Výsledky vyhľadávania - "аналитические методы"

  1. 1
  2. 2
  3. 3
  4. 4
  5. 5
  6. 6
  7. 7
  8. 8

    Zdroj: Economic development and analysis; Vol. 2 No. 2 (2024): Economic development and analysis; 315-326 ; Экономическое развитие и анализ; Том 2 № 2 (2024): Экономическое развитие и анализ; 315-326 ; Iqtisodiy taraqqiyot va tahlil; Jild 2 № 2 (2024): Iqtisodiy taraqqiyot va tahlil; 315-326 ; 2992-877X ; 10.60078/2992-877X-2024-vol2-iss2

    Popis súboru: application/pdf

  9. 9

    Zdroj: Economic development and analysis; Vol. 2 No. 2 (2024): Economic development and analysis; 315-326 ; Экономическое развитие и анализ; Том 2 № 2 (2024): Экономическое развитие и анализ; 315-326 ; Iqtisodiy taraqqiyot va tahlil; Jild 2 № 2 (2024): Iqtisodiy taraqqiyot va tahlil; 315-326 ; 2992-877X ; 10.60078/2992-877X-2024-vol2-iss2

    Popis súboru: application/pdf

  10. 10
  11. 11
  12. 12
  13. 13
  14. 14
  15. 15
  16. 16

    Zdroj: Food systems; Vol 5, No 4 (2022); 353-360 ; Пищевые системы; Vol 5, No 4 (2022); 353-360 ; 2618-7272 ; 2618-9771 ; 10.21323/2618-9771-2022-5-4

