Search Results - "Тянь-Шань"
-
1
Authors: et al.
Source: Turczaninowia; Том 28 № 2 (2025): Turczaninowia; 202-235
Turczaninowia; Vol 28 No 2 (2025): Turczaninowia; 202-235Subject Terms: mountainous Middle Asia, карта распространения, elevational distribution, конспект, вертикальное распространение, flora, distribution map, ботаническая география, species richness, Western Tian Shan, остролодочник, biodiversity, эндемичные виды, Западный Тянь-Шань, locoweed, phytogeography, endemic species, видовое богатство, флора, горная Средняя Азия, Памиро-Алай, grid mapping, биоразнообразие, Pamir-Alay, сеточное картирование, checklist
File Description: application/pdf
Access URL: https://turczaninowia.asu.ru/article/view/17526
-
2
Source: Turczaninowia; Том 28 № 3 (2025): Turczaninowia; 182–190
Turczaninowia; Vol 28 No 3 (2025): Turczaninowia; 182–190Subject Terms: Middle Asia, floristic findings, Salicaceae, распространение, Tian Shan, Fabaceae, Pamir-Alai, Plantaginaceae, Памиро-Алай, Кыргызстан, Kazakhstan, флористические находки, Brassicaceae, distribution, Средняя Азия, Kyrgyzstan, Казахстан, Rosaceae, Primulaceae, Тянь-Шань
File Description: application/pdf
Access URL: https://turczaninowia.asu.ru/article/view/18028
-
3
Source: Turczaninowia; Том 28 № 3 (2025): Turczaninowia; 88–95
Turczaninowia; Vol 28 No 3 (2025): Turczaninowia; 88–95File Description: application/pdf
Access URL: https://turczaninowia.asu.ru/article/view/18003
-
4
-
5
-
6
Source: ГЕОФИЗИКА. :45-50
-
7
Source: Hydrosphere. Hazard processes and phenomena; Vol. 4 No. 3: Hydrosphere. Hazard processes and phenomena; 267-275
Гидросфера. Опасные процессы и явления; Том 4 № 3: Гидросфера. Опасные процессы и явления; 267-275Subject Terms: snow cover depth maps, Западный Тянь-Шань, Узбекистан, indicative climate characteristics, лавинная опасность, Uzbekistan, 15. Life on land, изменение климата, карты высоты снега, лавинно-индикационные показатели, снеголавинный режим, climate change, 13. Climate action, avalanche hazard, snow avalanche regime, Western Tian Shan
-
8
Authors: Mikhailov, Yu. E.
Source: Russian Entomological Journal
Российский энтомологический журнал
Euroasian Entomological JournalSubject Terms: ВИДОВАЯ ГРУППА, CHRYSOMELIDAE, ЖУКИ-ЛИСТОЕДЫ, НОВЫЙ ВИД, ТЯНЬ-ШАНЬ, GROUP, SPECIES GROUP, TIEN-SHAN, CHALCOIDEA, SPECIES, EAST KAZAKHSTAN, CHRYSOLINA, ВОСТОЧНЫЙ КАЗАХСТАН, NEW SPECIES
File Description: application/pdf
-
9
Authors: Rudolf V. Kamelin
Source: Turczaninowia; Том 24 № 4 (2021): Turczaninowia; 5-11
Turczaninowia; Vol 24 No 4 (2021): Turczaninowia; 5-11Subject Terms: Middle Asia, endemics, Центральная Азия, флористическое районирование, Туран, флора, 15. Life on land, Tien Shan, Устюрт, flora, floristic division, Turan, Central Asia, Памир, Ustyurt, эндемики, Древнее Средиземье, Ancient Mediterranean, Средняя Азия, Pamir, Тянь-Шань
File Description: application/pdf
-
10
Authors:
Source: Turczaninowia; Том 24 № 1 (2021): Turczaninowia; 21-24
Turczaninowia; Vol 24 No 1 (2021): Turczaninowia; 21-24Subject Terms: 2. Zero hunger, ареал, плотность популяции, area, 15. Life on land, 16. Peace & justice, Северный Тянь-Шань, адвентивный вид, vegetative and generative individuals, 14. Life underwater, вегетативные и генеративные особи, Northern Tian Shan, adventive species, species density
File Description: application/pdf
-
11
Authors:
Source: Turczaninowia, Vol 25, Iss 1, Pp 190-215 (2022)
Subject Terms: гаплотипы, западный тянь-шань, таксономия, узбекистан, allium motor, allium tschimganicum, allium subgen, melanocrommyum, Botany, QK1-989
File Description: electronic resource
-
12
Authors: et al.
Source: Turczaninowia, Vol 24, Iss 3, Pp 163-170 (2021)
Subject Terms: микофильный гриб, мукоровый гриб, облигатный паразит, ризосфера, северный тянь-шань, Botany, QK1-989
File Description: electronic resource
-
13
Authors: et al.
Contributors: et al.
