(3):153–62. doi:10.1016/j.blre.2014.10.003.; Sharma S.V., Bell D.W., Settleman J., Haber D.A. Epidermal growth factor receptor mutations in lung cancer. Nat Rev Cancer. 2007;7(3):169–81. doi:10.1038/nrc2088.; Tanaka K., Okugawa Y., Toiyama Y., Inoue Y., Saigusa S., Kawamura M., Araki T., Uchida K., Mohri Y., Kusunoki M. Brainderived neurotrophic factor (BDNF)-induced tropomyosin-related kinase B (Trk B) signaling is a potential therapeutic target for peritoneal carcinomatosis arising from colorectal cancer. PLoS One. 2014;9(5):e96410. doi:10.1371/journal.pone.0096410.; Xiao Y.C., Yang Z.B., Cheng X.S., Fang X.B., Shen T., Xia C.F., Liu P., Qian H.H., Sun B., Yin Z.F., Li Y.F. CXCL8, overexpressed in colorectal cancer, enhances the resistance of colorectal cancer cells to anoikis. Cancer Lett. 2015;361(1):22–32. doi:10.1016/j.canlet.2015.02.021.; Zeng Q., McCauley L.K., Wang C.Y. Hepatocyte growth factor inhibits anoikis by induction of activator protein 1-dependent cyclooxygenase-2. Implication in head and neck squamous cell carcinoma progression. J Biol Chem. 2002;277(51):50137–42. doi:10.1074/jbc.M208952200.; Luey B.C., May F.E. Insulin-like growth factors are essential to prevent anoikis in oestrogen-responsive breast cancer cells: importance of the type I IGF receptor and PI3-kinase/Akt pathway. Mol Cancer. 2016;15:8. doi:10.1186/s12943-015-0482-2.; Freedman J.E., Loscalzo J., Barnard M.R., Alpert C., Keaney J.F., Michelson A.D. Nitric oxide released from activated platelets inhibits platelet recruitment. J Clin Invest. 1997;100(2):350–6. doi:10.1172/JCI119540.; Chanvorachote P., Pongrakhananon V., Chunhacha P. Prolonged nitric oxide exposure enhances anoikis resistance and migration through epithelial-mesenchymal transition and caveolin-1 upregulation. Biomed Res Int. 2014;2014:941359. doi:10.1155/2014/941359.; Bao W., Qiu H., Yang T., Luo X., Zhang H., Wan X. Upregulation of TrkB promotes epithelial-mesenchymal transition and anoikis resistance in endometrial carcinoma. PLoS One. 2013;8(7):e70616. doi:10.1371/journal.pone.0070616.; Jie X.X., Zhang X.Y., Xu C.J. Epithelial-to-mesenchymal transition, circulating tumor cells and cancer metastasis: Mechanisms and clinical applications. Oncotarget. 2017;8(46):81558–71. doi:10.18632/oncotarget.18277.; Moustakas A., Heldin C.H. Signaling networks guiding epithelialmesenchymal transitions during embryogenesis and cancer progression. Cancer Sci. 2007;98(10):1512–20. doi:10.1111/j.1349-7006.2007.00550.x.; Palena C., Hamilton D.H., Fernando R.I. Infl uence of IL-8 on the epithelial-mesenchymal transition and the tumor microenvironment. Future Oncol. 2012;8(6):713–22. doi:10.2217/fon.12.59.; Li N. Platelets in cancer metastasis: To help the “villain” to do evil. Int J Cancer. 2016;138(9):2078–87. doi:10.1002/ijc.29847.; McCarty O.J., Mousa S.A., Bray P.F., Konstantopoulos K. Immobilized platelets support human colon carcinoma cell tethering, rolling, and fi rm adhesion under dynamic fl ow conditions. Blood. 2000;96(5):1789–97. PMID: 10961878.; Janowska-Wieczorek A., Wysoczynski M., Kijowski J., MarquezCurtis L., Machalinski B., Ratajczak J., Ratajczak M.Z. Microvesicles derived from activated platelets induce metastasis and angiogenesis in lung cancer. Int J Cancer. 2005;113(5):752–60. doi:10.1002/ijc.20657.; Коваленко Т.