    Popis súboru: application/pdf

    Relation: https://www.fsjour.com/jour/article/view/199/202; Gibson, G. R., Hutkins, R., Sanders, M. E., Prescott, S. L., Reimer, R. A., Salminen, S. J. et al. (2017). Expert consensus document: The International Scientific Association for Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of prebiotics. Nature Reviews Gastroenterology & Hepatology, 14, 491–502. https://doi.org/10.1038/nrgastro.2017.75; Oliveira, D. L., Wilbey, R. A., Grandison, A. S., Roseiro, L. B. (2015). Milk oligosaccharides: A review. International Journal Dairy Technology, 68(3), 305–321. https://doi.org/10.1111/1471–0307.12209; Meyrand, M., Dallas, D. C., Caillat, H., Bouvier, F., Martin, P., Barile, D. (2013) Comparison of milk oligosaccharides between goats with and without the genetic ability to synthesize αs1-casein. Small Ruminant Research, 113(2–3), 411–420. https://doi.org/10.1016/j.smallrumres.2013.03.014; Van Laere, K. M. J., Hartemink, R., Bosveld, M., Schols, H. A., Voragen, A. G. J. (2000). Fermentation of plant cell wall derived polysaccharides and their corresponding oligosaccharides by intestinal bacteria. Journal Agriculture Food Chemistry, 48(5), 1644–1652. https://doi.org/10.1021/jf990519i; Braga, A., Gomes, D., Rainha, J., Cardoso, B. B., Amorim, C., Silvério, S. C. et al. (2022). Tailoring fructooligosaccharides composition with engineered Zymomonas mobilis ZM4. Applied Microbiology and Biotechnology, 106(12), 4617–4626. https://doi.org/10.1007/s00253–022–12037–3; Carneiro, S. B., Duarte, F. I. C., Heimfarth, L., Quintans, J. S. S., Quintans-Júnior, L. J., da Veiga Júnior, V. F. (2019). Cyclodextrin–drug inclusion complexes: In vivo and In vitro approaches. International Journal of Molecular Sciences, 20(3), Article 642. https://doi.org/10.3390/ijms20030642; Ibrahim, O. O. (2018). Functional oligosaccharides: Chemicals structure, manufacturing, health benefits, applications and regulations. Journal of Food Chemistry & Nanotechnology, 4(4), 65–76. https://doi.org/10.17756/jfcn.2018–060; Teng, P.-Y., Kim, W. K. (2018). Review: Roles of prebiotics in intestinal ecosystem of broilers. Frontiers in Veterinary Science, 5, Article 245. https://doi.org/10.3389/fvets.2018.00245; Daniels, B., Coutsoudis, A., Autran, C., Mansen, K.A., Israel-Ballard, K., Bode, L. (2017). The effect of simulated flash heating pasteurisation and Holder pasteurisation on human milk oligosaccharides. Paediatrics and International Child Health, 37(3), 204–209. https://doi.org/10.1080/20469047.2017.1293869; González-Delgado I., López-Muñoz M.-J., Morales G., Segura Y. (2016). Optimisation of the synthesis of high galacto-oligosaccharides (GOS) from lactose with β-galactosidase from Kluyveromyces lactis. International Dairy Journal, 61, 211–219. https://doi.org/10.1016/j.idairyj.2016.06.007; Guimarães, J. T., Silva, E. K., Arruda, H. S., Freitas M. Q., Pastore G. M., Meireles M. A. A. et al. (2020). How does the degree of inulin polymerization affect the bioaccessibility of bioactive compounds from soursop whey beverage during in vitro gastrointestinal digestion? Food Hydrocolloids, 101, Article 105511. https://doi.org/10.1016/j.foodhyd.2019.105511; De Paulo Farias, D., de Araújo, F. F., Neri-Numa, I. A., Pastore, G. M. (2019). Prebiotics: Trends in food, health and technological applications. Trends in Food Science & Technology, 93, 23–35. https://doi.org/10.1016/j.tifs.2019.09.004; Leddomado, L. S., Silva, R., Guimarães, J. T., Balthazar, C. F., Ramos, G. L. P. A., Freitas, M. Q. et al. (2021). Technological benefits of using inulin and xylooligosaccharide in dulce de leche. Food Hydrocolloids, 110, Article 106158. https://doi.org/10.1016/j.foodhyd.2020.106158; Saad, N., Delattre, C., Urdaci, M., Schmitter, J. M., Bressollier, P. (2013). An overview of the last advances in probiotic and prebiotic field. LWT — Food Science and Technology, 50(1), 1–16. https://doi.org/10.1016/j.lwt.2012.05.014; Wilson, B., Whelan, K. (2017). Prebiotic inulin-type fructans and galactooligosaccharides: definition, specificity, function, and application in gastrointestinal disorders. Journal of Gastroenterology and