Source: Geodynamics & Tectonophysics; Том 14, № 6 (2023); 0731 ; Геодинамика и тектонофизика; Том 14, № 6 (2023); 0731 ; 2078-502X
Subject Terms: геодинамика, delamination, seismic tomography, Caucasus, Tien-Shan, Eastern Anatolia Region, Arabian-Eurasian collision, geodynamics, деламинация, сейсмическая томография, Кавказ, Тянь-Шань, Восточная Анатолия, Аравийско-Евразийская коллизия
File Description: application/pdf
Relation: https://www.gt-crust.ru/jour/article/view/1761/790; Acton C.E., Priestley K., Gaur V.K., Rai S.S., 2010. Group Velocity Tomography of the Indo‐Eurasian Collision Zone // Journal of Geophysical Research: Solid Earth 115 (B12), B12335. https://doi.org/10.1029/2009JB007021.; Adamia Sh., Alania V., Chabukiani A., Kutelia Z., Sadraze N., 2011. Great Caucasus (Cavcasioni): A Longlived North Tethyan Back-Arc Basin. Turkish Journal of Earth Sciences 20 (5), 611–628. https://doi.org/10.3906/yer-1005-12.; Aminov J., Koulakov I., Jakovlev A., Zhao J., El-Khrepy S., Aminov J., Al Arifi N., Aminov J., Mamadjanov Y., 2020. Directions of Lithosphere Interactions in the Pamir–Hindu Kush Junction Inferred from Anisotropic Tomography. Canadian Journal of Earth Sciences 57 (5), 601–616. https://doi.org/10.1139/cjes-2019-0081.; Austrheim H., 1991. Eclogite Formation and Dynamics of Crustal Roots under Continental Collision Zones. Terra Nova 3 (5), 492–499. https://doi.org/10.1111/j.1365-3121.1991.tb00184.x.; Avagyan A., Sosson M., Karakhanian A., Philip H., Rebai S., Rolland Y., Melkonyan R., Davtyan V., 2010. Recent Tectonic Stress Evolution in the Lesser Caucasus and Adjacent Regions. Geological Society of London Special Publications 340 (1), 393–408. https://doi.org/10.1144/SP340.17.; Bijwaard H., Spakman W., Engdahl E.R., 1998. Closing the Gap between Regional and Global Travel Time Tomography. Journal of Geophysical Research: Solid Earth 103 (B12), 30055–30078. https://doi.org/10.1029/98JB02467.; Bird P., 1988. Formation of the Rocky Mountains, Western United States: A Continuum Computer Model. Science 239 (4847), 1501–1507. https://doi.org/10.1126/science.239.4847.1501.; Bird P., 1991. Lateral Extrusion of Lower Crust from under High Topography in the Isostatic Limit. Journal of Geophysical Research: Solid Earth 96 (B6), 10275–10286. https://doi.org/10.1029/91JB00370.; Bird P., Baumgardner J., 1981. Steady Propagation of Delamination Events. Journal of Geophysical Research: Solid Earth 86 (B6), 4891–4903. https://doi.org/10.1029/JB086iB06p04891.; Biske Yu.S., 1996. Paleozoic Structure and History of the Southern Tien Shan. Saint Petersburg University Press, Saint Petersburg, 189 p. (in Russian) [Бискэ Ю.С. Палеозойская структура и история Южного Тянь-Шаня. СПб.: Изд-во СПбГУ, 1996. 189 с.].; Biske Yu.S., Konopelko D.L., Seltmann R., 2013. Geodynamics of Late Paleozoic Magmatism in the Tien Shan and Its Framework. Geotectonics 47, 291–309. https://doi.org/10.1134/S001685211304002X.; Biske Yu.S., Seltmann R., 2010. Paleozoic Tian-Shan as a Transitional Region between the Rheic and Urals-Turkestan Oceans. Gondwana Research 17 (2–3), 602–613. https://doi.org/10.1016/j.gr.2009.11.014.; Burov E., Cloetingh S., 2009. Controls of Mantle Plumes and Lithospheric Folding on Modes of Intraplate Continental Tectonics: Differences and Similarities. Geophysical Journal International 178 (3), 1691–1722. https://doi.org/10.1111/j.1365-246X.2009.04238.x.; Burov E., Cloetingh S., 2010. Plume-like Upper Mantle Instabilities Drive Subduction Initiation. Geophysical Research Letters 37 (3), L03309. https://doi.org/10.1029/2009GL041535.; Burtman V.S., 2012. Tien Shan and High Asia: Geodynamics in the Cenozoic. GEOS, Moscow, 186 p. (in Russian) [Буртман В.С. Тянь-Шань и Высокая Азия: Геодинамика в кайнозое. М.: ГЕОС, 2012. 186 с.].; Буслов М.М. Террейновая тектоника Центрально-Азиатского складчатого пояса // Геодинамика и тектонофизика. 