А., Пантелеев М.А., Свешникова А.Н. Роль тканевого фактора в метастазировании, неоангиогенезе и гемостазе при онкологических заболеваниях. Онкогематология. 2019;14(2):70–85. doi:10.17650/1818-8346-2019-14-2-70-85.; Бутылин А.А., Пантелеев М.А., Атауллаханов Ф.И. Пространственная динамика свертывания крови. Российский химический журнал. 2007;51(1):45–50.; Подоплелова Н.А., Сулимов В.Б., Тащилова А.С., Ильин И.С., Пантелеев М.А., Ледeнева И.В., Шихалиев Х.С. Свертывание крови в XXI веке: новые знания, методы и перспективы для терапии. Вопросы гематологии/онкологии и иммунопатологии в педиатрии. 2020;19(1):139–57. doi:10.24287/1726-1708-2020-19-1-139-157.; Fischer E.G., Riewald M., Huang H.Y., Miyagi Y., Kubota Y., Mueller B.M., Ruf W. Tumor cell adhesion and migration supported by interaction of a receptor-protease complex with its inhibitor. J Clin Invest. 1999;104(9):1213–21. doi:10.1172/JCI7750.; Orellana R., Kato S., Erices R., Bravo M.L., Gonzalez P., Oliva B., Cubillos S., Valdivia A., Ibañez C., Brañes J., Barriga M.I., Bravo E., Alonso C., Bustamente E., Castellon E., Hidalgo P., Trigo C., Panes O., Pereira J., Mezzano D., Cuello M.A., Owen G.I. Platelets enhance tissue factor protein and metastasis initiating cell markers, and act as chemoattractants increasing the migration of ovarian cancer cells. BMC Cancer. 2015;15:290. doi:10.1186/s12885-015-1304-z.; Läubli H., Spanaus K.S., Borsig L. Selectin-mediated activation of endothelial cells induces expression of CCL5 and promotes metastasis through recruitment of monocytes. Blood. 2009;114(20):4583–91. doi:10.1182/blood-2008-10-186585.; Labelle M., Begum S., Hynes R.O. Direct signaling between platelets and cancer cells induces an epithelial-mesenchymal-like transition and promotes metastasis. Cancer Cell. 2011;20(5):576–90. doi:10.1016/j.ccr.2011.09.009.; Padua D., Zhang X.H., Wang Q., Nadal C., Gerald W.L., Gomis R.R., Massagué J. TGFbeta primes breast tumors for lung metastasis seeding through angiopoietin-like 4. Cell. 2008;133(1):66–77. doi:10.1016/j.cell.2008.01.046.; Bielenberg D.R., Zetter B.R. The Contribution of Angiogenesis to the Process of Metastasis. Cancer J. 2015;21(4):267–73. doi:10.1097/PPO.0000000000000138.; Wojtukiewicz M.Z., Sierko E., Hempel D., Tucker S.C., Honn K.V. Platelets and cancer angiogenesis nexus. Cancer Metastasis Rev. 2017;36(2):249–62. doi:10.1007/s10555-017-9673-1.; He A.D., Xie W., Song W., Ma Y.Y., Liu G., Liang M.L., Da X.W., Yao G.Q., Zhang B.X., Gao C.J., Xiang J.Z., Ming Z.Y. Platelet releasates promote the proliferation of hepatocellular carcinoma cells by suppressing the expression of KLF6. Sci Rep. 2017;7(1):3989. doi:10.1038/s41598-017-02801-1.; Banskota S., Gautam J., Regmi S.C., Gurung P., Park M.H., Kim S.J., Nam T.G., Jeong B.S., Kim J.A. BJ-1108, a 6-Amino-2,4,5- Trimethylpyridin-3-ol Analog, Inhibits Serotonin-Induced Angiogenesis and Tumor Growth through PI3K/NOX. Pathway. PLoS One. 2016;11(1):e0148133. doi:10.1371/journal.pone.0148133.; Wang S., Li Z., Xu R. Human Cancer and Platelet Interaction, a Potential Therapeutic Target. Int J Mol Sci. 2018;19(4):1246. doi:10.3390/ijms19041246.; https://journal.nodgo.org/jour/article/view/1040

  18. 18

    Přispěvatelé: S. P. Chumakova O. A. Denisenko O. I. Urazova a další