Hepatology, 32(Suppl 1), 64–68. https://doi.org/10.1111/jgh.13700; Nieto-Domínguez, M., de Eugenio, L. I., York-Durán, M. J., Rodríguez-Colinas, B., Plou, F. J., Chenoll, E. et al. (2017). Prebiotic effect of xylooligosaccharides produced from birchwood xylan by a novel fungal GH11 xylanase. Food Chemistry, 232, 105–113. https://doi.org/10.1016/j.foodchem.2017.03.149; de Freitas, C., Terrone, C. C., Forsan, C. F., Milagres, A. M. F., Brienzo, M. (2022). Oligosaccharides from Lignocellulosic Biomass and Their Biological and Physicochemical Properties. Chapter in a book: Hemicellulose Biorefinery: A Sustainable Solution for Value Addition to Bio-Based Products and Bioenergy. Clean Energy Production Technologies. Springer, Singapore. https://doi.org/10.1007/978–981–16–3682–0_9; Closa-Monasterolo, R., Gispert-Llaurado, M., Luque, V., Ferre, N., Rubio-Torrents, C., Zaragoza-Jordana, M. et al. (2013). Safety and efficacy of inulin and oligofructose supplementation in infant formula: results from a randomized clinical trial. Clinical Nutrition, 32(6), 918–927. DOI:10.1016/j.clnu.2013.02.009; Mensink, M. A., Frijlink, H. W., van der Voort Maarschalk, K., Hinrichs, W. L. J. (2015). Inulin, a flexible oligosaccharide I: Review of its physicochemical characteristics. Carbohydrate Polymers, 130, 405–419. DOI:10.1016/j.carbpol.2015.05.02651; Babbar, N., Baldassarre, S., Maesen, M., Prandi, B., Dejonghe, W., Sforza, S. et al. (2016). Enzymatic production of pectic oligosaccharides from onion skins. Carbohydrate Polymers, 146, 245–252. https://doi.org/10.1016/j.carbpol.2016.03.011; Moreno, F. J., Corzo, N., Montilla, A., Villamiel, M., Olano, A. (2017). Current state and latest advances in the concept, production and functionality of prebiotic oligosaccharides. Current Opinion in Food Science, 13, 50–55. https://doi.org/10.1016/j.cofs.2017.02.009; Balthazar, C. F., Silva, H. L. A., Vieira, A. H., Neto, R. P. C., Cappato, L. P., Coimbra, P. T. et al. (2017). Assessing the effects of different prebiotic dietary oligosaccharides in sheep milk ice cream. Food Research International, 91, 38–46. https://doi.org/10.1016/j.foodres.2016.11.008; Singh, S. P., Jadaun, J. S., Narnoliya, L. K., Pandey, A. (2017). Prebiotic oligosaccharides: Special focus on fructooligosaccharides, Its biosynthesis and bioactivity. Applied Biochemistry and Biotechnology, 183(2), 613–635. https://doi.org/10.1007/s12010–017–2605–2; Sánchez-Martínez, M. J., Soto-Jover, S., Antolinos, V., Martínez-Hernández, G.B., López-Gómez, A. (2020). Manufacturing of short-chain fructooligosaccharides: From laboratory to industrial scale. Food Engineering Reviews, 12, 149–172. https://doi.org/10.1007/s12393–020–09209–0; Chanalia, P., Gandhi, D., Attri, P., Dhanda, S. (2018). Purification and characterization of β-galactosidase from probiotic Pediococcus acidilactici and its use in milk lactose hydrolysis and galactooligosaccharide synthesis. Bioorganic Chemistry, 77, 176–189. https://doi.org/10.1016/j.bioorg.2018.01.006; Sabater, C., Olano, A., Corzo, N., Montilla, A. (2019). GC–MS characterisation of novel artichoke (Cynara scolymus) pectic-oligosaccharides mixtures by the application of machine learning algorithms and competitive fragmentation modelling. Carbohydrate Polymers, 205, 513–523. https://doi.org/10.1016/j.carbpol.2018.10.054; Fehlbaum, S., Prudence, K., Kieboom, J., Heerikhuisen, M., van den Broek, T., Schuren, F. H. J. et al. (2018). In vitro fermentation of selected prebiotics and their effects on the composition and activity of the adult gut microbiota. International Journal of Molecular Sciences, 19(10), Article 3097. https://doi.org/10.3390/ijms19103097; Lin, S., Mao, S., Guan, Y., Luo, L., Luo, L., Pan, Y. (2012). Effects of dietary chitosan oligosaccharides and Bacillus coagulans on the growth, innate immunity and resistance of koi (Cyprinus carpio koi). Aquaculture, 342–343, 36–41. https://doi.org/10.1016/j.aquaculture.2012.02.009; den Ende, W. V. (2013). Multifunctional fructans and raffinose family oligosaccharides. Frontiers in Plant Science, 4, Article 247. https://doi.org/10.3389/fpls.2013.00247; Sengupta, S., Mukherjee, S., Basak, P., Majumder, A. L. (2015). Significance