2014. Т. 5. № 3. С. 641–665. https://doi.org/10.5800/GT-2014-5-3-0147.; Cloetingh S., Koptev A., Kovács I., Gerya T., Beniest A., Willingshofer E., Ehlers T.A., Andrić-Tomašević N., et al., 2021. Plume-Induced Sinking of Intra-Continental Lithospheric Mantle: An Overlooked Mechanism of Subduction Initiation? Geochemistry, Geophysics, Geosystems 22 (2), e2020 GC009482. https://doi.org/10.1029/2020GC009482.; Cochran J.R., 1983. A Model for Development of Red Sea. AAPG Bulletin 67 (1), 41–69. https://doi.org/10.1306/03B5ACBE-16D1-11D7-8645000102C1865D.; Cowgill E., Forte A.M., Niemi N., Avdeev B., Tye A., Trexler C., Javakhishvili Z., Elashvili M., Godoladze T., 2016. Relict Basin Closure and Crustal Shortening Budgets during Continental Collision: An Example from Caucasus Sediment Provenance. Tectonics 35 (12), 2918–2947. https://doi.org/10.1002/2016TC004295.; Dewey J.F., Shackleton R.M., Chengfa C., Yiyin S., 1988. The Tectonic Evolution of the Tibetan Plateau. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 327 (1594), 379–413. https://doi.org/10.1098/rsta.1988.0135.; England P., Houseman G., 1989. Extension during Continental Convergence, with Application to the Tibetan Plateau. Journal of Geophysical Research: Solid Earth 94 (B12), 17561–17579. https://doi.org/10.1029/JB094iB12p17561.; Ershov A.V., Nikishin A.M., 2004. Recent Geodynamics of the Caucasus-Arabia-East Africa Region. Geotectonics 38 (2), 123–136.; Faccenda M., Minelli G., Gerya T.V., 2009. Coupled and Decoupled Regimes of Continental Collision: Numerical Modeling. Earth and Planetary Science Letters 278 (3–4), 337–349. https://doi.org/10.1016/j.epsl.2008.12.021.; Гонгадзе С.А. Глубинное строение Большого Кавказа на основе геофизических данных по новым технологиям. Ч. 1. Гравиметрия, магнитометрия, локальная сейсмотомография и микросейсмозондирование // Геофизический журнал. 2016. Т. 38. № 3. С. 145–154. DOI:10.24028/gzh.0203-3100.v38i3.2016.107789.; Gök R., Mellors R.J., Sandvol E., Pasyanos M., Hauk T., Takedatsu R., Yetirmishli G., Teoman U., Turkelli N., Godoladze T., Javakishvirli Z., 2011. Lithospheric Velocity Structure of the Anatolian Plateau‐Caucasus‐Caspian Region. Journal of Geophysical Research: Solid Earth 116 (B5), B05303. https://doi.org/10.1029/2009JB000837.; Gray R., Pysklywec R.N., 2012. Geodynamic Models of Mature Continental Collision: Evolution of an Orogen from Lithospheric Subduction to Continental Retreat/Delamination. Journal of Geophysical Research: Solid Earth 117 (B3), B03408. https://doi.org/10.1029/2011JB008692.; Houseman G.A., McKenzie D.P., Molnar P., 1981. Convective Instability of a Thickened Boundary Layer and Its Relevance for the Thermal Evolution of Continental Convergent Belts. Journal of Geophysical Research: Solid Earth 86 (B7), 6115–6132. https://doi.org/10.1029/JB086iB07p06115.; Kaban M.K., Petrunin A.G., El Khrepy S., Al-Arifi N., 2018. Diverse Continental Subduction Scenarios along the Arabia-Eurasia Collision Zone. Geophysical Research Letters 45 (14), 6898–6906. https://doi.org/10.1029/2018GL078074.; Kahle H.G., Cocard M., Peter Y., Geiger A., Reilinger R., Barka A., Veis G., 2000. GPS‐Derived Strain Rate Field within the Boundary Zones of the Eurasian, African, and Arabian Plates. Journal of Geophysical Research: Solid Earth 105 (B10), 23353–23370. https://doi.org/10.1029/2000JB900238.; Kay R.W., Kay S.M., 1993. Delamination and Delamination Magmatism. Tectonophysics 219 (1–3), 177–189. https://doi.org/10.1016/0040-1951(93)90295-U.; Kennett B.L.N., Engdahl E.R., Buland R., 1995. Constraints on Seismic Velocities in the Earth from Traveltimes. Geophysical Journal International 122 (1), 108–124. https://doi.org/10.1111/j.1365-246X.1995.tb03540.x.; Keskin M., 2007. Eastern Anatolia: A Hotspot in a Collision Zone without a Mantle Plume. In: G.R. Foulger, D.M. Jurdy (Eds), Plates, Plumes and Planetary Processes. Special Papers-Geological Society of America 430, 693. https://doi.org/10.1130/2007.2430(32).; Киселев А.И., Гордиенко И.В., Лашкевич В.В. Петрологические аспекты гравитационной нестабильности тектонически утолщенной литосферы // Тихоокеанская геология. 2004. Т. 23. № 2. С. 20–29.; Koulakov I., 2009. LOTOS Code for Local Earthquake Tomographic Inversion: Benchmarks for Testing Tomographic Algorithms. Bulletin of the Seismological Society of America 99 (1), 194–214. http://doi.org/10.1785/0120080013.; Koulakov I., 2011. High‐Frequency P and S Velocity Anomalies in the Upper Mantle beneath Asia from Inversion of Worldwide Traveltime Data. Journal of Geophysical Research: Solid Earth 116 (B4), B04301. https://doi.org/10.1029/2010JB007938.; Koulakov I., Zabelina I., Amanatashvili I., Meskhia V., 2012. Nature of Orogenesis and Volcanism in the Caucasus Region Based on Results of Regional Tomography. Solid Earth 3 (2), 327–337. http://doi.org/10.5194/se-3-327-2012.; Коваленко В.