    Zdroj: Medical Immunology (Russia); Том 26, № 5 (2024); 1053-1060 ; Медицинская иммунология; Том 26, № 5 (2024); 1053-1060 ; 2313-741X ; 1563-0625

    Popis souboru: application/pdf

    Relation: https://www.mimmun.ru/mimmun/article/view/3116/2023; Чумакова С.П., Уразова О.И., Шипулин В.М., Суходоло И.В., Стельмашенко А.И., Денисенко О.А., Андреев С.Л., Дёмин М.С., Чурина Е.Г. Продукция медиаторов ангиогенеза и структура сосудистой стенки в сердце при ишемической кардиомиопатии // Acta Biomedica Scientifica, 2023. Т. 8, № 6. С. 81-90.; Calabrese E.J. Hormesis and endothelial progenitor cells. Dose Response, 2022, Vol. 20, no. 1, 15593258211068625. doi:10.1177/15593258211068625; Chopra H., Hung M.K., Kwong D.L., Zhang C.F., Pow E.H.N. Insights into endothelial progenitor cells: origin, classification, potentials, and prospects. Stem Cells Int., 2018, Vol. 2018, 9847015. doi:10.1155/2018/9847015.; Chumakova S.P., Urazova O.I., Shipulin V.M., Andreev S.L., Denisenko O.A., Gladkovskaya M.V., Litvinova L.S., Bubenchikov M.A. Role of angiopoietic coronary endothelial dysfunction in the pathogenesis of ischemic cardiomyopathy. Biomedicines. 2023, Vol. 11, no. 7, 1950. doi:10.3390/biomedicines11071950.; Cowman S.J., Koh M.Y. Revisiting the HIF switch in the tumor and its immune microenvironment. Trends Cancer, 2022, Vol. 8, no. 1, pp. 28-42.; Del Buono M.G., Moroni F., Montone R.A., Azzalini L., Sanna T., Abbate A. Ischemic cardiomyopathy and heart failure after acute myocardial infarction. Curr. Cardiol. Rep., 2022, Vol. 24, no. 10, pp. 1505-1515.; Felker G.M., Shaw G.M., O’Connor C.M. A standardized definition of ischemic cardiomyopathy for use in clinical research. J. Am. Coll. Cardiol., 2002, Vol. 39, no. 2, pp. 208-210.; Jiang Q., Huang K., lu F., Deng S., Yang Z., Hu S. Modifying strategies for SDF-1/CXCR4 interaction during mesenchymal stem cell transplantation. Gen. Thorac. Cardiovasc. Surg., 2022, Vol. 70, no. 1, pp. 1-10.; Korbecki J., KojderK., Kapczuk P., Kupnicka P., Gawronska-Szklarz B., Gutowska I., Chlubek D., Baranowska-Bosiacka I. The effect of hypoxia on the expression of CXC chemokines and CXC chemokine receptors – a review of literature. Int. J. Mol. Sci, 2021, Vol. 22, no. 2, 843. doi:10.3390/ijms22020843.; Nagasawa T. CXCL12/SDF-1 andCXCR4. Front.Immunol.,2015,Vol.6,301. doi:10.3389/fimmu.2015.00301.; Sato Т., Takeda N. The roles of HIF-1α signaling in cardiovascular diseases. J. Cardiol., 2023, Vol. 81, no. 2, pp. 202-208.; Shi С., Pamer E.G. Monocyte recruitment during infection and inflammation. Nat. Rev. Immunol., 2011, Vol. 11, no. 11, pp. 762-774.; Singh S., Anshita D., Ravichandiran V. MCP-1: Function, regulation, and involvement in disease. Int. Immunopharmacol., 2021, Vol. 101, Part B, 107598. doi:10.1016/j.intimp.2021.107598.; Teh Y.C., Ding J.L., Ng L.G., Chong S.Z. Capturing the fantastic voyage of monocytes through time and space. Front. Immunol., 2019, Vol. 10, 834. doi:10.3389/fimmu.2019.00834.; Zhong J., Rajagopalan S. Dipeptidyl peptidase-4 regulation of SDF-1/CXCR4 axis: implications for cardiovascular disease. Front. Immunol., 2015, Vol. 6, 477. doi:10.3389/fimmu.2015.00477.; Zhou Y., Zhu X., Cui H., Shi J., Yuan G., Shi S., Hu Y. The Role of the VEGF family in coronary heartdisease. Front. Cardiovasc. Med., 2021, Vol. 8, 738325. doi:10.3389/fcvm.2021.738325.; https://www.mimmun.ru/mimmun/article/view/3116