of galactinol and raffinose family oligosaccharide synthesis in plants. Frontiers in Plant Science, 6, Article 656. https://doi.org/10.3389/fpls.2015.00656; Davis, J. C. C., Lewis, Z. T., Krishnan, S., Bernstein, R. M., Moore, S. E., Prentice A. M. et al. (2017). Growth and morbidity of gambian infants are influenced by maternal milk oligosaccharides and infant gut microbiota. Scientific Reports, 7, Article 40466. https://doi.org/10.1038/srep40466; Bych, K., Mikš, M. H., Johanson, T., Hederos, M. J., Vigsnaes, L. K., Becker, P. (2019). Production of HMOs using microbial hosts — from cell engineering to large scale production. Current Opinion in Biotechnology, 56, 130–137. https://doi.org/10.1016/j.copbio.2018.11.003; Weinborn, V., Li, Y., Shah, I. M., Yu, H., Dallas, D. C., German, J. B. et al. (2020). Production of functional mimics of human milk oligosaccharides by enzymatic glycosylation of bovine milk oligosaccharides. International Dairy Journal, 102, Article 104583. https://doi.org/10.1016/j.idairyj.2019.104583; Bering, S. B. (2018). Human milk oligosaccharides to prevent gut dysfunction and necrotizing enterocolitis in preterm neonates. Nutrients, 10(10), Article 1461. https://doi.org/10.3390/nu10101461; Blanco-Morales, V., López-García, G., Cilla, A., Garcia-Llatas, G., Barberá, R., Lagarda, M. J. et al. (2018). The impact of galactooligosaccharides on the bioaccessibility of sterols in a plant sterol-enriched beverage: adaptation of the harmonized INFOGEST digestion method. Food & Function, 9(4), 2080–2089. https://doi.org/10.1039/c8fo00155c; Lin, H., Li, S., Xu, C., Pang, M., Wang, S. (2018). Simultaneous determination of galactose, glucose, lactose and galactooligosaccharides in galactooligosaccharides raw materials by high-performance anion-exchange chromatography with pulsed amperometric detection. Food Chemistry, 263, 29–36. https://doi.org/10.1016/j.foodchem.2018.04.092; Zhuang, D., Qin, J., Wang, H.-Y., Zhang, Y., Liu, C.-Y., Ding, Q.-Q. et al. (2019). Oligosaccharide-based quality evaluation of Atractylodis rhizome and a strategy for simplifying its quality control. BMC Chemistry, 13(1), Article 92. https://doi.org/10.1186/s13065–019–0605–8; Li, F., Wang, H., Xin, H., Cai, J., Fu, Q., Jin, Y. (2016). Development, validation and application of a hydrophilic interaction liquid chromatography-evaporative light scattering detection based method for process control of hydrolysis of xylans obtained from different agricultural wastes. Food Chemistry, 212, 155–161. https://doi.org/10.1016/j.foodchem.2016.05.118; Rodríguez-Gómez, R., Jiménez-Díaz, I., Zafra-Gómez, A., Morales, J.C. (2015). Improved sample treatment for the determination of fructooligosaccharides in milk related products by liquid chromatography with electrochemical and refractive index detection. Talanta, 144, 883–889. https://doi.org/10.1016/j.talanta.2015.07.042; Alfonso-Muniozguren, P., Serna-Galvis, E. A., Bussemaker, M., Torres-Palma, R. A., Lee, J. (2021). A review on pharmaceuticals removal from waters by single and combined biological, membrane filtration and ultra-sound systems. Ultrasonics Sonochemistry, 76, Article 105656. https://doi.org/10.1016/j.ultsonch.2021.105656; Sousa, Y. R. F., Araújo, D. F. S., Pulido, J. O., Pintado, M. M. E., Martínez-Férez, A., Queiroga, R. C. R. E. (2019). Composition and isolation of goat cheese whey oligosaccharides by membrane technology. International Journal of Biological Macromolecules, 139, 57–62. https://doi.org/10.1016/j.ijbiomac.2019.07.181; Zaky, A. S., Pensupa, N., Andrade-Eiroa, Á., Tucker, G. A., Du, C. (2017). A new HPLC method for simultaneously measuring chloride, sugars, organic acids and alcohols in food samples. Journal of Food Composition and Analysis, 56, 25–33. https://doi.org/10.1016/j.jfca.2016.12.010; Wang, R., Chen, Z. (2017). A covalent organic framework-based magnetic sorbent for solid phase extraction of polycyclic aromatic hydrocarbons, and its hyphenation to HPLC for quantitation. Microchimica Acta, 184, 3867–3874. https://doi.org/10.1007/s00604–017–2408–8; Galant, A. L., Kaufman, R. C., Wilson, J. D. (2015). Glucose: Detection and analysis. Food Chemistry, 188, 149–160. https://doi.org/10.1016/j.foodchem.2015.04.071; Hu, L.