И., Ярмолюк В.В., Богатиков О.А. Новейший вулканизм Северной Евразии: закономерности развития, вулканическая опасность, связь с глубинными процессами и изменениями природной среды и климата // Изменение окружающей среды и климата: природные и связанные с ними техногенные катастрофы. М.: ИГЕМ РАН, ИФЗ РАН, 2008. Т. 2. С. 13–236.; Kufner S.K., Kakar N., Bezada M., Bloch W., Metzger S., Yuan X., Mechie J., Ratschbacher L. et al., 2021. The Hindu Kush Slab Break-Off as Revealed by Deep Structure and Crustal Deformation. Nature Communications 12, 1685. https://doi.org/10.1038/s41467-021-21760-w.; Legendre C., Tseng T., Chen Y., Huang T., Gung Y., Karakhanyan A., Huang B., 2017. Complex Deformation in the Caucasus Region Revealed by Ambient Noise Seismic Tomography. Tectonophysics 712–713, 208–220. https://doi.org/10.1016/j.tecto.2017.05.024.; Lei J., Zhao D., 2007а. Teleseismic Evidence for a BreakOff Subducting Slab under Eastern Turkey. Earth and Planetary Science Letters 257 (1–2), 14–28. https://doi.org/10.1016/j.epsl.2007.02.011.; Lei J., Zhao D., 2007b. Teleseismic P-Wave Tomography and the Upper Mantle Structure of the Central Tien Shan Orogenic Belt. Physics of the Earth and Planetary Interiors 162 (3–4), 165–185. https://doi.org/10.1016/j.pepi.2007.04.010.; Maggi A., Priestley K., 2005. Surface Waveform Tomography of the Turkish-Iranian Plateau. Geophysical Journal International 160 (3), 1068–1080. https://doi.org/10.1111/j.1365-246X.2005.02505.x.; Makarov V.I., Alekseev D.V., Batalev V.Yu., Bataleva E.A., Belyaev I.V., Bragin V.D., Dergunov N.T., Efimova N.N. et al., 2010. Underthrusting of Tarim beneath the Tien Shan and Deep Structure of Their Junction Zone: Main Results of Seismic Experiment along MANAS Profile Kashgar-Song-Köl. Geotectonics 44, 102–126. https://doi.org/10.1134/S0016852110020020.; McClusky S., Balassanian S., Barka A., Demir C., Ergintav S., Georgiev I., Gürkan O., Hamburger M. et al., 2000. Global Positioning System Constraints on Plate Kinematics and Dynamics in the Eastern Mediterranean and Caucasus. Journal of Geophysical Research 105 (В3), 5695–5719. https://doi.org/10.1029/1999JB900351.; Medved I., Bataleva E., Buslov M., 2021a. Studying the Depth Structure of the Kyrgyz Tien Shan by Using the Seismic Tomography and Magnetotelluric Sounding Methods. Geosciences 11 (3), 122. https://doi.org/10.3390/geosciences11030122.; Medved I., Polat G., Koulakov I., 2021b. Crustal Structure of the Eastern Anatolia Region (Turkey) Based on Seismic Tomography. Geosciences 11 (2), 91. https://doi.org/10.3390/geosciences11020091.; Özacar A.A., Zandt G., Gilbert H., Beck S.L., 2010. Seismic Images of Crustal Variations beneath the East Anatolian Plateau (Turkey) from Teleseismic Receiver Functions. In: M. Sosson, N. Kaymakci, R.A. Stephenson, F. Bergerat, V. Starostenko (Eds), Sedimentary Basin Tectonics from the Black Sea and Caucasus to the Arabian Platform. Geological Society of London Special Publications 340, p. 485–496. https://doi.org/10.1144/SP340.21.; Pavlenkova G.A., 2012. Crustal Structure of the Caucasus from the Stepnoe-Bakuriani and Volgograd-Nakhichevan DSS Profiles (Reinterpretation of the Primary Data). Izvestiya, Physics of the Solid Earth 48 (5), 375–384. https://doi.org/10.1134/S1069351312040040.; Piromallo C., Morelli A., 2003. P Wave Tomography of the Mantle under the Alpine‐Mediterranean Area. Journal of Geophysical Research: Solid Earth 108 (B2), 2065. https://doi.org/10.1029/2002JB001757.; Qin K.Z., Su B.X., Asamoah S.P., Tang D.M., Sun H., Xiao Q.H., Liu P.P., 2011. SIMS Zircon U-Pb Geochronology and Sr-Nd Isotopes of Ni-Cu-Bearing Mafic-Ultramafic Intrusions in Eastern Tianshan and Beishan in Correlation with Flood Basalts in Tarim Basin (NW China): Constraints on a CA 280 Ma Mantle Plume. American Journal of Science 311, 237–260. https://doi.org/10.2475/03.2011.03.; Roecker S.W., Sabitova T.M., Vinnik L.P., Burmakov Y.A., Golvanov M.I., Mamatkanova R., Munirova L., 