  19. 19

    Zdroj: Doklady of the National Academy of Sciences of Belarus; Том 68, № 3 (2024); 220-228 ; Доклады Национальной академии наук Беларуси; Том 68, № 3 (2024); 220-228 ; 2524-2431 ; 1561-8323 ; 10.29235/1561-8323-2024-68-3

    Popis souboru: application/pdf

    Relation: https://doklady.belnauka.by/jour/article/view/1194/1195; Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries / H. Sung [et al.] // CA Cancer J. Clin. – 2021. – Vol. 71, N 3. – P. 209–249. https://doi.org/10.3322/caac.21660; Global surveillance of trends in cancer survival 2000-14 (CONCORD-3): analysis of individual records for 37 513 025 patients diagnosed with one of 18 cancers from 322 population-based registries in 71 countries / C. Allemani [et al.] // Lancet. – 2018. – Vol. 391, N 10125. – P. 1023–1075. https://doi.org/10.1016/S0140-6736(17)33326-3; Folkman, J. Angiogenesis: an organizing principle for drug discovery? / J. Folkman // Nature Reviews Drug Discovery. – 2007. – Vol. 6. – P. 273–286. https://doi.org/10.1038/nrd2115; Carmeliet, P. Molecular mechanisms and clinical applications of angiogenesis / Р. Carmeliet, R. K. Jain // Nature. – 2011. – Vol. 473. – P. 298–307. https://doi.org/10.1038/nature10144; VEGF receptor signalling – in control of vascular function / A. K. Olsson [et al.] // Nat. Rev. Mol. Cell. Biol. – 2006. – Vol. 7. – P. 359–371. https://doi.org/10.1038/nrm1911; Mathew, C. C. The isolation of high molecular weight eucaryotic DNA / C. C. Mathew // Methods in Molecular Biology: Nucleic Acids / ed. J. M. N. J. Walker. – Clifton, 1984. – Vol. 2, N 4. – P. 31–34. https://doi.org/10.1385/0-89603-064-4:31; Clinical and morphological characteristics of NSCLC and VEGF gene polymorphism / M. N. Shapetska [et al.] // Int. J. Adv. Res. – 2016. – Vol. 4. – P. 1802–1813. https://doi.org/10.21474/ijar01/1657; Association of vascular endothelial growth factor – a gene polymorphisms and haplotypes with breast cancer metastases / U. Langsenlehner [et al.] // Acta Oncol. – 2015. – Vol. 54, N 3. – P. 368–376. https://doi.org/10.3109/0284186x.2014.948056; VEGF gene polymorphisms and susceptibility to rheumatoid arthritis / S. W. Han [et al.] // Rheumatology. – 2004. – Vol. 43, N 9. – P. 1173–1177. https://doi.org/10.1093/rheumatology/keh281; Vascular endothelial growth factor gene polymorphisms are associated with acute renal allograft rejection / M. Shahbazi [et al.] // J. Am. Soc. Nephrol. – 2002. – Vol. 13, N 1. – P. 260–264. https://doi.org/10.1681/asn.v131260; A common 936 C/T mutation in the gene for vascular endothelial growth factor is associated with vascular endothelial growth factor plasma levels / W. Renner [et al.] // J. Vasc. Res. – 2000. – Vol. 37, N 6. – P. 443–448. https://doi.org/10.1159/000054076; Functional interaction between p/CAF and human papillomavirus E2 protein / D. Lee [et al.] // J. Biol. Chem. – 2002. – Vol. 277, N 8. – P. 6483–6489. https://doi.org/10.1074/jbc.m105085200; Маркеры ангиогенеза при опухолевом росте / Н. А. Нефедова [и др.] // Архив патологии. – 2016. – Т. 78, № 2. – С. 55–62. https://doi.org/10.17116/patol201678255-62; Treatment Strategies of Gastric Cancer-Molecular Targets for Anti-angiogenic Therapy: a State-of-the-art Review / M. Tyczyńska [et al.] // J. Gastrointest Cancer. – 2021. – Vol. 52. – P. 476–488. https://doi.org/10.1007/s12029-021-00629-7; Phase III trial assessing bevacizumab in stages II and III carcinoma of the colon: results of NSABP protocol C-08 / C. J. Allegra [et al.] // J. Clin. Oncol. – 2011. – Vol. 29, N 1. – P. 11–16. https://doi.org/10.1200/jco.2010.30.0855; Bergers, G. Modes of resistance to anti-angiogenic therapy / G. Bergers, D. Hanahan // Nat. Rev. Cancer. – 2008. – Vol. 8. – P. 592–603. https://doi.org/10.1038/nrc2442; https://doklady.belnauka.by/jour/article/view/1194