-J., Li, X.-F., Hu, J.-Q., Ni, X.-J., Lu, H.-Y., Wang, J.-J. et al. (2017). A Simple HPLC–MS/MS method for determination of tryptophan, kynurenine and kynurenic acid in human serum and its potential for monitoring antidepressant therapy. Journal of Analytical Toxicology, 41(1), 37–44. https://doi.org/10.1093/jat/bkw071; Christensen, A. S., Skov, S. H., Lendal, S. E., Hornshøj, B. H. (2020). Quantifying the human milk oligosaccharides 2’-fucosyllactose and 3-fucosyllactose in different food applications by high-performance liquid chromatography with refractive index detection. Journal of Food Science, 85(2), 332–339. https://doi.org/10.1111/1750–3841.15005; Jalaludin, I., Kim, J. (2021). Comparison of ultraviolet and refractive index detections in the HPLC analysis of sugars. Food Chemistry, 365, Article 130514. https://doi.org/10.1016/j.foodchem.2021.130514; Downes, K., Terry, L. A. (2010). A new acetonitrile-free mobile phase method for LC–ELSD quantification of fructooligosaccharides in onion. Talanta, 82(1), 118–124. https://doi.org/10.1016/j.talanta.2010.04.003; Hao, Q., Nan, T., Zhou, L., Kang, L., Guo, L., Yu, Y. (2019). Rapid simultaneous quantification of fructooligosaccharides in Morinda officianalis by ultra-high performance liquid chromatography. Journal of Separation Science, 42(13), 2222–2223. https://doi.org/10.1002/jssc.201801287; Charoenwongpaiboon, T., Sitthiyotha, T., Na Ayutthaya, P. P., Wangpaiboon, K., Chunsrivirot, S., Prousoontorn, M. H. et al. (2019). Modulation of fructooligosaccharide chain length and insight into the product binding motif of Lactobacillus reuteri 121 inulosucrase. Carbohydrate Polymers, 209, 111–121. https://doi.org/10.1016/j.carbpol.2018.12.078; Cürten, C., Anders, N., Juchem, N., Ihling, N., Volkenborn, K., Knapp, A. et al. (2017). Fast automated online xylanase activity assay using HPAEC-PAD. Analytical and Bioanalytical Chemistry, 410, 57–69. https://doi.org/10/1007/s00216–017–0712–0; Castells, C. B., Arias, V. C., Castells, R. C. (2012). Precolumn derivatization of reducing carbohydrates with 4-(3-Methyl-5-oxo-2-pyrazolin-1-yl) benzoic acid. Study of reaction, high-performance liquid chromatographic separation and quantitative performance of method. Chromatographia, 56(3–4), Article 153. https://doi.org/10.1007/BF02493204; Kurzyna-Szklarek, M., Cybulska, J., Zdunek, A. (2022). Analysis of the chemical composition of natural carbohydrates — An overview of methods. Food Chemistry, 394, Article 133466. https://doi.org/10.1016/j.foodchem.2022.133466; Lee, H., Cuthbertson, D. J., Otter, D. E., Barile, D. (2016). Rapid screening of bovine milk oligosaccharides in a whey permeate product and domestic animal milks by accurate mass database and tandem mass spectral library. Journal Agriculture Food Chemistry, 64(32), 6364–6374; Kailemia, M. J., Ruhaak, L. R., Lebrilla, C. B., Amster, I. J. (2014). Oligosaccharide analysis by mass spectrometry: A review of recent developments. Analytical Chemistry, 86(1), 196–212. https://doi.org/10.1021/ac403969n; Wang, J., Zhao, J., Nie, S., Xie, M., Li, S. (2022). MALDI mass spectrometry in food carbohydrates analysis: A review of recent researches. Food Chemistry, 399, Article 133968. https://doi.org/10.1016/j.foodchem.2022.133968; Qu, L., Jiang, Y., Huang, X., Cui, M., Ning, F., Liu, T. et al. (2019). High-throughput monitoring of multiclass syrup adulterants in honey based on the oligosaccharide and polysaccharide profiles by MALDI mass spectrometry. Journal of Agricultural and Food Chemistry, 67(40), 11256–11261. https://doi.org/10.1021/acs.jafc.9b05317; Sabater, C., Prodanov, M., Olano, A., Corzo, N., Montilla, A. (2016). Quantification of prebiotics in commercial infant formulas. Food Chemistry, 194, 6–11. https://doi.org/10.1016/j.foodchem.2015.07.127; Hiltunen, S., Sirén, H., Heiskanen, I., Backfolk, K. (2016). Capillary electrophoretic profiling of wood-based oligosaccharides. Cellulose, 23, 3331–3340. https://doi.org/10.1007/s10570–016–1011–1; https://www.fsjour.com/jour/article/view/199