1993. Three‐Dimensional Elastic Wave Velocity Structure of the Western and Central Tien Shan. Journal of Geophysical Research: Solid Earth 98 (B9), 15779–15795. https://doi.org/10.1029/93JB01560.; Rolland Y., 2017. Caucasus Collisional History: Review of Data from East Anatolia to West Iran. Gondwana Research 49, 130–146. https://doi.org/10.1016/j.gr.2017.05.005.; Safonova I., Kotlyarov A., Krivonogov S., Xiao W., 2017. Intra-Oceanic Arcs of the Paleo-Asian Ocean. Gondwana Research 50, 167–194. https://doi.org/10.1016/j.gr.2017.04.005.; Safonova I., Seltmann R., Kroner A., Gladkochub D., Schulmann K., Xiao W., Kim J., Komiya T., Sun M., 2011. A New Concept of Continental Construction in the Central Asian Orogenic Belt. Episodes 34 (3), 186–196. https://doi.org/10.18814/epiiugs/2011/v34i3/005.; Schmeling H., Marquart G., 1991. The Influence of Second-Scale Convection on the Thickness of Continental Lithosphere and Crust. Tectonophysics 189 (1–4), 281–306. https://doi.org/10.1016/0040-1951(91)90502-J.; Şengör A.M.C., Kidd W.S.F., 1979. Post-Collisional Tectonics of the Turkish-Iranian Plateau and a Comparison with Tibet. Tectonophysics 55 (3–4), 361–376. https://doi.org/10.1016/0040-1951(79)90184-7.; Şengör A.C., Özeren M.S., Keskin M., Sakınç M., Özbakır A.D., Kayan I., 2008. Eastern Turkish High Plateau as a Small Turkic-Type Orogen: Implications for Post-Collisional Crust-Forming Processes in Turkic-Type Orogens. Earth-Science Reviews 90 (1–2), 1–48. https://doi.org/10.1016/j.earscirev.2008.05.002.; Sharkov E., Lebedev V., Chugaev A., Zabarinskaya L., Rodnikov A., Sergeeva N., Safonova I., 2015. The Caucasian-Arabian Segment of the Alpine-Himalayan Collisional Belt: Geology, Volcanism and Neotectonics. Geoscience Frontiers 6 (4), 513–522. https://doi.org/10.1016/j.gsf.2014.07.001.; Sychev I.V., Koulakov I., Sycheva N.A., Koptev A., Medved I., El Khrepy S., Al‐Arifi N., 2018. Collisional Processes in the Crust of the Northern Tien Shan Inferred from Velocity and Attenuation Tomography Studies. Journal of Geophysical Research: Solid Earth 123 (2), 1752–1769. https://doi.org/10.1002/2017JB014826.; Toussaint G., Burov E., Avouac J.P., 2004. Tectonic Evolution of a Continental Collision Zone: A Thermomechanical Numerical Model. Tectonics 23 (6), TC6003. https://doi.org/10.1029/2003TC001604.; Vinnik L., Reigber Ch., Aleshin I., Kosarev G., Kaban M., Oreshin S., Roecker S., 2004. Receiver Function Tomography of the Central Tien Shan. Earth and Planetary Science Letters 225 (1–2), 131–146. https://doi.org/10.1016/j.epsl.2004.05.039.; Xiao W.J., Sun M., Santosh M., 2015. Continental Reconstruction and Metallogeny of the Circum-Junggar Areas and Termination of the Southern Central Asian Orogenic Belt. Geoscience Frontiers 6 (2), 137–140. https://doi.org/10.1016/j.gsf.2014.11.003.; Yu X., Yang S.F., Chen H.L., Chen Z.Q., Li Z.L., Batt G.E., Li Y.Q., 2011. Permian Flood Basalts from the Tarim Basin, Northwest China: Shrimp Zircon U-Pb Dating and Geochemical Characteristics. Gondwana Research 20 (2–3), 485–497. https://doi.org/10.1016/j.gr.2010.11.009.; Yu Y., Zhao D., Lei J., 2017. Mantle Transition Zone Discontinuities beneath the Tien Shan. Geophysical Journal International 211 (1), 80–92. https://doi.org/10.1093/gji/ggx287.; Zabelina I., Koulakov I., Amanatashvili I., Khrepy S., Nassir A., 2016. Seismic Structure of the Crust and Uppermost Mantle beneath Caucasus Based on Regional Earthquake Tomography. Journal of Asian Earth Sciences 119, 87–99. https://doi.org/10.1016/j.jseaes.2016.01.010.; Zabelina I., Koulakov I., Buslov M., 2013. Deep Mechanisms in the Kyrgyz Tien Shan Orogen (from Results of Seismic Tomography). Russian Geology and Geophysics 54 (7), 695–706. https://doi.org/10.1016/j.rgg.2013.06.005.; Zor E., Sandvol E., Gürbüz C., Türkelli N., Seber D., Barazangi M., 2003. The Crustal Structure of the East Anatolian Plateau (Turkey) from Receiver Functions. Geophysical Research Letters 30 (24), 8044. https://doi.org/10.1029/2003GL018192.; Zubovich A.V., Wang X., Scherba Y.G., Schelochkov G.G., Reilinger R., Reigber C., Mosienko O.I., Molnar P. et al., 2010. GPS Velocity Field for the Tien Shan and Surrounding Regions. Tectonics 29 (6), TC6014. https://doi.org/10.1029/2010TC002772.