  20. 20

    Zdroj: Complex Issues of Cardiovascular Diseases; Том 13, № 3 (2024); 118-129 ; Комплексные проблемы сердечно-сосудистых заболеваний; Том 13, № 3 (2024); 118-129 ; 2587-9537 ; 2306-1278

    Popis souboru: application/pdf

    Relation: https://www.nii-kpssz.com/jour/article/view/1523/923; https://www.nii-kpssz.com/jour/article/downloadSuppFile/1523/1751; https://www.nii-kpssz.com/jour/article/downloadSuppFile/1523/1752; https://www.nii-kpssz.com/jour/article/downloadSuppFile/1523/1753; https://www.nii-kpssz.com/jour/article/downloadSuppFile/1523/1754; https://www.nii-kpssz.com/jour/article/downloadSuppFile/1523/1755; Crampton S.P., Davis J., Hughes C.C. Isolation of human umbilical vein endothelial cells (HUVEC). J Vis Exp. 2007;(3):183. doi:10.3791/183.; Lei J., Peng S., Samuel S.B., Zhang S., Wu Y., Wang P., Li Y.F., Liu H. A simple and biosafe method for isolation of human umbilical vein endothelial cells. Anal Biochem. 2016;508:15-8. doi:10.1016/j.ab.2016.06.018.; Chandel S., Kumaragurubaran R., Giri H., Dixit M. Isolation and Culture of Human Umbilical Vein Endothelial Cells (HUVECs). Methods Mol Biol. 2024;2711:147-162. doi:10.1007/978-1-0716-3429-5_12.; Hauser S., Jung F., Pietzsch J. Human Endothelial Cell Models in Biomaterial Research. Trends Biotechnol. 2017;35(3):265-277. doi:10.1016/j.tibtech.2016.09.007.; Medina-Leyte D.J., Domínguez-Pérez M., Mercado I., Villarreal-Molina M.T., Jacobo-Albavera L. Use of Human Umbilical Vein Endothelial Cells (HUVEC) as a Model to Study Cardiovascular Disease: A Review. Appl Sci. 2020;10(3):938. doi:10.3390/app10030938.; Dienemann S., Schmidt V., Fleischhammer T., Mueller J.H., Lavrentieva A. Comparative analysis of hypoxic response of human microvascular and umbilical vein endothelial cells in 2D and 3D cell culture systems. J Cell Physiol. 2023;238(5):1111-1120. doi:10.1002/jcp.31002.; Lau S., Gossen M., Lendlein A., Jung F. Venous and Arterial Endothelial Cells from Human Umbilical Cords: Potential Cell Sources for Cardiovascular Research. Int J Mol Sci. 2021;22(2):978. doi:10.3390/ijms22020978.; Mayani H. Biological differences between neonatal and adult human hematopoietic stem/progenitor cells. Stem Cells Dev. 2010;19(3):285-98. doi:10.1089/scd.2009.0327.; Sun H., Pratt R.E., Dzau V.J., Hodgkinson C.P. Neonatal and adult cardiac fibroblasts exhibit inherent differences in cardiac regenerative capacity. J Biol Chem. 2023;299(5):104694. doi:10.1016/j.jbc.2023.104694.; Legros H., Launay S., Roussel B.D., Marcou-Labarre A., Calbo S., Catteau J., Leroux P., Boyer O., Ali C., Marret S., Vivien D., Laudenbach V. Newborn- and adult-derived brain microvascular endothelial cells show age-related differences in phenotype and glutamate-evoked protease release. J Cereb Blood Flow Metab. 