  17. 17
  18. 18
  19. 19
  20. 20

    Prispievatelia: A. Y. Mikheeva A. G. Budko A. I. Krylov a ďalší

    Zdroj: Measurement Standards. Reference Materials; Том 18, № 3 (2022); 41-55 ; Эталоны. Стандартные образцы; Том 18, № 3 (2022); 41-55

    Popis súboru: application/pdf

    Relation: https://www.rmjournal.ru/jour/article/view/369/269; An approach to the metrologically sound traceable assessment of the chemical purity of organic reference materials / D. L. Duewer [et al.] // NIST Special Publication. 2004. Vol. 1012. 55 p.; Mass balance method for the SI value assignment of the purity of organic compounds / S. Westwood // Analytical Chemistry. 2013. Vol. 85. P. 3118–3126. http://dx.doi.org/10.1021/ac303329k; Михеева А. Ю., Крылов А. И., Будко А. Г. Алгоритм определения чистоты органических веществ, пригодных к выделению или очистке методом перегонки // Эталоны. Стандартные образцы. 2022. Т. 18, № 2. С. 5–18. https://doi.org/10.20915/2077-1177-2022-18-2-5-18; Барштейн Р. С., Кирилович В. И., Носовский Ю. Е. Пластификаторы для полимеров. М.: Химия, 1982. 200 с.; Лакеев С. Н., Майданова И. О., Ишалина О. В. Основы производства пластификаторов: учебное пособие. Уфа: УГНТУ, 2015.163 с.; Корнеева Г. А. Пластификаторы ПВХ: технологии и рынок. Текст : электронный // Новые химические технологии : аналитический портал химической технологии: официальный сайт. URL: https://www.newchemistry.ru/letter.php?n_id=1265 (дата обращения: 01.06.2022).; Mass balance method for purity assay of phthalic acid esters: Development of primary reference materials as traceability sources in the Japan Calibration Service System / K. Ishikawa [et all.] // Accreditation and Quality Assurance. 2011. Vol. 16. P. 311–322. https://doi.org/10.1007/s00769-011-0767-0; Крылов А. И., Михеева А. Ю., Будко А. Г., Ткаченко И. Ю. Метрологическое обеспечение измерений содержания фталатов: стандартный образец состава раствора шести приоритетных фталатов в метаноле. Эталоны. Стандартные образцы. № 2021. Т. 17, № 3. С. 5–19. https://doi.org/10.20915/2687-0886-2021-17-3-5-19; https://www.rmjournal.ru/jour/article/view/369