-
14
Authors:
Source: Hydrosphere. Hazard processes and phenomena; Vol. 4 No. 3: Hydrosphere. Hazard processes and phenomena; 267-275 ; Гидросфера. Опасные процессы и явления; Том 4 № 3: Гидросфера. Опасные процессы и явления; 267-275 ; 2686-8385 ; 2686-7877
Subject Terms: snow avalanche regime, climate change, indicative climate characteristics, avalanche hazard, Western Tian Shan, snow cover depth maps, Uzbekistan, снеголавинный режим, изменение климата, лавинно-индикационные показатели, лавинная опасность, Западный Тянь-Шань, карты высоты снега, Узбекистан
Subject Geographic: Russian Federation, Российская Федерация
-
15
Authors: et al.
Source: THEORY AND PRACTICE OF ARCHAEOLOGICAL RESEARCH; Vol 26 No 2 (2019); 153-166
Теория и практика археологических исследований; Том 26 № 2 (2019); 153-166Subject Terms: долина Ахангарана, Западный Тянь-Шань, Узбекистан, Paleolithic, палеолит, Akhangaran river valley, Western Tien-Shan, 0601 history and archaeology, Uzbekistan, 06 humanities and the arts, 15. Life on land, 01 natural sciences, 0105 earth and related environmental sciences
File Description: application/pdf
-
16
Source: Систематические заметки по материалам Гербария им. П. Н. Крылова Томского государственного университета. 2019. № 119. С. 14-24
Subject Terms: лютики, 2. Zero hunger, Памир, горы, Тянь-Шань, горы, новые виды, эндемики, Памиро-Алай, горы, 14. Life underwater, 15. Life on land, лютиковые, 3. Good health
File Description: application/pdf
-
17
Source: Turczaninowia; Vol 22 No 4 (2019): Turczaninowia; 82-86
Turczaninowia; Том 22 № 4 (2019): Turczaninowia; 82-86Subject Terms: Западный Тянь-Шань, sect. Paraeremostachys, endemics, Атойнокский хребет, Atoynok ridge, эндемики, секция Paraeremostachys, 14. Life underwater, Western Tian Shan, Ферганская долина, 15. Life on land, Fergana Valley
File Description: application/pdf
-
18
Authors: Tursynkhan Kairken
Source: Turkic Studies Journal, Vol 4, Iss 1 (2022)
Subject Terms: Шығыс Тянь-Шань, Шығыс Түркістан, сақтар, хундар, усундер, көне түріктер, Алагу сақ қорғаны, алтын бұйымдар, қола бұйымдар, қолданбалы өнер, аң стилі, антропология, тілдік ерекшеліктер, шаруашылық дәстүрі, Жібек жолы, көне қалалар., Geography. Anthropology. Recreation, Philology. Linguistics, P1-1091
File Description: electronic resource
-
19
Authors:
Source: Russian Entomological Journal ; Российский энтомологический журнал
Subject Terms: CHALCOIDEA, CHRYSOLINA, CHRYSOMELIDAE, EAST KAZAKHSTAN, NEW SPECIES, SPECIES, GROUP, TIEN-SHAN, ЖУКИ-ЛИСТОЕДЫ, ТЯНЬ-ШАНЬ, ВОСТОЧНЫЙ КАЗАХСТАН, ВИДОВАЯ ГРУППА, НОВЫЙ ВИД
Availability: https://elar.usfeu.ru/handle/123456789/11830
-
20
Authors: et al.
Contributors: et al.
Source: Geodynamics & Tectonophysics; Том 13, № 1 (2022); 0568 ; Геодинамика и тектонофизика; Том 13, № 1 (2022); 0568 ; 2078-502X
Subject Terms: Тянь-Шань, deformations, magnetotelluric profile, Pliocene, Early Pleistocene, Naryn depression, Atbashi depression, Baibichetoo uplift, Tien Shan, деформация, магнитотеллурический профиль, плиоцен, ранний плейстоцен, Нарынская впадина, Атбашинская впадина, поднятие Байбичетоо
File Description: application/pdf
Relation: https://www.gt-crust.ru/jour/article/view/1420/619; Абдрахматов К.Е., Уэлдон Р., Томпсон С., Бурбанк Д., Рубин Ч., Миллер М., Молнар П. Происхождение, направление и скорость современного сжатия Центрального Тянь-Шаня (Киргизия) // Геология и геофизика. 2001. Т. 42. № 10. С. 1585–1609.; Bazhenov M.L., Mikolaichuk A.V., 2004. Structural Evolution of Central Asia to the North of Tibet: A Synthesis of Paleomagnetic and Geological Data. Geotectonics 38 (5), 379–393.; Бердичевcкий М.Н., Дмитриев В.И. Модели и методы магнитотеллурики. М.: Научный мир, 2009. 