2009;29(6):1146-58. doi:10.1038/jcbfm.2009.39.; Robertson J.O., Erzurum S.C., Asosingh K. Pathological Roles for Endothelial Colony-Forming Cells in Neonatal and Adult Lung Disease. Am J Respir Cell Mol Biol. 2023;68(1):13-22. doi:10.1165/rcmb.2022-0318PS.; Bertagnolli M., Xie L.F., Paquette K., He Y., Cloutier A., Fernandes R.O., Béland C., Sutherland M.R., Delfrate J., Curnier D., Bigras J.L., Rivard A., Thébaud B., Luu T.M., Nuyt A.M. Endothelial Colony-Forming Cells in Young Adults Born Preterm: A Novel Link Between Neonatal Complications and Adult Risks for Cardiovascular Disease. J Am Heart Assoc. 2018;7(14):e009720. doi:10.1161/JAHA.118.009720.; McAleese C. Insights into endothelial metabolic heterogeneity. Nat Rev Cardiol. 2024 Jun 5. doi:10.1038/s41569-024-01049-3. Online ahead of print.; Trimm E., Red-Horse K. Vascular endothelial cell development and diversity. Nat Rev Cardiol. 2023;20(3):197-210. doi:10.1038/s41569-022-00770-1.; Jung R., Trivedi C.M. Unveiling the Spatiotemporal Diversity of the Endothelium in Development: A Multi-Omics Approach. Circ Res. 2024;134(5):547-549. doi:10.1161/CIRCRESAHA.124.324328.; Chen J., Zhang X., DeLaughter D.M., Trembley M.A., Saifee S., Xiao F., Chen J., Zhou P., Seidman C.E., Seidman J.G., Pu W.T. Molecular and Spatial Signatures of Mouse Embryonic Endothelial Cells at Single-Cell Resolution. Circ Res. 2024;134(5):529-546. doi:10.1161/CIRCRESAHA.123.323956.; Becker L.M., Chen S.H., Rodor J., de Rooij L.P.M.H., Baker A.H., Carmeliet P. Deciphering endothelial heterogeneity in health and disease at single-cell resolution: progress and perspectives. Cardiovasc Res. 2023;119(1):6-27. doi:10.1093/cvr/cvac018.; Liu Z., Ruter D.L., Quigley K., Tanke N.T., Jiang Y., Bautch V.L. Single-Cell RNA Sequencing Reveals Endothelial Cell Transcriptome Heterogeneity Under Homeostatic Laminar Flow. Arterioscler Thromb Vasc Biol. 2021;41(10):2575-2584. doi:10.1161/ATVBAHA.121.316797.; Salybekov A.A., Kobayashi S., Asahara T. Characterization of Endothelial Progenitor Cell: Past, Present, and Future. Int J Mol Sci. 2022;23(14):7697. doi:10.3390/ijms23147697.; Zhang Q., Cannavicci A., Kutryk M.J.B. Exploring Endothelial Colony-Forming Cells to Better Understand the Pathophysiology of Disease: An Updated Review. Stem Cells Int. 2022;2022:4460041. doi:10.1155/2022/4460041.; Chambers S.E.J., Pathak V., Pedrini E., Soret L., Gendron N., Guerin C.L., Stitt A.W., Smadja D.M., Medina R.J. Current concepts on endothelial stem cells definition, location, and markers. Stem Cells Transl Med. 2021;10 (Suppl 2):S54-S61. doi:10.1002/sctm.21-0022.; Dight J., Zhao J., Styke C., Khosrotehrani K., Patel J. Resident vascular endothelial progenitor definition and function: the age of reckoning. Angiogenesis. 2022;25(1):15-33. doi:10.1007/s10456-021-09817-2.; Kutikhin A.G., Sinitsky M.Y., Yuzhalin A.E., Velikanova E.A. Shear stress: An essential driver of endothelial progenitor cells. J Mol Cell Cardiol. 2018;118:46-69. doi:10.1016/j.yjmcc.2018.03.007.; Liao G., Zheng K., Shorr R., Allan D.S. Human endothelial colony-forming cells in regenerative therapy: A systematic review of controlled preclinical animal studies. Stem Cells Transl Med. 2020;9(11):1344-1352. doi:10.1002/sctm.20-0141.; Deng D., Zhang Y., Tang B., Zhang Z. Sources and applications of endothelial seed cells: a review. Stem Cell Res Ther. 2024;15(1):175. doi:10.1186/s13287-024-03773-6.; Nguyen H.T., Peirsman A., Tirpakova Z., Mandal K., Vanlauwe F., Maity S., Kawakita S., Khorsandi D., Herculano R., Umemura C., Yilgor C., Bell R., Hanson A., Li S., Nanda H.S., Zhu Y., Najafabadi A.H., Jucaud V., Barros N., Dokmeci M.R., Khademhosseini A. Engineered Vasculature for Cancer Research and Regenerative Medicine. Micromachines (Basel). 