679 с.; Brandes C., Tanner D.C., 2014. Fault-Related Folding: A Review of Kinematic Models and Their Application. Earth-Science Reviews 138, 352–370. https://doi.org/10.1016/j.earscirev.2014.06.008.; Bullen M.E., Burbank D.W., Garver J.I., 2003. Building the Northern Tien Shan: Integrated Thermal, Structural, and Topographic Constraints. The Journal of Geology 111 (2), 149–165. https://doi.org/10.1086/345840.; Burbank D.W., McLean J.K., Bullen M., Abdrakhmatov K.Y., Miller M.M., 1999. Partitioning of Intermontane Basins by Thrust-Related Folding, Tien Shan, Kyrgyzstan. Basin Research 11 (1), 75–92. https://doi.org/10.1046/j.1365-2117.1999.00086.x.; Burtman V.S., 2010. Tien Shan, Pamir, and Tibet: History and Geodynamics of Phanerozoic Oceanic Basins. Geotectonics 44, 388–404. https://doi.org/10.1134/S001685211005002X.; Буртман В.С. Тянь-Шань и Высокая Азия: Геодинамика в кайнозое. М.: ГЕОС, 2012. 186 с.; Buslov M.M., 2004. Cenozoic Tectonics of Central Asia: Basement Control. Himalayan Journal of Sciences 2 (4), 104–105.; Buslov M.M., De Grave J., Bataleva E.A., Batalev V.Yu., 2007. Cenozoic Tectonic and Geodynamic Evolution of the Kyrgyz Tien Shan Mountains: A Review of Geological, Thermochronological and Geophysical Data. Journal of Asian Earth Sciences 29 (2–3), 205–214. https://doi.org/10.1016/j.jseaes.2006.07.001.; Buslov M.M., Kokh D.A., De Grave J., 2008. Mesozoic-Cenozoic Tectonics and Geodynamics of Altai, Tien Shan, and Northern Kazakhstan, from Apatite Fission-Track Data. Russian Geology and Geophysics 49 (9), 648–654. https://doi.org/10.1016/j.rgg.2008.01.006.; Чедия О.К. Морфоструктуры и новейший тектогенез Тянь-Шаня. Фрунзе: Илим, 1986. 313 с.; Delvaux D., Cloetingh S., Beekman F., Sokoutis D., Burov E., Buslov M.M., Abdrakhmatov K.E., 2013. Basin Evolution in a Folding Lithosphere: Altai-Sayan and Tien Shan Belts in Central Asia. Tectonophysics 602, 194–222. https://doi.org/10.1016/j.tecto.2013.01.010.; Dewey F.J., Hempton M. R., Kidd W.S.F., Saroglu F., Şengör A.M.C., 1986. Shortening of Continental Lithosphere: The Neotectonics of Eastern Anatolia – A Young Collision Zone. In: M.P. Coward, A.C. Ries (Eds), Collision Tectonics. Collision Tectonics. Geological Society of London Special Publication 19, 1–36. https://doi.org/10.1144/GSL.SP.1986.019.01.01.; Геологическая карта Киргизской ССР. Масштаб 1:500000. Л.: Изд-во Мингео СССР. 1980.; Геология СССР. Т. XXV. Киргизская ССР. Геологическое описание. М.: Недра, 1972. Кн. 1. 280 с.; Glorie S., De Grave J., Buslov M.M., Zhimulev F.I., Stockli D.F., Batalev V.Y., Elburg M.A., 2011. Tectonic History of the Kyrgyz South Tien Shan (Atbashi-Inylchek) Suture Zone: The Role of Inherited Structures during Deformation-Propagation. Tectonics 30 (6), TC6016. https://doi.org/10.1029/2011TC002949.; Goode J.K., Burbank D.W., Bookhagen B., 2011. Basin Width Control of Faulting in the Naryn Basin, South-Central Kyrgyzstan. Tectonics 30 (6), TC6009. https://doi.org/10.1029/2011TC002910.; Goode J.K., Burbank D.W., Ormukov C., 2014. Pliocene-Pleistocene Initiation, Style, and Sequencing of Deformation in the Central Tien Shan. Tectonics 33 (4), 464–484. https://doi.org/10.1002/2013TC003394.; Leonov M.G., Przhiyalgovskii E.S., Lavrushina E.V., Morozov Y.A., Rybin A.K., Bakeev R.A., Stefanov Y.P., 2020. Tectonic Evolution of the Basement–Sedimentary Cover System and Morhpostructural Differentiation of Sedimentary Basins. Geotectonics 54 (2), 147–172. https://doi.org/10.1134/S0016852120020089.; Леонов М.Г., Пржиялговский Е.С., Лаврушина Е.В., Рыбин А.К. Постмагматическая тектоника гранитов и морфоструктура Северного Тянь-Шаня // Литосфера. 2016. № 6. С. 5–32.; Макаров В.И. Новейшая тектоническая структура Центрального Тянь-Шаня. М.: Наука, 1977. 171 с.; Makarov V.I., Alekseev D.V., Leonov M.G., Batalev V.Y., Bataleva E.A., Bragin V.D., Rybin A.K., Shchelochkov G.G. et al., 2010. Underthrusting of Tarim beneath the Tien Shan and Deep Structure of Their Junction Zone: Main Results of Seismic Experiment along Manas Profile Kashgar-Song-Köl. Geotectonics 44, 102–126. https://doi.org/10.1134/S0016852110020020.; Макеев В.П. Нефтегазоносность палеозоя и мезокайнозоя Кокшаала, Прииссыккулья, Чуйской и Таласской впадин. Фрунзе: Фонды Госгеолагентства КР, 2000. Т. 3. 26 с.; Molnar P., Tapponnier P., 1975. Cenozoic Tectonics of Asia: Effects of a Continental Collision. Science 189 (4201), 419–426.; Morozov Y.A., 2002. Structure Formation Function of Transpression and Transtension. Geotectonics 36 (6), 3–28.; Morozov Y.A., Leonov M.G., Alekseev D.V., 2014. Pull-Apart Formation Mechanism of Cenozoic Basins in the Tien Shan and Their Transpressional Evolution: Structural and Experimental Evidence. Geotectonics 48 (1), 24–53. https://doi.org/10.1134/S0016852114010051.; Моссаковский А.А., Руженцев С.В., Самыгин С.Г., Хераскова Т.Н. Центрально-Азиатский складчатый пояс: геодинамическая эволюция и история формирования // Геотектоника. 1993. № 6. С. 3–33.; Омуралиев М. Геология кайнозоя и новейшая тектоника Алабуга-Нарынской впадины Тянь-Шаня: Автореф. дис. … канд. геол.-мин. наук. Фрунзе, 1990. 19 с.; Поршняков Г.С. Герциниды Алтая и смежных районов Южного Тянь-Шаня. Л.: Изд-во ЛГУ, 1973. 216 c.; Przhiyalgovskii E.S., Lavrushina E.V., 2017. Fold Deformations of the Paleozoic Basement Roof in the Chunkurchak Trough, Kyrgyz Ala-Too Range. Geotectonics 51, 366–382. https://doi.org/10.1134/S0016852117030098.; Пржиялговский Е.С., Лаврушина Е.В., Тектоническая эволюция Нарынско-Атбашинского внутригорного бассейна Тянь-Шаня: отражение стадий развития центрального поднятия в морфоструктуре и седиментации // Фундаментальные проблемы тектоники и геодинамики: Материалы LII Тектонического совещания (28 января – 01 февраля 2020 г.). М.: ГЕОС, 2020. Т. 2. С. 176–181.; Przhiyalgovskii E.S., Lavrushina E.V., Batalev V.Yu., Bataleva E.A., Leonov M.G., Rybin A.K., 2018. Structure of the Basement Surface and Sediments in the Kochkor Basin (Tien Shan): Geological and Geophysical Evidence. Russian Geology and Geophysics 59 (4), 335–350. https://doi.org/10.1016/j.rgg.2017.09.003.; Пржиялговский Е.С., Морозов Ю.А., Леонов М.Г., Рыбин А.К., Лаврушина Е.В., Баталева Е.А. Тектоническая структура и развитие переходных зон «впадина/поднятие » Северного Тянь-Шаня // Вестник СПбГУ. Науки о Земле. 2020. Т. 65. № 4. С. 760–781. https://doi.org/10.21638/spbu07.2020.409.; Rodi W.L., Mackie R.L., 2001. Nonlinear Conjugate Gradients Algorithm for 2-D Magnetotelluric Inversion. Geophysics 66 (1), 174–187. https://doi.org/10.1190/1.1444893.; Rybin A.K., Bataleva E.A., Batalev V.Y., Matyukov V.E., Zabinyakova O.B., Nelin V.O., Morozov Y.A., Leonov M.G., 2018. Specific Features in the Deep Structure of the Naryn Basin–Baibichetoo Ridge–Atbashi Basin System: Evidence from the Complex of Geological and Geophysical Data. Doklady Earth Sciences 479, 499–502. https://doi.org/10.1134/S1028334X18040165.; Rybin A.K., Spichak V.V., Batalev V.Yu., Bataleva E.A., Matyukov V.E., 2008. Array Magnetotelluric Soundings in the Active Seismic Area of Northern Tien Shan. Russian Geology and Geophysics 49 (5), 337–349. https://doi.org/10.1016/j.rgg.2007.09.014.; Садыбакасов И.С. Неотектоника Высокой Азии. М.: Наука, 1990. 179 с.; Sobel E.R., Oskin M., Burbank D., Mikolaichuk A., 2006. Exhumation of Basement-Cored Uplifts: Example of the Kyrgyz Range Quantified with Apatite Fission Track Thermochronology. Tectonics 25 (2). https://doi.org/10.1029/2005TC001809.; Suppe J., Medwedeff D.A., 1990. Geometry and Kinematics of Fault-Propagation Folding. Eclogae Geologicae Helvetiae 83 (3), 409–454.; Thompson S.C., Weldon R.J., Rubin C.M., Abdrakhmatov K., Molnar P., Berger G.W., 2002. Late Quaternary Slip Rates across the Central Tien Shan, Kyrgyzstan, Central Asia. Journal of Geophysical Research: Solid Earth 107 (В9), 1–32. https://doi.org/10.1029/2001JB000596.; Трофимов А.К. Основные этапы развития рельефа гор Средней Азии // Закономерности геологического развития Тянь-Шаня в кайнозое / Ред. О.К. Чедия. Фрунзе: Илим, 1973. С. 98–115.; Юдахин Ф.Н. Геофизические поля, глубинное строение и сейсмичность Тянь-Шаня. Фрунзе: Илим, 1983. 246 с.
Nájsť tento článok vo Web of Science
Full Text Finder