2023;14(5):978. doi:10.3390/mi14050978.; Wingo M., Rafii S. Endothelial reprogramming for vascular regeneration: Past milestones and future directions. Semin Cell Dev Biol. 2022;122:50-55. doi:10.1016/j.semcdb.2021.09.003.; Cho S., Aakash P., Lee S., Yoon Y.S. Endothelial cell direct reprogramming: Past, present, and future. J Mol Cell Cardiol. 2023;180:22-32. doi:10.1016/j.yjmcc.2023.04.006.; Loh K.M., Ang L.T. Building human artery and vein endothelial cells from pluripotent stem cells, and enduring mysteries surrounding arteriovenous development. Semin Cell Dev Biol. 2024;155(Pt C):62-75. doi:10.1016/j.semcdb.2023.06.004.; Florido M.H.C., Ziats N.P. Endothelial dysfunction and cardiovascular diseases: The role of human induced pluripotent stem cells and tissue engineering. J Biomed Mater Res A. 2024;112(8):1286-1304. doi:10.1002/jbm.a.37669.; Matveeva V., Khanova M., Sardin E., Antonova L., Barbarash O. Endovascular Interventions Permit Isolation of Endothelial Colony-Forming Cells from Peripheral Blood. Int J Mol Sci. 2018;19(11):3453. doi:10.3390/ijms19113453.; Kutikhin A.G., Tupikin A.E., Matveeva V.G., Shishkova D.K., Antonova L.V., Kabilov M.R., Velikanova E.A. Human Peripheral Blood-Derived Endothelial Colony-Forming Cells Are Highly Similar to Mature Vascular Endothelial Cells yet Demonstrate a Transitional Transcriptomic Signature. Cells. 2020;9(4):876. doi:10.3390/cells9040876.; Malakhova A.A., Grigor'eva E.V., Pavlova S.V., Malankhanova T.B., Valetdinova K.R., Vyatkin Y.V., Khabarova E.A., Rzaev J.A., Zakian S.M., Medvedev S.P. Generation of induced pluripotent stem cell lines ICGi021-A and ICGi022-A from peripheral blood mononuclear cells of two healthy individuals from Siberian population. Stem Cell Res. 2020;48:101952. doi:10.1016/j.scr.2020.101952.; Zakharova I.S., Shevchenko A.I., Tmoyan N.A., Elisaphenko E.A., Zubkova E.S., Sleptcov A.A., Nazarenko M.S., Ezhov M.V., Kukharchuk V.V., Parfyonova Y.V., Zakian S.M. Induced pluripotent stem cell line ICGi036-A generated by reprogramming peripheral blood mononuclear cells from a patient with familial hypercholesterolemia caused due to compound heterozygous p.Ser177Leu/p.Cys352Arg mutations in LDLR. Stem Cell Res. 2022;59:102653. doi:10.1016/j.scr.2022.102653.; Zakharova I.S., Shevchenko A.I., Tmoyan N.A., Elisaphenko E.A., Zubkova E.S., Sleptcov A.A., Nazarenko M.S., Ezhov M.V., Kukharchuk V.V., Parfyonova Y.V., Zakian S.M. Induced pluripotent stem cell line ICGi038-A, obtained by reprogramming peripheral blood mononuclear cells from a patient with familial hypercholesterolemia due to compound heterozygous c.1246C > T/c.940 + 3_940 + 6del mutations in LDLR. Stem Cell Res. 2022;60:102702. doi:10.1016/j.scr.2022.102702.; Zakharova I.S., Shevchenko A.I., Tmoyan N.A., Elisaphenko E.A., Kalinin A.P., Sleptcov A.A., Nazarenko M.S., Ezhov M.V., Kukharchuk V.V., Parfyonova Y.V., Zakian S.M. Induced pluripotent stem cell line ICGi037-A, obtained by reprogramming peripheral blood mononuclear cells from a patient with familial hypercholesterolemia due to heterozygous p.Trp443Arg mutations in LDLR. Stem Cell Res. 2022;60:102703. doi:10.1016/j.scr.2022.102703.; Gimble J.M., Ray S.P., Zanata F., Wu X., Wade J., Khoobehi K., Ferreira L.M., Bunnell B.A. Adipose Derived Cells and Tissues for Regenerative Medicine. ACS Biomater Sci Eng. 2017;3(8):1477-1482. doi:10.1021/acsbiomaterials.6b00261.; Laschke M.W., Seifert M.S., Scheuer C., Kontaxi E., Metzger W., Menger M.D. High glucose exposure promotes proliferation and in vivo network formation of adipose-tissue-derived microvascular fragments. Eur Cell Mater. 2019;38:188-200. doi:10.22203/eCM.v038a13.; Antonyshyn J.A., Mazzoli V., McFadden M.J., Gramolini A.O., Hofer S.O.P., Simmons C.A., Santerre P.J. Immunomagnetic Isolation and Enrichment of Microvascular Endothelial Cells from Human Adipose Tissue. Bio Protoc. 2022;12(10):e4422. doi:10.21769/BioProtoc.4422.; Antonyshyn J.A., MacQuarrie K.D., McFadden M.J., Gramolini A.O., Hofer S.O.P., Santerre J.P. Paracrine cross-talk between human adipose tissue-derived endothelial cells and perivascular cells accelerates the endothelialization of an electrospun ionomeric polyurethane scaffold. Acta Biomater. 2024;175:214-225. doi:10.1016/j.actbio.2023.12.037.; Jonkman J.E., Cathcart J.A., Xu F., Bartolini M.E., Amon J.E., Stevens K.M., Colarusso P. An introduction to the wound healing assay using live-cell microscopy. Cell Adh Migr. 2014;8(5):440-51. doi:10.4161/cam.36224.; Aisenbrey E.A., Murphy W.L. Synthetic alternatives to Matrigel. Nat Rev Mater. 2020;5(7):539-551. doi:10.1038/s41578-020-0199-8.; Passaniti A., Kleinman H.K., Martin G.R. Matrigel: history/background, uses, and future applications. J Cell Commun Signal. 2022;16(4):621-626. doi:10.1007/s12079-021-00643-1.; Gao Y., Galis Z.S. Exploring the Role of Endothelial Cell Resilience in Cardiovascular Health and Disease. Arterioscler Thromb Vasc Biol. 2021;41(1):179-185. doi:10.1161/ATVBAHA.120.314346.; Tombor L.S., Dimmeler S. Why is endothelial resilience key to maintain cardiac health? Basic Res Cardiol. 2022;117(1):35. doi:10.1007/s00395-022-00941-8.; Mühleder S., Fernández-Chacón M., Garcia-Gonzalez I., Benedito R. Endothelial sprouting, proliferation, or senescence: tipping the balance from physiology to pathology. Cell Mol Life Sci. 2021;78(4):1329-1354. doi:10.1007/s00018-020-03664-y.; Jerka D., Bonowicz K., Piekarska K., Gokyer S., Derici U.S., Hindy O.A., Altunay B.B., Yazgan I., Steinbrink K., Kleszczyński K., Yilgor P., Gagat M. Unraveling Endothelial Cell Migration: Insights into Fundamental Forces, Inflammation, Biomaterial Applications, and Tissue Regeneration Strategies. ACS Appl Bio Mater. 2024;7(4):2054-2069. doi:10.1021/acsabm.3c01227.; Qiu J., Hirschi K.K. Endothelial Cell Development and Its Application to Regenerative Medicine. Circ Res. 2019;125(4):489-501. doi:10.1161/CIRCRESAHA.119.311405.; Pérez-Gutiérrez L., Ferrara N. Biology and therapeutic targeting of vascular endothelial growth factor A. Nat Rev Mol Cell Biol. 2023;24(11):816-834. doi:10.1038/s41580-023-00631-w.; Simons M., Gordon E., Claesson-Welsh L. Mechanisms and regulation of endothelial VEGF receptor signalling. Nat Rev Mol Cell Biol. 2016;17(10):611-25. doi:10.1038/nrm.2016.87.